
WAVE PATTERN DIAGRAMS

by Captain H. D u f f o , French Navy (Ret.)

W ave pattern diagrams, or, to use a more general term, wave refraction 
diagrams, do not seem to have been exploited as they merit. In many cases 
when the plotting o f orthogonals would allow a problem to be quickly 
roughed out, technicians prefer to have recourse to tests on a small-scale 
model, tests which are long, laborious and costly, and where it is difficult to 
eliminate with certainty some disturbing effects.

A refraction diagram allows the détermination of the direction taken 
by off-shore swell from the point where this swell begins to “ feel” the 
bottom until it breaks in a spot which, thanks to this diagram, may be 
exactly determined. W ithin the same limits it also permits the computation 
of amplitude by the formula :

Hd =  H D d K dtt oo oo oo

W e shall define several notations.
Generally speaking, we shall use those encountered in American lit­

erature since these are universally known.

d —  depth level below the still water;
L x =  wave length in infinite depth;
L =  wave length at a given point, in finite depth;

=  trough (or amplitude) in infinite depth;
H =  trough at a given point, in finite depth;
C*, =  velocity (or rate of wave propagation) in infinite depth;
C =  velocity at a given point, in finite depth;
T =  period (time elapsed between the passage of two successive 

wave crests over a given point).
d, L, H, and C may be assigned a suffix whose significance is usually 

obvious. For example in the case where the contour lines are numbered, 
do, ^1» ^2» d3, etc. represent the depths on contour lines numbered 0 , 1, 2 , 3 , 
etc.

Certain authors give the suffix 0 to the elements H, C, and L in order to 
show that infinite depth is encountered. W e have thought it preferable to 
keep the suffix zero for an initial situation o f whatever type as this is the 
standard notation.

D, or D£, is the factor by which Hx must be multiplied in order to find 
H,, (the amplitude in a depth d), in a case where there is no refraction, (i.e. 
when the crests run parallel to the contour lines).



More generally, and always when refraction is absent, is the factor 
by which H„ must be multiplied in order to find H O b v io u s ly  we obtain

Dtf" =  Dd* D,?«.—  -“^ a o  dp *

K is the refraction coefficient. W e may recall that this ceases to be valid 
when the wave enters a zone of breakers. W e shall also give K a lower and 
a higher suffix in order to specify the limits within which it is computed. 
K® will be the refraction coefficient between A and B, A and B being on the 
same orthogonal. If the contour lines have been numbered, K®, still along 
the same orthogonal, will be the refraction coefficient between contour lines 
marked p  and q. W hen there is 110 suffix K is related to a point in the zone 
being studied, for example to M. and it represents K * . For a particular off­
shore swell, there will be a value of K corresponding to each point of the 
sea area.

W e shall use indifferently the terms “ wave ray ” (recommended by 
Professor L a c o m b e ) and “orthogonal” (as aforesaid) to designate the ortho- 
gonals to the lines o f the wave crests; to the contrary, “norm al” will be 
applied more particularly to the normal to the contour lines.

Finally i, the angle of incidence, will represent the angle o f the wave- 
ray with the normal to the contour lines, r, the angle of refraction, will be 
the angle made by the same normal and the ray having crossed the contour 
line separating two areas o f different velocity.

W e shall now recall several standard formulas. W e shall number them 
in Roman figures —  on occasion giving them a '  or a "  when the same for­
mula has already been expressed in a different form. The formulas we 
ourselves establish will be numbered in arabic type.

The first o f the standard formulas will be :
L =  C T  (I)

The second is the expression o f the Law of Descartes, known as Snell’s 
Law in the English literature :

sin i sin r_  (II)
C C

C being the velocity on the side o f the incident ray, C' on the side of the 
refracted ray.

The following relations between velocity, period and depth have been 
adopted by all authors :

Q T 2 7c ci
C =  ------- tanh — (III)

2 71 C T

c „ =  4 ^- 0110* TC

C =n C„ tanh — —----  (III")
C T

Finally, we have already quoted the formula that is valid along an 
orthogonal :

Hd =  H „ D * K *  , (IV)



or in a more general way :
Hds =  Hdp d £ k £ ,  (IVO

Dj* is completely defined for a wave of given period; tables and diagrams 
make its computation possible as a function of period and depth. is
easily deduced therefrom since D*« =  D*» . P

On the other hand K, which depends on the shape o f the bottom, must 
be computed separately by means o f refraction diagrams for each case.

Standard Computation of the Refraction Coefficient

Figure 1 represents two contour lines Z0 and Z bounding the area to 
be studied. W e have plotted 2 orthogonals A0A and BflB which, if Z 0 borders 
the zone of infinite depth — and this is what we shall here assume —  are 
parallel straight lines up to their arrival at A0 and at B0. Then let M0 and M 
be the mid points of A0B0 and AB respectively.

Assuming that all the wave’s energy lies between the two orthogonals, 
we may prove that the square of K“ 0 is equal to the ratio of intervals bet­
ween adjacent orthogonals at M0 and at M.

In the case o f figure 1, we have :

Qo Po(K “  )2 =
Q P

(V)

The measurement of Q0P0 , the interval o f two rectilinear and parallel 
wave rays, does not- present any difficulties o f principle. On the other hand, 
the interval QP at M can theoretically only be represented by a section o f a 
straight line if the adjacent orthogonals are there both almost rectilinear 
and parallel. Generally speaking, M being approximately equidistant from  
the two orthogonals, the normals drawn from M onto each o f them make a 
fairly noticeable angle.

Moreover, we assign the com puted K value to point M, thus assuming 
that M0M is on the same wave ray. However, this value o f K is only a mean 
value which is only valid for M in the case of regular underwater topography



which generates regular orthogonals, i. e. in cases where there is little need 
for wave pattern diagrams. Let us imagine that between A0A and B0B the 
orthogonal com ing from  M0 is plotted as M0M' (figure 1). W e may imagine 
what errors could be committed when the sea bottom  is rough, unless a 
close-set network o f orthogonals is available.

However, if the intervals are decreased, their measurement becomes 
inaccurate and the relative errors become rapidly prohibitative. There comes 
a moment when it is no longer desirable to increase the number of orthogo­
nals.

These criticisms regarding the computation o f K do not, in our opinion, 
justify the complaints made about the method which, after all, gives valua­
ble, albeit approximate, information.

These criticisms have however prompted us to seek improvements, 
which finally seem to us to be satisfactory.

