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ABSTRACT

An attempt has been made to develop a graphical method o f precisely 
adjusting a doubly-braced quadrilateral o f measured lengths by fitting the 
least squares method to different systems o f weighting, without recourse 
to elaborate computations and trigonometrical tables. The suggested method 
is more simple and less time-consuming than the usual methods.

INTRODUCTION

Due to the advent o f modern electronic devices for distance measure­
ment it has become incumbent upon us to develop new techniques in our 
methods o f figurai adjustment which may be carried out w ith comparable 
speed and accuracy.

B. T .  M u r p h y  and G. T . T h o r n t o n - S m i t h  (E.S.R., X IV , 106, October 
1957), A. T a r c z y - H o r n o c h  (E.S.R., XV, 111, January 1959) and G. T. 
T h o r n t o n - S m i t h  (E.S.R., XV I, 124, April 1962) have demonstrated relevant 
methods o f adjusting a doubly-braced quadrilateral of measured lengths 
and o f computed spherical angles, expressed in the form o f a condition 
equation satisfying the only geometrical relation required to close the 
figure exactly, according to the least squares principle. In actual practice 
however the methods prove to be very time-consuming as they involve a 
considerable amount o f numerical calculations, including the evaluation 
of a number o f trigonometrical functions, especially when the weights o f 
measured lengths are also taken into consideration.

An attempt has therefore been made to make use o f the elementary 
properties o f vector elements for the solution of weighted condition equa­



tions on the least squares principle, thus providing a straightforward 
graphical method o f figurai adjustment which is more simple and less 
time-consuming than the existing methods.

DESCRIPTION OF METHOD

In Fig. A  of the diagram, let ABCD be a doubly-braced quadrilateral 
o f which the four sides a, c, e, f  and the two diagonals b, d have been 
measured by means o f a Tellurometer.

1 1 1
Let us compute the spherical angles Cx -)------ e 1( C2 H------- £2. C3 H------- £3

3 3 3
at a station C by the usual cosine formula and L e g e n d r e ’ s  theorem, where :

c2 +  b 2  —  a2

cos Ci = ------------------- (1)
2 be

c2 +  e 2 —  d 2

cos C.> = ------------------- (2)
2 ce

b 2  +  e2 —  /2
cos C, = --------------- —  (3)

2 be

Zi =  spherical excess in triangle ABC;
£2 =  spherical excess in triangle BCD ;

£ 3 =  spherical excess in triangle ACD.
and

If the doubly-braced quadrilateral were in adjustment, the figure would 
have closed exactly, satisfying the geometrical relation :

1 1 1
Ci +  —  £1 +  C3 H— — £3 — C2 H— — S2

But in general there w ill be observational errors o f accidental nature 
in the measured lengths, giving rise to corresponding angular errors in the 
computed spherical angles :

Let An, Ab, ... A f  be the corrections to the measured lengths a, b, ... f, 
and AC1; AC2, AC3 be the corresponding corrections to the computed

1 1 1
spherical angles C 1 -{-----ej, C2 +  —  e2, C3 -|------£3 , such that :

3 3 3

( C j  +  —- s1 +  A C j )  +  (C ,  H— — £ 3  +  A C 3 )  =  ( C 2 H— — £ 2 +  A C , )
O O O

or :
1

C l  +  c3 —  C 2 +  —  ( e i  4- £ 3  —  £2 )  =  A C o  —  A C t —  A C 3 =  A C  (4 )
3

Differentiating relations (1), (2) and (3), we have after simplification,

1
ACi = ------------ (Aa —  Ab cos A j —  A c  cos B^ (5)

c sin Bx



AC2 = -------------(Ad —  Ac cos B2 —  Ae cos D2) (6)
c sin B2

and :

AC3 = ------------ (A/ —  A b cos A  g —  Ae cos D3) (7)
e sin D3

From  the above we have, on expressing AC in seconds o f arc, the 
geometrical condition equation in the follow ing form  :

206300
A C "  = -----------------(A a —  A b cos A t — Ac cos B^

c sin Bj
206300

-----------------(A / — A b cos A 3 —  Ae cos D3)
e sin D3
206300

H---------------( A d — Ac cos B2 —  A e  cos D2)
c sin B2

or, after simplification,

A C "  =  —  K aAa +  K SA b —  K cAc +  K dA d —  K eAe —  K fA f  (8)
where

206300 206300 sin A,

c sin Bi b sin A-l sin Aa

206300 sin B4 206300
K„ = -----■---------- ----- : K rf =

c sin Bt sin B2 c sin B2

206300 sin D4 206300
Kb = -----— -------— -  ; K, =

(9)

e sin D2 sin D3 e sin D3

Now, if the weights of linear measurements are assumed equal 
irrespective o f the length measured, the consequent adjustments become 
directly proportional to their respective coefficients in the condition equa­
tion (8), reducing the only normal equation to the form  :

[K K ] X —  AC =  0 

whence the X-correlate becomes :

AC
X = -------------------------------  (10)

K a2 +  K? +  ... +  Kf

and the linear adj vistments w ork  out as :

Aa =  — K aX ; Ab =  K b\ ; 'j
Ac =  — K CX ; Ad =  K dX ; L (11)
Ae =  — K^. ; Af  =  — K t\ ; J

Thus, excluding the diagonals, the longer sides w ill obviously receive 
the smaller adjustments and the shorter sides the greater when actually 
evaluated, which appears unnatural and disquieting. It would therefore 
“ appear preferable, i f  not essential, to adopt some other system of weighting 
which w ill give adjustments o f amounts more in keeping w ith experience” .

