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Before going into the heart of the matter it w ill be necessary to make 
a rapid review o f what the standard methods yielded before the use of 
artificial satellites.

W hen the shape of the earth’s surface is spoken about it is obviously 
not a question of the physical surface which is subject to local geographical 
irregularities (such as mountains and valleys, etc.), but o f the surface of 
the geoid, which is the equipotential surface of the gravitional field passing 
through a point taken as origin, a surface which is assigned zero altitude. 
It happens that the general shape of the geoid is very little different to that 
o f an ellipsoid o f revolution flattened at the poles. Consequently, the geoid 
can be determined in two stages. First o f all, by determining this mean 
ellipsoid which is taken as the mathematical reference surface, and on 
whose surface triangulations are computed, and then by reckoning at each 
point the altitude of the geoid above or below the reference ellipsoid.

During the last century the first o f these problems, the determination 
of an ellipsoid o f revolution which on the whole deviates the least from 
the geoid, was solved in many different ways. At that time this determina
tion was carried out by measuring length AB of an arc of meridian 
(figure 1) whose range in latitude cpA — cpB was determined by another way 
through astronomical observations (the arc-measuring method). The length 
a o f the equatorial radius was then computed and also a, the value of the

a —  b
flattening being equal to --------- , a and b being the meridional ellipse’s

a
semi-axes.

At the beginning of the 20th century in the U.S.A. H a y f o r d  instigated 
a new method —  the method of surfaces —  and in 1909 published the 
following result :

a =  6 378 388 metres a = ---------
297.0

which was adopted in 1924 by the International Association o f Geodesy to 
define an international reference ellipsoid. It is well known that the IHB 
has computed a table for this ellipsoid for use in particular in their work 
on preparing the General Bathymetric Chart o f the Oceans (GEBCO).
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H a y f o r d ’s method consisted of deriving a and a so as to reduce the 
p lu m b  line deflections  in their aggregate to the minimum, i.e. the small 0 
angles made at each point o f the geoid by the normal to this surface and 
the normal to the ellipsoid dropped at this point, and this for an extensive 
area —  on this occasion United States territory —  entirely covered by a 
triangulation net computed from  the geographical position of a base 
station. These deflections may be directly obtained without reference to the 
ellipsoid by evaluating the attraction exerted on the plumb line mass by 
the surrounding topographical features, however applying large corrections, 
made necessary by the action o f compensating underlying masses, to the 
deflections thus calculated, according to a specific theory o f the earth- 
crust equilibrium, i.e. Isostasy.

However H ayford ’s computations were only worked out from  the 
triangulation net and the plumb line deflections concerning U.S. territory 
only. This is why, quite recently, the Hayford method has been re-studied 
both in the U.S.A. and in the U.S.S.R. with more numerous and more 
accurate modern data, including the results obtained by I s o t o v  and 
K r a s s o w s k y  furnished by measurements o f gravity intensity. A ll this 
recent work has led to the conclusion that Hayford ’s a value was too high 
by about 180 metres and that the correct a value was slightly lower than

1

298“'

Mention has just been made of gravimetric methods which consist in 
determining the g  value of the gravity field at numerous stations. Form erly 
very difficult, these measurements are nowadays greatly facilitated by the 
use of gravimeters on shore, at sea, or even airborne. Conveniently reduced 
to zero height, and freed from  the attraction o f surrounding topographical 
masses, corrected for the effect o f underlying compensating masses involved 
by the isostatic theory, the g  values are introduced into a relation established 
in the 18th century by C l a i r a u t .  This relation, for an ellipsoid of revolution 
with an equatorial radius a and a flattening a, uniformly rotating about its 
minor axis with an angular speed to, gives the g  value in terms o f its value



g e at the equator and o f latitude cp for the observational point :

(1)

Thus an accurate value for both the flattening a and the equatorial gravity 
can be computed :

As to the value o f the equatorial radius a , the gravimetric method does not 
allow this to be obtained with sufficient accuracy.

Let us now see how until recently the second problem was resolved
—  the problem o f determining the altitude o f the geoid in relation to the 
reference ellipsoid. The solution is virtually immediate for a region where 
numerous plumb line deflections have been determined. This solution is 
found by comparing the geographic coordinates —  the latitude and the 
longitude —  obtained by astronomical observations to their values comput
ed at the surface of the ellipsoid, starting from  the geographic coordinates 
o f a base station and an observed azimuth. The plumb line deflection, i.e. 
the angle between the normal to the ellipsoid and the normal to the geoid, 
is the slope o f the latter surface in relation to the former. Starting from  
a point o f origin it is possible to compute step by step the altitudes o f points 
on the geoid in relation to corresponding points on the ellipsoid.