Computation of the refraction factor at any point on an orthogonal

Let us consider a wave of a given period propagating on the sea bottom 
between two contour lines Z 0 and Z.

Between Z 0 and Z we will plot n — 1 closely placed contour lines, 
between two contour lines Z 0 and Z.

Let us now  imagine an underwater bottom surface bounded by the 
same contour line Z 0, Z x, ..., Z n_ 1, Z, which w ill be such that between two 
adjoining curves, Z p and Z p+1, the velocity remains constant and equal to 
Cp + 1, corresponding to the depth o f the contour line Z p+1 o f the actual 
bottom. Between these two contour lines the bottom will therefore be 
horizontal and it will be at a depth equal to the depth o f the contour 
line ZP + 1, the velocity for a wave o f a given period, being solely a function 
of depth and conversely, (III). At Zp the bottom will rise vertically until it 
reaches the level o f Zp+1, constituting a cylinder with Z p as directrix and 
bounded by the Z p + 1 horizontal level, (figure 2).

F ig . 2

The original underwater relief will therefore be replaced by a tiered 
relief, but which, if we increase the number o f contour lines, will approxi­
mate the actual surface as closely as we wish. W hen n tends towards infi­
nity, the two surfaces will coincide.



Let X A0 be a wave ray making an angle of incidence i0 with the nor­
mal A0N : this is refracted and makes an angle of refraction r0 with this 
same normal when passing into the medium of velocity Ct (figure 3). It will 
remain rectilinear between Z0 and Z 1 and then between Z 1 and Z 2, and so 
on, only changing angle when crossing the contour lines. Between A0 and A 
the wave ray will appear in the form  of a broken line made up of sections 
o f straight lines which make angles of incidence and refraction iP and rv on 
any contour line Z p .

Let us consider two adjacent contour lines, for example Z0 and Zj 
(figure 4). The orthogonal being considered will be X A0A t . Except in cases 
where i0 =  90° and i1 =  90° we may always plot a second orthogonal 
X ' A'o A( close enough to the first so that sections A^A'q and AjAi may be 
taken as sections of the tangents at A0 and at A 1 respectively, and so that 
the angle made by X A0 and X ' A'0 is negligible compared with the differ­
ence between angles i0 and r0. There refracted rays will likewise be parallel 
if  terms of higher order are neglected.

F i g . 4



Let us drop a perpendicular A0P0 onto X ' AÔ from  A0 (figure 4) ; and 
also A'0 from  A<5 onto AqAj. W e then have A'0 P£ =  A ^ .

According to the standard definition of the refraction coefficient bet­
ween A0 A5 and AaAi the square of its value will be equal to 

A0 P0 A0 P0 _  A0 A5 cos iQ _  cos i0 
A x P x A& P  ̂ ~  A0 Aq cos r0 cos r0

If Aq comes indefinitely closer to A0, then A\ will come indefinitely 
closer to A x and the refraction coefficient will no longer be defined as bet­
ween two areas but as between two points A0 and A j .

cos *oi i-n / ■* \
( ¾ ) 2 =  ------- f  CD

C o S  i  0
or :

1 cos j*o (10
(K^)2 _  cos i0 

Using the same reasoning we find :
1 cos r0

(Kao>2 _  cos i0 
1 cos

(K ip 2 — cos

1 cos r „_ !
T k 1 „_ ,)2 ~  cos i n-—1 

By multiplying member by member we obtain :
1 cos r„ cos r ! cos r2 ...........  cos rn_ j

(K^ )2 cos i0 cos ij cos i2 ...........  cos in -i
Tangents at A0 and at A 1 make the angles w0 and w, with a fixed 

direction (an arbitrary direction which could be the North). They intersect 
at O (figure 5), making an angle w i—  w0 =  Aco0-

Let us prolong the normals at A0 and At . These intersect at N with an 
angle Aw0 and form  triangle AoAjN.

Let us for the moment assume that Aw always remains positive. For 
this purpose it is only necessary to choose an area where the trend of the 
depth contour lines always varies in the same direction, and also to make 
an appropriate choice for the direction of the increasing w-

In figure 5 we see that =  r0 -f- Awo> and in figure 5' that ij =. r0 Aw 
if the angles of incidence and of refraction are reckoned as positive.

In either instance we shall always have :
ij =  r0 +  Awo , (3)

if we reckon i as positive when the wave ray is, in relation to the normal, 
situated on the same side as point O where the tangents intersect (figure 5) 
and as negative in the opposite case (figure 5')-

r will have the same sign as i by virtue of (II).

0»



W e may choose intermediate depth contour lines so that Aco0 =  AiOi

=  Ao)2 = .... =  Aw„_i =  e, e  being a small positive angle, equal to — , when
n

the tangents at A0 and at A intersect with an angle a- 
As a general rule we have :

and :
— rp -(- £ »

cos rp —  cos (ip + 1 —  e) =  cos e cos ip+1 (1 -f- tan s tan ip + 1) 
The equality (2) becomes :

1 ccs"e  c o s r „_ 1x P
(K i0>2

(3 ')

(4)cos l0
by putting :

P =  (1 +  tan £ tan i )̂ (1 -|- tan e tan i2) . . . .  (1 +  tan e tan i).
W hen n tends towards infinity, i.e. when the number o f tiers continues 

to increase and their height to be reduced, the fictitious surface being 
considered in figure 2 becomes increasingly similar to the real surface up to 
the moment when they merge together.



e tends towards zero, cos "e tends towards 1 and rn_ x tends towards i.
It will only be necessary to determine the limit to which product P tends 
to obtain an accurate and precise value for the refraction coefficient.

Let us call M the absolute and maximum value which tan i may take. 
This, as we recall, remains finite (i ±  90°).

Let us give n a sufficiently large value so that, since tan e is very small, 
the factors making up P will be not only positive but also very close to 1.

Using Napierian logarithms we obtain :
loge P =  loge (1 +  tan £ tan ix) +  loge (1 - f  tan e tan i2) +  . . . . +

+  loge (Ï +  tan £ tan *n-l) +  l°ge (1 +  tan £ tan 0 
Expanding the various logarithms of the above sum in series, and 

putting them in columns, we shall have :
loge P =  tan g tan +  tan e tan i2 +  . . .  . +  tan e tan in_ 1 +  tan s.

1 1 1 . 1--------tan2 e tan2 -------- tan2 s tan2 i2 —  • • • •------ r- tan2 e tan2 in_ x-----— tan2 z
2 2 2 2

db — tanm g tanm ±  — tanm e tanm i2 ±  . . . .  ±  — tanm s tanm in—i ±  — tanm e 
m m  m m

For the first line we may write :
tan e a . . . , . ..----------- (tan ij +  tan i2 +  tan i8 +  . . . .  i„_ x +  tan i)

e n
The sum within the brackets, divided by n, is in fact the mean value o f 

tan i between tü0 and w, the difference co —  Wo being equal to a- W hen n tends

towards in fin ity ,------- tends towards l.O ur first line tends towards / tan idu>.
e A ,

Let us examine the q line, which may be written as :
(—■ I )8-----------tan« e (tan« +  tan« i2 +  . .  . . +  tan« +  tan® i)

<7
The sum within the brackets is made up of n terms, each one having an 

absolute value smaller than Ms. The absolute value of this sum will be 
smaller than /iM s.

In order to simplify the notations we shall give the product M tan e the 
notation x. The absolute value of the entire q line will be smaller than :

n tan« e M« n x«
9 ~  Q

The sum of lines giving the value of logeP, omitting the first, has a 
smaller absolute value than :

1 1 1 1 1 , ,
n ( _  x2 +  —  x b +  — x* +  . . .  +  — x« +  . . .  +  —  x“ +  . . . )

2 o 4 q m

(*) The signs o f each line are alternately +  and — ; if m is odd the sign will be + ;  
if m is even the sign will be — .



i.e., by replacing the series within the brackets by its total, smaller than :
n [— log e ( 1 — x) —  x ].

This expression tends towards zero when n tends towards infinity. In 
effect :

M tan e M tan e a
x  —  M tan £ =  --------------  e  —  ---------- n

whence
tan e a 

n  — M ------------

W e have
tan e log„ (1 —  x) +  x

n [— log e (1 — x~)— £ x
which tends towards zero, as we wished to demonstrate, when n tends 
towards infinity while x tends towards zero.

> A
The limit o f logeP is thus : f  tan i da>, when we are com ing close to

J k
irface, and : 

cos i0 — / tan 1___________ A_

the actual under-water bottom surface, and :
•A,

________ „  A„
cos i

The integral J  tan i dw is easy to compute. The curve representing

tan i as a function of rfti) is plotted taking a scale suited to the desired 
accuracy for the abcissae and the ordinates. Finally it w ill only be necessary 
to measure the area bounded by the curve, the ordinates a)o and w the axis 
of the abcissae. The signs of these areas will be those o f tan i since rfw has 
been assumed to be always positive. The integral in question could equally 
well be computed in an approximate way —  and this owuld often be suffi­
cient —  either by the trapeze method or by Simpson’s method.

W e have assumed for the ease o f computation that the it> angle would 
always vary in the same direction. It is easy to give this form ula a more 
general value by eliminating this troublesome restriction.

Let us first note that when co is constant the integral is zero (the area 
defined above is confined to a section o f an ordinate) and that e° =  1. The 
form ula then becomes :

cos i0 ,,(K^ ) 2 =  ------- (V)
u cos I

which is a standard formula directly established in the case where the 
contour lines are parallel straight lines. As for our formula, this is not valid 
when i or i0 is equal to 90°, an eventuality which would merit special study.

Returning to the case where to varies in some way or another. On the 
BqB^sB curve (figure 6) representing tangent i versus to, B0 corresponds 
to u)0 —  the direction o f the tangent at A0 to the contour line —  B corres­
ponds to to -—- the direction o f the tangent at A. Points Bi and B2, where the 
tangent to the curve in the figure is vertical, correspond to the points A 1 
and A2 of the orthogonal where œ changes to the opposite direction.



The form ula is therefore applicable between A0 and Aj,' between A, 
and A2, and between A2 and A. Since we have :

But beyond Ai, at the same time as dw changes sign, tan i must also 
change its sign because the tangents to the contour line intersect on the 
other side o f the normal. The integral here computed with du> constantly 
positive must likewise change sign. In the case of figure 6, the area swept

by the ordinate is positive from  o)o to wi, negative from  d>i to üj2 and then 
again becomes positive after o>2- It is seen that the total area will be 
negative. This corresponds to the hachured area on figure 6. The sum of the
3 integrals w hich make up the exponent o f e may be replaced by a single 
integral from  A 0 to A. The formula :

is therefore valid for any shape of submarine relief, provided, however, the 
slope is sufficiently small for the reflected energy to remain negligible.

The possibility of having available accurate coefficients of refraction 
in a whole variety o f cases —  as are actually encountered —  has manifold 
applications. For example, it would seem that this should facilitate the 
study of intersecting orthogonals.

However, our purpose is not to pursue our investigations in this 
direction, for we have a more urgent task.

The basic form ula which we have established can only be used really 
successfully when we know how to plot accurate orthogonals, but it seems 
that the methods currently used are far from perfect. W e shall therefore 
try to improve them.

then :

tan i dco

tg-C,

B1

»(■ )
O U)2 <0 0>0

Flo. 6

cos I
(5)



W e are not the first to have had this idea : already much valuable 
progress has been made. Thus the wave crest method after being strongly 
criticized by Dr. P i e r s o n  has been almost completely rejected by serious 
users. In the same way Professor L a c o m b e  has shown that grave errors could 
be avoided by using directly the relation deduced from  Descartes Law (II) 
and not by employing a derivative formula.

However, whatever the precautions taken and the accuracy sought, 
truly satisfactory results cannot be expected as long as the orthogonals are 
plotted in too long sections along which the velocity is assumed constant. 
As Professor L a c o m b e  has remarked, this is the same as if the actual 
submarine topography —  which is never known with perfect accuracy 
but which is usually thought to be different from  a tiered form ation —  was 
replaced by a stepped relief with a number of depth contours in com m on 
with the actual topography, but constituted by vertical walls separated by 
horizontal areas.

W hen constructing a small-scale model, walls o f suitable height are 
first established along contour lines plotted on the floor. These walls retain 
filling materials at each level. However hydraulic tests are never undertaken 
before the brick-layer has connected the tops o f the various walls by 
fashioning with his trowel slopes which are arbitrary but which represent 
fairly closely what is actually the case.