This result, however, may also be obtained gravimetrically. For 
numerous points carefu lly distributed over the earth’s surface we can 
compute the gravity  anom aly  —  i.e. the difference between on the one hand 
the observed  g value corrected for both altitude and the effects of topogra
phical and compensating masses and on the other hand the theoretical g  
value reckoned  on the International ellipsoid by the Clairault formula. 
A  formula, established by St o k e s  (1849), then gives the altitude of the 
geoid above and below the ellipsoid in terms of anomalies.

Before proceeding further it should be noted that until the use of 
satellites there had been no determination o f the geoid that was both total 
and accurate. Stokes’ formula, on which the gravimetric method is based, 
requires, indeed, a knowledge of numerous values of g  measured in all 
parts o f the globe.

Thus, from  this point o f view, the m ajor part of the oceans and even 
o f certain continents is at present unexplored so that only small “ pieces ” 
o f the geoid can be obtained by gravim etry with any accuracy, and this 
only for regions well provided with g values and yet far from  those where 
g  is unknown or little known. However these more or less accurate pieces 
o f geoid are well “ positioned ” in relation to the International reference 
ellipsoid, but this is not the case when the method used is the plumb line 
deflection method. This last method is in fact based on the availability o f 
a triangulation net computed on an ellipsoid determined from  the latitude, 
the longitude and an azimuth obtained by astronomical observation at the 
net’s base station. But for the different countries the ellipsoids are not

(*) Gal. is the abbreviation for G a l i l e o  and is the G.G.S. unit for acceleration. It is 
the acceleration of a mobile of uniformly accelerated motion whose speed increases by 
1 cm per second.

g e =  978.049 gals. <*•



necessarily the same, and moreover to adopt a geographical position 
astronomically determined at a base station amounts to assuming that at 
this station there is no plumb line deflection, i.e. that the ellipsoid is tangent 
to the geoid. This assumption being far from  justified, triangulation nets 
are computed on surfaces which do not agree at the junction points o f two 
national networks so that important discrepancies in geodetic positions are 
found there <*>. O f course, this is also the case for the “ pieces ” o f the 
geoid determined in each country by the plumb line deflection method.

Relative order has been brought to this confusion by grouping the 
nets o f several neighbouring countries and by adopting for the whole one 
and the same ellipsoid as well as a sole base station (datum). This has been 
done for the U.S.A., Canada and Mexico, and also for Western Europe with 
the exception of Great Britain.

o r n  o v i c t e  i f  i c  t r i i P  o  1 1 T P  w V ) l p h  i n  t h p ^ r v  l p f l ç f  W O l l l H1  l i V i  ^  »  », V *  M- - - -  -------- -------- J  -  ................ .... ..........................

make it possible to express all the geodetic points of the universe in one 
and the same system. This is to choose a single ellipsoid, which would 
naturally be the International one, and to position the relevant portion of 
this ellipsoid suitably at each base station in relation to the geoid, and then 
to transfer the national triangulations onto the International ellipsoid by 
means o f differential formulae. The correct positioning at the base station 
of the ellipsoid in relation to the geoid is possible, thanks to Stokes’ 
formula, and is done by measuring numerous g values in a fa irly  w ide area 
around this point. In fact Stokes’ formula gives the deviation in altitude of 
the two surfaces. Moreover by means of derivations V e n i n g  M e in e s z  and 
de G r a a f f  H u n t k r  have deduced from Stokes’ formula two other formulae 
that supply the components of the plumb line deflection along the meridian 
and the prime vertical.

It must nevertheless be acknowledged that this programme which 
aimed at setting up a world-wide geodetic system, and which had earlier 
been advocated by Professor W . H e i s k a n e n ,  has lost a great deal o f its 
interest since it has been known how to put artificial satellites into orbit. 
These, we know, make it possible to connect entire blocks of triangulation 
over either sea or desert regions, more particularly by star background 
photography.

Leaving aside this use o f satellites for long distance geodetic connec
tions we come to the determination o f the Earth’s shape —  i.e. of the geoid
—  by the analysis of the motions o f artificial satellites.

Let O be the Earth’s centre o f gravity, Oz its axis of rotation, Ox and 
Oy in the equator and form ing with Oz a trihedral triangle (figure 2). Let us 
imagine that the earth is lim ited by a surface rotating about Oz, a surface  
close to a sphere with O  as centre and a as radius. It can be shown that the 
potential of the attraction that this sphere exerts on a point M at a distance

(*) Admiral N a r e s , a past Director of the IHB, studied these discrepancies at the 
junction of Western European national nets ( “ Bulletin géodésique ” , 1949).



r from  O and o f latitude cp is expressed by a development in terms o f the 

increasing powers o f the form  o f :

v  =  / y [ l —  ^  J „ ( y )  P n (sin cp) J (2)

M

F in. 2

In this expression f  is the gravitation constant, and M the Earth mass. 
/ a \"

Each term of I —  ) defines what is called a spherical h arm on ic  o f  the

n th orc[ er in which P „(x ) is the L e g e n d r e  polynomial of the n ,h order given 
by the relation :

1 dn
Pn(x) = --------------(x 2— 1)"

2nn ! dxn
Thus

1
P0(x ) =  1 ; P x(x) =  x  ; P 2(x ) =  — (3x2— 1), etc.

2
The J„s are numerical constants which remain small when the geoid 

does not deviate too much from  the sphere of radius a.