Let us repeat that hydrographic surveys are never strictly accurate. 
They only offer an approximate representation o f the bottom relief which 
is never absolutely stable. The template in which the vertical dimensions 
are too small for the full use o f accurate soundings adds its own distortions 
to an already imperfect representation due to the limitations of the brick­
layer’s craft.

However, nobody can deny that valuable inform ation is deduced from  
tests on a small-scale model which only represents a surface approximating 
the actual surface.

W e now hope to be able to conceive a computational process which, 
with slopes which are arbitrary but close to reality, will allow us to fill the 
abnormal gaps still existing between the various tiers when the present 
procedures are used. To this end we shall increase to infinity the number 
of intermediate depth contours as was the case with the computation of 
the refraction coefficient. The height o f the tiers will become smaller and 
smaller, but we will select a general lay-out without any restriction except 
the points o f departure and o f arrival. If, finally, we have removed artificial 
and excessive discontinuities which are due to the use o f unperfected 
processes, we will only obtain a fictitious relief, invented by our com puta­
tions. This will no doubt have the merit of being not too different from  the 
actual relief, still not perfectly known.



Definition of the adopted fictitious surface

Let us assume that a sub-marine topography is reliably represented 
by a number of contour lines. This means that the lines must be sufficiently 
close so that between two neighbouring lines the slope varies, always in the 
same direction, either continuously increasing or decreasing, throughout 
almost all the area under consideration. This is in any case what we shall 
assume.

Between two adjacent depth contours Z and Z 0, we propose to plot 
an orthogonal, corresponding to a particular wave, arriving at A0 with 
an angle o f incidence i0 and after refraction ending on Z  at A. Velocity is 
C0 along Z 0 and C along Z. The tangents at A0 and A to the contour lines 
intersect at O with an angle a- The angle made by O A0 with the direction 
of origin com ing from  O is u)o- Each point of A0A may be defined in a polar 
coordinate system, with O as pole, by the radius vector p and the angle u> 
(figure 7).

The cylinder which is based vertically on A0A cuts the actual sub­
marine relief making a curve whose slope in relation to the horizontal will 
be either always increasing or always decreasing, as we have assumed. 
W e shall now replace this slope by a curve F, which will be very close to 
it since it will have the same horizontal projection, the same point of 
departure and the same point of arrival. Between the two, the depth of 
its various points will vary continuously so that the corresponding velocity 
starting from  C0 at point A0 will become progressively C at point A, according 
to a law which we shall choose arbitrarily. This law will be defined by :

d C
- -  =  —  fcrfw , (6)

where k is a constant to be computed for each particular case.
Integration between A0 and A gives :

C
loge ---  =  --- *  (W----Wo) (7)

'-‘O
Thus, giving the values they have at A to w and C :

C



and :
C =  C0 e - fc(°>-<v. (8)

k is positive when the bottom is rising, as is generally the case when 
going from  deep sea towards the coast.

The surface generated by such curves as F corresponding to such 
orthogonals as A^A for a particular wave is very close to the actual sub­
marine relief since F is very close to this relief. It is this surface which 
we shall choose for determining the orthogonals, and we shall call it £.

Let us now imagine that by means o f n— 1 straight lines coming from
^ aO we divide the angle A0OA into n equal parts — . These straight lines

n
meet the orthogonal A0A at points A l5 A2, . . . Ap, . . . A „ _ j .

Taking the straight line O A f , the angle A0OAP will be equal to p times

— , i.e. —  a- Let us carry out the same operation for all orthogonals such 
n n
as A0A, for example B0B. The tangents at B0 and B intersect at O ' with an 
angle |3 which we shall divide into n equal parts. The straight line O'Bp 
will be homologous to the straight line OAf . The family o f straight lines 
such as O A , has an envelope whose Ap, BP and the other similar points are 
limit points. W e shall call this envelope Zp and we shall say that it is 
a contour line o f £.

p
In effect, the angle u>p —  a)0 is equal to —  a- The angle to, —  too is equal

n
p

to —  p. These two angles are different but the exponents of e in formulas 

(8) relating to A p and to Bp are identical since both are equal to :
P  , c

—  !oge 7T- n Co
The velocity and thus the depth are therefore identical at Ap and BP, 

i.e. over the whole Zp curve. Clearly this is a contour line of the surface £ 
as we wished to establish.

Between Z 0 and Z there are an infinity o f £ surfaces since £ depends 
on the swell under consideration. However they are all very close to the 
actual surface and this is important.

For computing A0A we shall take as an intermediate step the particular 
surface generated by the horizontals resting on the F curve and on the 
vertical of O. This surface, which resembles a hyperbolic paraboloid, is 
tangent to the £ surface along F.

W e shall deal with the particular case in which the contour lines are 
converging straight lines.

When the contour lines are converging straight lines

Let us plot n —  1 straight lines between OZ0 and OZ (figure 8), 
such as OAj, OA2, . . . ,  OAp . . OAn_ l5 which are contour lines. As in the



case o f the com putation of the coefficient o f refraction we should replace our 
surface by a tiered surface which resembles a corkscrew staircase, and we 
shall use the same rules for signs as for formula (3).

In the case o f figure 8, we see for example* that i is positive. Snell’s 
Law gives us :

o - Tv rvJr^p2 s in --------------  cos ----------
sin i„ sin r„ sin r„ —  sin i„ 2 2

or
C p Cp  _|_ i Cp i  Cp Cp ̂  i  C p

cp + 1 Cp sin z'p
Cp ip -f- Tp

cos
=  2 sin

2

For any point on the orthogonal, if we cause n to increase indefinitely 
by neglecting the terms of higher order and by replacing ip by i, ip + 1 by
i -)- di, rp by r, CP by C, Cp + 1 by C -)- dC, we shall find :

d C
tan i ------- =  r —  i

C

Likewise the relation (3') becomes :
r —  i =  di  —  dw . (3")

whence :

di =  do) -)----------tan i . (9)
C

This form ula is general. Now by assuming the variation o f C  along 
the orthogonal to be ruled by the arbitrary law defined by the formula 
dC-------- =  — k d to, the particular formula is obtained :
C

di =  dw  (1 —  k tan z) (10)
It is easy to integrate by putting k =  tan cp .



Continuing to call a the angle (by definition positive) between the 
straight lines O Z0 and OZ, we find :

cos (cp -4- /)
a =  cos2 cp (/ —  i0) —  sin cp cos cp log e -------- ---------  (11)

cos (cp +  i0)
with :

—  lo g e - ^
tan cp =  -----------------—  (12)

a
However, when considering function p =  /(w ) ,  representing the A0A 

curve in polar coordinates (OA =  p  and OA0 =  p0)  we know that d p  =  
p tan /  d co. An easy integration w ill give :

Po cos (cp +  i )
log e —  =  sin cp cos cp (/ —  i0) +  cos2 cp log e ------ ---------— (13)p T cos (cp +  i0)

This last equation, after taking equation (11) into account, can be 
replaced by the following and more simple equation :

i * Io alog c —  =  --- --------------p tan çp
or again :

p =  p0 e tan <p (14')
However we shall also define and compute a new angle, (3, which will 

be of prime importance when we pass from the case of straight lines to the 
general case.

The A0A chord makes an angle which we shall call (3 with A0Z 0. In 
triangle A0OA, we have :

sin p sin ((3 —  a) sin (3 cos a —  sin a cos [3

P Po Po
or :

cotan 8 =  cotan a ---------- —-----  (15)
p sin a

or again

£ tan cp
cotan (3 =  cotan a  — -----------------------------(150

sin a
By forming a system of 3 equations, for example (12), (11) and (14'), 

we could compute cp, then i and p in terms o f p', C, C0, i0 and a. w hich are 
known.

W e prefer however to compute cp, i and (3 by means o f equations (12), 
(11) and (15'). The second method has many more advantages. Both arrive at 
the accurate determination o f a point on an orthogonal and o f its tangent. 
However, thanks to this second method, we shall be able to solve the 
problem quite straight forwardly in the general case where a is one o f the 
unknowns.



The case of any kind of depth contour

Returning to the general case (figure 9), let us replace the submarine 
relief first of all by the surface 2, which resembles it very closely, then 
by the surface which is tangent to 2 and generated by horizontals resting 
on both the F curve and the vertical from  O.

The above equations, and in particular equations (12), (11) and (15'), 
are entirely valid for 2, but we now have a further unknown a and there 
would seem to be a missing equation.

In fact, the shape o f the Z  contour line form s a fourth relation, and we 
will see that it will be possible to find a solution.

Our first task will be to work out tables or graphs giving i and j3 as
C0

functions o f a and i0 for several values o f — . This is a most tiresome and
C

lengthy task when a table o f logarithms only, instead of an electronic 
computer, is available.

However it would certainly seem that we could profitably concentrate 
both our efforts and expenditure in this direction.

W e have contented ourselves with gathering the data which allow i
C0 C0and j3 to be com puted for a single value of —  as determined by log —  =  0.01.
C C

For j3 we have drawn up a double graph, represented in plate I, where 
a fam ily of a curves and a fam ily o f i0 curves are shown. W e expected to be 
able to take concentric circles for the a curves but since we could not any­
where find polar graph paper we have used ordinary rectangular grid paper, 
and we have adopted rectangular curves, the inner rectangle OABCDO 
(fig. 10) corresponding to a =  0 and the outer rectangle to 90°. It would 
seem superfluous to go any further. Moreover we do not recommend 
choosing the Z0 and Z contour lines whose tangents have turned more than 
about 50°-60°.



Therefore the use of an intermediate contour line seems indicated. It 
will be seen that it has not been possible to graduate the a  =  0 curve in i0 
by means o f our form ulae for their terms are becoming indeterminate and 
the formulae were set out assuming that a =7̂  0. However if we make a

71tend toward zero, <p will tend toward — , (11) merely becomes Snell’ s Law
2

and (150 will become :

cotan jj =
loge Go

(16)

This formula can easily be found by direct computation.
The i0 curves have been determined in such a way that the angleT5oM  

is equal to p if  M is the point where an a curve encounters an i0 curve.
The window A'B'C'D' has been constructed inside the rectangle ABCD 

and the borders A 'B 'C 'D ' have been provided with a scale o f angles i0.
In order to make the plotting o f orthogonals easier, it seems essential 

to have a specially prepared chart on which it will be easy to plot successive 
contour lines so that their velocities C0, C1( C2, C3 . . .  fu lfill the condition 
Go Ci C2 C3
—  =  —  =  —  =  —  =  . . .  =  y designating the common value o f these ratios. Gi C2 C3 C4

Thus, M. L a v a l , Ingénieur Général des Ponts et Chaussées, has recom ­
mended in his treatise on Maritime Engineering the plotting of “ lines of 

dCequal values o f -------” which amounts to the same.

It would seem that it is at this point that the hydrographic surveyor  
should step in.

The hydraulics engineer must not be allowed to conceive these important 
curves, which will have both submarine relief and surface £ in com m on. 
They should indeed be smoothed, that is, improved in a more or less 
arbitrary fashion.

Certainly the hydrographic surveyor, in order to allow the navigator to



be the judge in the last resort, considers he must take into account all 
the soundings, even when some are abnormal. These soundings are only 
deleted when they have been proved false without any possible doubt. This 
scruple often results in festoons of fairly complicated contour lines which 
are not likely to exist in reality. Once he knows what he must achieve the 
hydrographer will be better placed than anyone else for smoothing out the 
irregularities which he thinks should be attributed to opposite errors 
around the actual sounding. However he will always carefully keep the 
figures which seem to correspond with the unevenness o f the relief. In our 
opinion, we shall in this way have contour lines which represent the general 
aspect o f the bottom better than a standard chart, although data are left out 
w hich could be of value to be mariner who must rely only on the standard 
data o f regulation documents.

As he possesses this main network o f smoothed contour lines, the 
hydraulics Engineer should draw as accurately as possible the contour 
lines corresponding to C0, C2..., that change not only with the value of
y but also with the period o f the wave.

The hydrographer will o f course take the plotting sheets into account 
but he will also draw on his experience and his knowledge o f the marine 
topography. To the too widely spaced contour lines whose depths are given 
on the charts he will add intermediary and more closely spaced contour 
lines which will have under 2 mm between them.

W e have also seen that the a angle plays an essential role. It would 
not be sensible to make great efforts to use correct but more intricate 
methods if the accuracy o f angle a was not being sought. It is therefore 
suggested that on special grids where families o f smoothed contour lines 
are already shown these lines should be graduated in azimuths o f their 
tangents. These azimuths will be between 0° and 179°. The homologous 
points will subsequently be joined by curves numbered at every 10° only.