The equation for the geoid is obtained by making V  equal to the 
/ M

constant ------ . I f  then all these J„ are zero the geoid w ill merge w ith  the

sphere of radius a whose meridian is the circle (M 0). I f  all these J„, excepting 
only Jp, are presumed zero we are defining an elem entary  geo id  o f  r e vo lu 
tion o f the p th order whose meridian becomes more complicated as p  
increases. For instance, figure 3 shows the meridians (M2), (M 3), (M4) and 
(M5) of the elementary geoids of the 2nd, 3rd, 4th and 5th order.

By superimposing an in fin ity of elementary geoids it is obvious that 
almost any form  of the general geoid  could be obtained, always supposing 
that it revolves around Oz, that O is its centre of gravity, and that it remains 
close to the sphere having centre O and radius a. O f course, it is the 
spherical harmonics having the largest J coefficient which give the surface



z  2

its general aspect since we know that the real geoid is little different from 
an ellipsoid of revolution flattened at the poles. J2 should have a value 
well above the other Js. In fact, the J2 constant is of the same magnitude 
as the a flattening of the mean ellipsoid and we can demonstrate the 
relation

2 1 m  /  m  a  \ T
a - r  +  a  +

in which
w 2 o f l (1  —  a )

m  =  --------------------
/ M

to being the speed of the Earth’s rotation.

To define the shape o f the true geoid is thus entirely a question of 
determining the value of the J constants, and it is here that artificial 
satellites can be brought in.

I f  the geoid were perfectly spherical (i.e. with all Js zero) the satellite’s 
path w7ould be an ellipse with one of its foci the centre of the Earth O, 
and w’hose shape and orientation in space would remain unchanged while



the Earth would turn interior to it. However the geoid differs considerably 
from  a sphere and, this being so, the satellite has a motion called a 
disturbed  motion. The elliptical path, still having a focus at O, becomes 
distorted and moves in its plane, while the orientation o f this plane in 
space also varies more slowly or less slowly. In particular, the O Nx nodal 
line, i.e. the intersection of the ellipse’s plane with the plane of the 
terrestrial equator (figure 4), rotates on an average in the equator and, for 
a satellite launched in an easterly direction, as is always the case, this 
rotation is anticlockwise  (the opposite to the earth’s rotation).

F ig . 4

The mean value of this disturbance is o f the order of 3° to 4° per day 
and can be determined with accuracy since the observations can be 
extended over a long period. This mean value may be expressed in terms 
o f J coefficients by Celestial Mechanics methods, the disturbing function 
here being constituted by the sum o f spherical harmonics of the 2"d, 3rd, 
etc., order. As a first approximation, by neglecting the harmonics of a 
higher order than the 2nd and also the Jj' terms, the angle Q„, defining in 
the equatorial plane the mean position of the nodal line is expressed in 
terms of time t by the relation :

3 a2 cos i
(Qw) t —' 0 ^

2 a '2 (1 —  e2) 2

in which n is the mean motion of the satellite, a ' the semi-major axis o f the 
elliptical path <*), e its eccentricity, i the inclination of its plane relative to 
the equatorial plane. This expression shows that the retrogressive motion 
is faster for inclinations tending towards zero; that it is non-existent for 
Polar orbits ( i  — 90°); and that it has a tendency to slow down for small 
eccentricities and also for large semi-axes a'.

(*) Between n and a' there is the relation n2 a'3 =  f M (J being the gravitation con
stant, M the mass of the Earth).



I f  all the Js and the powers o f J2 are taken into account the expression 
o f (Qm) ( obviously becomes more complicated. However the variation

— --- ---- may be expressed as a function of J, and as this is observable —

with accuracy when over a sufficiently long period —  by using the data 
from  a sufficient number of satellites it is possible to determine the J 
coefficients’ values and thus obtain the shape o f the geoid’s meridian.