Hydrographic offices employing highly qualified draughtsmen are ob­
viously indicated for the successful execution of this work which, moreover, 
is not entirely graphic and should therefore be supervised by a hydrographic 
engineer. It could happen in fact that rectification of smoothed contour lines 
becomes necessary.

Thus a double network o f curves is available. Black could be used 
for drawing the contour lines and red  for the curves o f equal azimuth. 
W e shall call these last the “red curves” .

Let us imagine that we have a chart which includes all this information. 
W e have then the necessary tools to apply with an improved method our 
plotting process to the particular case of a given wave.

Generally speaking a line which corresponds to d =  is taken
2

as the initial line and we assume that C0 =  Cx. As y is known, Cl5 C2, 
C3, etc. may be deduced. The tables established from (III") now give dlt d2, 
d3, etc. If possible we shall show the corresponding contour lines in various 
colours. Perhaps some have already been plotted but in any case it will be 
easy to interpolate between lines spaced less than 2 mm apart and to obtain 
an accuracy compatible with the scale of the chart.



W e now start the actual plotting of the orthogonal. In general the 
azimuth of the first incident ray com ing from the open sea has been given. 
This arrives at A0 where the tangent’s direction is read on the “ red” curves. 
i'o can therefore be accurately determined.

Let us consider 7,x. W ith the help of the red scale and subtracting the 
azimuth read at A0, let us graduate in pencil in terms o f a the portion which 
interests us, that is the portion where it would seem that the wave ray must 
end <*>.

Let us now take one o f the two graph templates corresponding to the 
,C0

value ot —  adopted, for there are two of these graphs which are symmetrical L
at O in relation to the perpendicular onto the AD side of the rectangle 
(fig. 10). One is used when the tangents at A0 and A 1 intersect to the right 
o f the normal and the other for the opposite case. Confusion is avoided by 
means of the sign of i0.

Let us place this template over the chart so that O coincides with A0 
and so that the base (AOD) of the rectangle coincides with the tangent at 
A0, or rather that the incident ray, when prolonged, reaches the values o f i0 
on the border scale A'B'C'D'.

Then from  O let us make a taut wire pivot following the i0 curve, 
making a straight line that, through the window A'B'C'D', can be seen to 
traverse the a scale o f 7LX.

W hen the values of the i0 curve scale and of the contour line on 
meeting the wire are identical, the wire is oriented follow ing A0A X. Ax is 
then situated at the intersection o f the wire and Z lt and here the value of a 
can be read. W ith a and i0, i\ is computed by means of a table or a template

Coestablished for the chosen value o f — .
C

A point on the orthogonal and its corresponding tangent have therefore 
been determined. From here onwards the operation is restarted and is 
continued.

In the most general case o f a system of com plex relationships
Q

allowing a and [3 to be determined in terms of —  the double template is
C

indispensable for accurate resolution and should be inscribed on plexiglass 
with the negative i0 curves in red.

W e shall thus obtain a kind o f protractor, one only for each value 
o f y, since both faces can be used. A minimum of two is necessary, one 
with y >  1 and the other with y <  1 according to whether the depth 
decreases or increases, in order to be able to apply this process.

However, it is not necessary to increase the number o f these protractors. 
W ith log y =  0.01, for a wave of L ?J — 100 m (T =  8 seconds) we have

Looused a series of contour lines whose depths from  — —  =  50 onwards were :

(*) Of course, if along the section o f  Z, involved a sufficiently small curvature allows 
us to evaluate a practically without error, the plotting of the orthogonal can be achieved 
by more simple procedures.



33.48 - 27.99 - 24.54 - 21.99 - 19.97 - 18.29 - 16.86 -  15.62 - 14.53 - 13.55 - 
12.66 - 11.87 - 11.14 - 10.47 - 9.85 - 9.28 - 8.77 - 8.28 - 7.80 - 7.39 - 6.62 
- 6.28.

The contour lines quickly become dense enough, even to the point of 
being inconvenient. The only template (log y =  0.01) which we worked 
out without aiming for great accuracy allowed us to plot some very 
satisfactory orthogonals. However we should add that in the particular 
case involved the depth was always decreasing, and between 50 and 25 m 
the slope was steep. In spite of the scale adopted (1 /5  000) the contour 
lines in this area were sufficiently close so that there was no need for 
intermediary contour lines.

However (if because the slope changes direction, we need to obtain on 
the orthogonal a point nearer the crest or the thalweg than the last contour 
line it has been possible to use) it can happen that it is necessary to deter­
mine the point where the wave ray intersects a contour line not appearing 
in the set we have chosen.

Except between Z 0 and Z x <*>, a solution exists which enables the same 
protractor to be used.

Let us assume (figure 11) that the contour line Z' under consideration 
is situated a little beyond the last contour line it has been possible to process. 
This line’s velocity C' is between Cp and C,,+1. Let us compute Co so that
CS—  =  y and let us make the contour line Z 0', situated between Zp_ 1 and Z P,

correspond to it. The wave ray, already plotted between Ap_ ! and Ap, inter­
sects Z 0' at A£> where i’ô is known. A ' can therefore be determined from  A'0, 
always using the protractor corresponding to y.

Zp+1 C?)/'

If Zp+1 exists and if the relief between Zp and Zp + 1 does not present 
anomalies it is m ore logical to determine A ' by the intersection of its

(*) Even in this case a less simple but more general solution can be used.



contour line with the arc APAP+1. Theoretically the point thus determined 
is not exactly the same as that found by the procedure just specified. W e 
have in effect used 2 surfaces which are not identical. Very fortunately the 
discrepancy is not perceptible when plotted if the contour lines on which 
the 2 surfaces are based are sufficiently close.

The case of submarine relief showing crests and thalwegs

Generally speaking, the set o f 2 surfaces represents the submarine 
relief correctly. They link up with one another making an angle which is 
not zero but which is small since any two surfaces when joining together 
are both close to the actual topography.

However, we have had to set aside the case when, between the two 
contour lines on which these surfaces are based, the depth and consequently 
the velocity pass through a minimum or a maximum. W e shall briefly 
study this case, taking the case of a minimum (a crest). If it were a question 
o f a maximum (a thalweg) our chain of reasoning would be the same.

The depth decreases along the orthogonal A0A, going through a m ini­
mum at A', and then increases.

Let us consider the vertical cylinder with A0A'A as directrix which we 
shall assume to be plotted in the horizontal plane, the surface o f still water. 
This cylinder cuts the submarine surface with a curve G. B0, B ' and B are 
points at which the verticals o f A0, A ' and A cut this surface. Let us 
develop the cylinder starting from  the generatrix A0B0 up to the generatrix 
AB (figure 12).

F i g . 12

In figure 12 which represents the developed cylinder, A0A 'A  becomes 
a horizontal straight line and G a new curve B0B'B. The verticals (such as 
AB) represent the depths.

Velocity could be represented by a similar curve, with a minimum of 
similar trend at the point hom ologous to B', but it would be more flattened



if the metre per second were taken as the unit for velocity and the metre 
as the unit for depth.

For a wave with an 8-second period, which is what we have been 
studying, in depths o f about 8 metres —  more exactly 8.18 metres —  (the 
figures for the depth in metres are the same as those for the speed in metres 
per second), the velocity, however, increases more slowly than the depth. 
In depths o f 50 m it is only a quarter this figure.

Let us anyhow start by applying our method. B1( B2, B3, etc., will 
correspond to contour lines Z lf Z 2, Z3, etc. since y has a given value. By 
replacing the actual submarine topography with E surfaces we have replaced 
the B0B' curve by a broken line BnB1B2... The chords such as BnBi are not 
entirely rectilinear, but if the successive velocities CqCl CtC2, C2C3, etc. are 
very close (y ~  1) they will be very nearly so.

The broken line in question is sufficiently close to the actual curve, 
but it stops at B4 for the depth corresponding to Bs is less than the depth 
for B'.

W e may prolong this line by the horizontal line BJBg, the velocity 
remaining constant during this interval —  i.e. there will be no refraction —  
but this step is only satisfactory when B4 is very close to B'.

W e can equally well proceed as indicated above, i.e. by making a
C "point B" correspond to B', so that -------=  y. This solution is more conven­
ts

ient particularly for the exceptional case of an angular point at B' 
(as the case of an abrupt ridge in the relief) and in this case A' on the 
wave ray will also be an angular point.

Let us review the problem anew, assuming that the tangent at B' 
to the depth curve is horizontal (i.e. that there is no angular point) and 
eliminating the follow ing two eventualities that are very rarely encountered.

a) B' is not the culminating point of the relief.
b) The crest line passing through B' is not horizontal. In other words 

the contour line passing through B' is not the crest line.
As a result o f these assumptions the orthogonal is tangent at A ' to Z ', 

whence iv =  90° (figure 13).
Let us take the same notations and conventions as used when the 

formulas (11) and (13) were established. W e now no longer know the 
contour line, but we do know the angle o f incidence.

Formula (9) remains valid :
d C

di — d(a -|--------- tan i (9)

As previously let us put :
d  C

k d tu

However along our orthogonal, k can now no longer be a constant 
since C is m inim um  at A '. Again, for reasons o f convenience of compu-



m  cos i
tation only, we shall arbitrarily put k  = --------------------- , m  being a constant.

1 -)- m i
For i =  90° this k function is cancelled out. W e have :

d C m cos i
1 -|- m sin i cfti) (17)

Replacing dC
in (9) by this value we get :

di (1 -|- m  sin i) =  d u  
Integrating between u)o and o) :

i —  i0 —  rn (cos i —  cos i0) =  w —  co0 
At A', for i =  90° we have :

a
7C
Y

i0 +  m  cos i0 .

Likewise, by integration o f (17) which may be written as
d C

we obtain

l o g e

c

C
Co

=  —  m  cos i d i ,

— —  m  (sin i —  sin Îq)

(18)

(170

And at A ' for i =  90° :
C' =  C0 e— m (1 — sin (19)

W e shall determine m  by considering what (17) becomes in the parti­
cular case o f point A0. Re-introducing k  we have :

/  d C Y



The tangent to the orthogonal at A0 encounters the contour lines of the 
special grid at points where :

to —  thanks to the red curves,
C —  by means of standard tables in terms o f depths or more exactly 

d
in terms of -------,

L 0
are accurately known.

It is therefore possible to plot an arc of the curve representing C in

terms o f u>. Its slope (   ̂ could then be determined for co0 and (17")
\ d t û  / o

w i l l  p i v e  t h e  v a l u e  o fO u
Now

^ m  cos i'o
0 1 -)- m sin i0

whence :

m  = ------- .------------- :----—cos i0 —  k0 sin i0
Since m is known we also know a; Wo will allow the computation of u>' 

which is the azimuth o f the tangent at A7. A first locus o f A ' will be the red 
curve graduated in terms o f w'. A second will be the Z ' contour line which is 
known since (19) gives us C'. The position o f A ' is therefore determined.

The new fictitious surface used for these computations rests on the 
Z 0 contour line and on the curve locus of A ' points. Along these two curves 
the surface is tangent to the actual surface, and is therefore extremely close 
to it and thus is even more satisfactory than the 2 surface.

W e shall not continue our research which becomes only of mathe­
matical interest. W e must not forget that at the time o f the computation of 
the coefficient of refraction the case o f i =  90° was excluded. This case 
is probably preceded by a dissipation o f energy, due to either breakers or 
slack water.

Improving the standard methods

It is to be hoped that the present somewhat arduous study, although 
involving only elementary ideas, will encourage some readers to abandon 
methods open to criticism. However we do not think it idle to state how 
these methods may be improved by those unwilling to abandon them. At 
least we should evaluate their reliability in each case.

As it is, a glance at our graphs is most instructive. It is immediately 
seen that a striking dissymmetry exists between the right and the left sides. 
This was to be expected. On a path which is never infinitely small it is not 
valid to make the wave ray rotate through the same angle since it is propa­
gating across contour lines whose directions can be very different.

There is another consideration that is also a question o f common 
sense. Except for the angles o f incidence already close to 90° the refraction



is small when the topographic configuration makes the orthogonals 
increasingly perpendicular to the contour lines. This is all the more percep­
tible when y is larger than 1, the wave rays having already a tendency to 
be parallel to the normal. On the contrary, refraction is great when 
orthogonals make increasingly larger angles o f incidence with the contour 
lines.

In the last case —  and although our graphs were plotted with y 
greater than 1, i.e. running counter to the effect of rotating contour lines
—  we see that the i0 curves deviate appreciably, and even make a pronounced 
bend in order to come close to an asymptotic curve with which they may 
be practically merged. The direction o f A0A is therefore dependent decreas- 
ingly on the incidence and increasingly on a-

Our evaluation of the construction o f the templates makes it possible 
to give more accurate information o f immediate practical interest.