A  list o f the published, although not definitive, Jn values is given 
below :

J2 =  +  1082.86 x 10-« J6 =  +  0.72 x 10-«
J3 =  —  2.45 x 10-6 J7 =  +■ 0.41 x 10-«
J4 =  —  1.03 x 10-6 Js =  +  0.34 x lO-o
.Te =  —  0.05 x 10-0

The constant J2 has been named the factor of geopotential ellipticity. 
This constant is bound to the mean ellipsoid’s moments of inertia (C 
around the axis of rotation, A  around an axis located in the equator) by 
the relation :

C — A
J2 = ---------

M e2

The International Astronomical Union (IAU ) considers J2 as one o f the 
fu ndam enta l  astronom ical constants  and after discussion of all the results 
obtained has adopted the value :

J2 =  1082.7 x  10-6

The IAU also decided that for computing the flattening the follow ing 
formula that is very close to (3) should be used :

3 1 9 15 39
a =  —  J„ H-----m '  +  —  J f +  —  J 2m ' --------m '2 (4)

2 " 2 8 28 56
with

m '  = -----
3e

and for computing equatorial gravity

f  M T  3 27 6 47 I
g e -  ------  1 —  a0 H-----J2 —  m '  H------J22--------J2 m '  H------m '2 I (5)

a2 I 2 8 7 56 |

in which [(,„ is the relative mass o f the terrestrial atmosphere <**>. It should 
be noted that up to now g c had only been obtained by measurement made 
on the Earth’s surface.

Assuming that a — 6 378 165 m, we thus compute :

1
a =  ---------  and qe =  978.031 eals.

298.25

(*) Computation to be made by successive approximations.
(**) The relations (4) and (5) both take into account the fact that not only is the 

motion of the Moon on the celestial sphere well known nowadays but also that, thanks 
to Hadar, the distance from Earth to Moon can be accurately measured.



Although the J2 value is by far the largest of the J values it is seen 
that J3 is not negligible and is higher than the succeeding values.

It is this J3 constant which w ill give the geoid a pear-shaped look with 
its peak at the North Pole. Finally, taking the first eight harmonics into 
account we arrive at the meridian shown in figure 5, in which the dotted

1
line represents the meridian o f the ellipsoid of revolution w ith a ---------

F r  298.25
flattening. The scale for the deviations o f the two surfaces is much 
exaggerated in order to make the figure clearer. The true shape at the 
South Pole is obviously not concave but convex.

Z

Expression (2) o f the potential o f the gravitational force depends only 
on latitude because we have expressly assumed the surface o f the geoid 
to be a surface of revolution around Oz. However we may free ourselves 
from this assumption and seek a more general shape for the geoid by 
putting terms depending on longitude X in. the expression o f V.

It is well known that a function f  (cp, X) of the coordinates o f a point 
on a sphere defined by latitude cp and longitude X may be expanded into a 
converging series o f spherical functions :

n —  X

f  (cp, X ) =  V  y ,
« — 0

with
p = n

Y n =  ^  P£ (sin cp) [Gnp cos p \  +  SB„ sin pX] 
p = 0

the P£ (x ) s indicating the Legendre  auxiliary functions o f order n and rank 
p {* ) and the Cnps and Snps designating convenient numerical coefficients.

(*) The auxiliary function P„ (x) is bound to the Legendre polynomial P„ ( x )  by 
the relation :

2n.n ! dp
P 'O r) = ------------------------  (x* —  l ) p'* ------P„0r)

(n  +  1) ... (n +  p )  d x p



Thus we may write :

n = 2  p — 0

I f  the geoid is not too far apart from the sphere, coefficients Cnj) and S„p 
remain small, and obviously we have J„ == , and the numerical values 
° f  cn0 are those given above for the J^s.

The question o f finding the C nps and the S„ps starting from the observed 
retrogression o f the nodal line is rather more complicated than finding 
the JKs. Studies o f this kind are continuing and the results so far obtained 
should not be considered definitive.

According to K a u l a  (1963), however, here is what the geoid would be
1

when represented by contours, starting from  an ellipsoid with a ——------
298.25

flattening and an equatorial radius a =  6 378 165 m (Figure 6).

Tw o troughs may be noticed, one of 59 m a little south o f India and 
the other o f 20 m in m id-Pacific, together with upheavals of 57 m near 
New Guinea and o f 35 m centred on France.

The ellipticity o f the equator shows up with the apexes of the ellipse’s 
major axis at approximately longitudes 20° W  and 160° E and those o f 
the minor axis at longitudes 70° E and 110" W , the eccentricity being about

--------- . Its pear-shaped nature is also noticeable, for the South Pole is

depressed by about 25 m and the North Pole raised by approximately 15 m. 
However the stalk o f the pear has undergone a twisting so that the 
maximum and the minimum o f upheaval or of depression are located far 
from  the poles.

It is obvious that as new determinations are carried out the “chart” o f 
the geoid w ill be defined more completely, but already we may expect that 
it w ill retain the same general aspect.
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