W e have thought it preferable to compute in terms o f i0 and a not 
the angles i and |3 but the angle ^  —  through which the wave-ray turns, 
and the angle p, —  through which chord A0M turns when M moves along 
the orthogonals from  A0 to A (fig. 14). The direction of A0A and that of 
the tangent to the orthogonal at A are determined equally easily and within 
the limits considered smaller figures are found. The scales used for plotting 
the curves facilitate their reading. In fact we have ^  =  i —  z'0 —  a and ji =  
a  —  90° -j- i0.

W e see that except in the case where i0 is very close to a we obtain 
fairly accurately ^  =  2^.

This is yet another fact that could be foreseen : it will suffice to 
remark that on a short path the orthogonal can be taken as an arc o f a 
circle.



However we have thus shown up a capital fault of the present methods 
i.e. the need for both the direction of A0A and that o f the tangent at A 
(i.e. for i) in order to continue the plotting. In fact we use only one 
direction —  the tangent’s direction —  and as a result, as a rule, we make 
the orthogonal turn through a 2|x instead of a p angle if we are dealing 
with only one arc. For this arc the result will be improved if we divide it 
into smaller sections and deal with each section separately. However if the 
arc is divided into n sections the systematic error will become smaller but 
is only divided by y /n .

Another error is added (algebraically) when determining this single 
direction selected as identical to that of the tangent at A. In fact we have 
seen that this tangent’s direction (or else 0 is taken as equa» to wi±at it 
would be for a =  0 even though a, for a rugged relief, may be relatively 
large.

This new sim plification obviously involves a new error, which also 
becomes considerable when angle i0, a and the interval of the contour lines 
being considered are large, or finally when the refraction angle vp is large. 
The interval will be distinguished whatever the scale by the absolute value

C0
° f l - F

In the case we have studied, i.e. when the velocities of the contour lines 
between which a segment o f an orthogonal is plotted satisfy the equality 

Cnlog —  =  0.01, we have noted the figures given below.
C
W ith the form er methods the tangent’s direction, accurate for a =  0 

is only inaccurate by 1 0 '— 12' for a =  10° with i0 between — 30° and 
+  30°.

The discrepancy increases, as was foreseen, but remains between 37' 
and 39' for a =  50° with i0 varying from  — 30° to 0°, and between 52' and 
1" with i0 varying from  — 50° to -f- 20°.

W ith the exception, perhaps, o f the latter, these discrepancies are 
acceptable only when they concern the value of the new angle of incidence 
which is necessary for the computation o f the next section o f the wave ray.

Unfortunately the direction of the tangent is paramount for determining 
point A.

The angle errors on the A0A direction are equal to half the angle 'P 
for a =  0, nil for i0 =  0. They reach — 6' for i0 =  ±  10°, 14' for i0 =  ±  20°, 
22' for i*0 =  dt 30°, 32' for i0 =  ±  40°.

For a =  10°, the absolute value of the total error is 10' for i0 between
—  10° and -(- 20° and 26' for i0 between — 30° and -(- 40°. For a =  50" it 
varies between 33' and 36  ̂ with a minimum of 21' for i„ =  0.

Outside these limits the error increases rapidly. It is essential to im­
prove the A 0A direction which is a capital data.

An obvious improvement would be obtained by simply taking the
Vvalue o f —  and not ''P’ for pi. A strictly accurate A0A direction will not be
2



obtained, for the tp value adopted from an increasingly erroneous i value 
will give a decreasingly accurate p. value.

Nevertheless, for a =  0 the error will be absolutely negligible. For 
a =  10° it remains very small and is <  5 ' for i0 between —  40° and -)- 35°, 
with a minimum of 1' for i0 =  0, and <  8' for i0 between —  50° and -(-45°.

Finally, the error obviously increases for a =  50°, but it is <  22', with 
a minimum of 19' for i0 =  — 20°, when i0 is between — 40° and 0° and <  30' 
when i0 is between —  50° and -f- 15°.

From these figures it will be seen that it is imperative to assign jj, its 
improved value, as shown above.

Now, it seems that the standard method thus m odified becomes largely 
acceptable when the inclination o f any contour line on its neighbour is less 
than 10°.

Otherwise the remedy will consist in plotting a sufficient number of 
intermediate contour lines, not only because the successive inclination will

C0decrease, but also because, —  tending towards 1, the refraction will decrease
C

and its consequent error.
The drawback is then that the intermediate contour lines are more 

or less in error. This could only be avoided if special grids were available. 
These grids are also useful because they allow the accurate determination 
o f the tangent to the contour lines which are necessary whatever method is 
used.

W ith our templates and once the network of contour lines has been 
adopted, the plotting o f orthogonals becomes easy and may be carried out 
by an operator following simple instructions. On the contrary with the 
standard method which, even when improved, remains tainted with a syste­
matic error, the various elements must be constantly and critically watched 
with the aid of intricate instructions based on the often difficult evaluation 
o f these discrepancies which can only be eliminated when a =  0.

Such directions cannot be deduced directly from the few figures given. 
Our statements must be interpreted. They have, no doubt, a qualitative 
general value but our figures are only quantitatively accurate for

C0 . C0log =  0.01. This means that the value of —  is greater than 1. The case
C G

G0when —  is smaller than 1 (for increasing depths) gives fairly different 
results.

In figure 14, we started from  the incident ray XA0. W e could change 
the direction of propagation and start from an incident ray Y A. The ortho­
gonal will follow  the same path in the opposite direction and turn by exactly 
the same angle ¢ . Chord A A0 will also make the same angle ft with Y A as

Wwith X A0, since in practice p, =  yf =  — . Finally, a is identical by definition.

On the other hand the initial angle o f incidence, in terms o f which we 
have computed the errors, is not the same and this angle will change in 
proportion as a becomes further apart from zero.



it * *

W e hope that this paper which at first glance would seem to be best 
suited to hydraulics engineers will also be of interest to hydrographers. This 
is because not only do we suggest that they should accept the fresh respons­
ibilities involved in the setting up o f special grids but because they cannot 
ignore the correct plotting o f refraction diagrams any more than mariners 
can ignore the swell.

W e shall give an example.
Amongst the data which must be gathered before a recommended 

coastal route as well as, above all, an anchorage can be inserted on a chart, 
the study o f the coefficients of refraction corresponding to the directions 
of predominant waves is, in our opinion, o f considerable importance.