Hence if  in the Tellurometer determination, the probable error o f a 
measurement is taken to vary directly as lr, where I is the length measured 
and r any constant, the corresponding weights o f measured lengths w ill



vary as 1 / l 2r and the consequent adjustments are as l2r times their respective 
coefficients in the condition equation (8), reducing the only normal equation 
to the form  :

[(/’-K) ( l r K ) ] X —  AC =  0

w h e n c e  t h e  ^ - c o r r e l a t e  b e c o m e s  :

AC
---------------------------------------------- (12)
a-"-K* +  b 2 ’-K? +  ... +  p K  f

and the linear adjustments work out as :
A a =  — „-2rK 2 X . A b  =  6 2 r K 2  X  .  ^

Ac =  — C2'K f2 X ; Ad =  d~rK ' j \ ;  I- (13)
A e  =  —  eSrK? A f  ~  \ ; J

T )  , , 4 -  ^  ^  , .  11 4- V-* «  «  » ,  ♦ o  4- V i  n  r .  t-> o  »>  i  n  r t  n  1 i l  p t  m  n  n  f  o  t  V» /"* m  A c t
J J U l  3 J I 1 C C  U i  < X l  1 l l i c a c  v >  U l g i i t J ,  L i i v  w n w j  j v i  u v  i u m g  a u j  u o i m ^ m o  m v  A ü v j o t .

in keeping with practical experience are either 1// or l//2, the systems of 
weighting actually considered in the present article are as follows.

(1) weights all equal for r =  0, giving adjustments as :

A a =  — K„X ; A b =  K b\ ; AC =  — K..X ;
A d  =  K dX ; A e  =  —  K eJ. ; A f  =  —  K,X ;

1
(2) weights varying as 1// for r — — , giving adjustments as :

A « =  — ; Ab =  Z>K(JX ; Ac =  — cK,X ;
A d  =  d K dl  ; Ae  =  — e K f\ ; A f  — — f K , \  ;

(3) weights varying as 1//2 for r =  1, giving adjustments as :

A a =  - - « 2K„X ; A b — b - K b\ ; Ac — — c2K (X ;

y  ( u )

}A d  =  d ’2 K dX ; Ac =  —  e2K eX ; A f  — — f 2 K ,\  ; ' (16)

On substituting the above linear corrections in relations (5), (6) and (7), 
it becomes possible to evaluate the angular corrections also, with the help 
of trigonometrical tables.

Now from relations (9) we have, after simplification,

K u _  ^  Ky
sin A* sin A 4 sin A,

or :
K„ K„ K,---- _f__ = ----------- ± --------= ------Z__ (17)

sin A 3 sin (180“— A 4) sin A,

which shows that the values o f K a, K„ and K f are such as can be represented 
in magnitudes by the three sides o f a triangle taken in this order, and 
having its angles equal to A 3, 180“— A 4 and A, opposite to their respective 
sides.

K , K ,  K d

sin D4 sin D2 sin D3
or :

K„ K ,  Kd
sin I>4 sin D., sin (180 "— Drt)



which shows that the values o f K e, K, and K d are such as can be represented 
in magnitudes by the three sides o f a triangle taken in this order and 
having its angles equal to D4, D 2 and 180°— D 3 opposite to their respective 
sides.

K tt Kc K d
sin B2 sin B4 sin Bj

or :
K 0 Kc K d

sin B2 sin B4 sin (180 °— Bj) (19)

which shows that the values o f Ka, K c and K d are such as can be represented 
in magnitudes by three sides o f a triangle taken in this order and having 
its angles equal to B2, B4 and 180°— Bĵ  opposite to their respective sides.

K fc K„ K„
sin C2 sin C3 sin

or :
K„ K„ (20)

sin (180 °— C2) sin C3 sin Cj

which also shows that the values of K;,, K c and K e are such as can be 
represented in magnitudes by three sides o f a triangle taken in this order 
and having its angles equal to 180°— C2, C3 and Cj opposite to their respective 
sides.

Hence from relations (17), (18), (19) and (20) it easily follows that all 
the six values o f K„, K 6, ... K f can be represented in magnitudes by the four 
sid es and two diagonals o f a doubly-braced quadrilateral o f four triangles, 
each having its angles made up o f the supplement o f the fu ll angle at a 
corner o f the given quadrilateral, plotted to a convenient scale, (F ig. A ) and 
the other two angles constituting the same full angle at that corner. The 
second doubly-braced quadrilateral, representing the six values K a, K 6, ... K, 
in magnitudes as described above, can be plotted with advantage side by 
side with the given quadrilateral (Fig. A ), making use o f the same scale 
and starting from the corner having the largest angle which in the present 
case is C<*>. Now, on producing one of the flanking sides, say c, and 
drawing a straight line towards A ' parallel to the diagonal d  by means o f 
a suitable parallel ruler, it is possible to obtain the angles B2 and D2 as 
parts o f 180° —  C2 . To  fix  the scale o f the figure, the value of Kd 
corresponding to the diagonal opposite the full angle C2 can be computed 
from  the relation :

206300
K d =

or :
c sin B->

206300
K d = ----- ------- (21)

“ a

(* ) The  station C should also be one at or to which azimuth has either been 
observed or a lready known so that once the computed spherical angles C „  C2 and C;, are 
adjusted and the coordinates at any  one station become known, there w i l l  not be any 
dif f iculty in reducing the coordinates o f  the rem ain ing  stations and there w i l l  no 
necessity to compute or  to adjust the remain ing angles for  this purpose.



where h d is the distance from  C o f the point o f intersection of BD and the 
arc of the circle in Fig. A drawn with BC as diameter, and plotted at 
a convenient scale as C'A'. Then on drawing A 'B ' parallel to AB and A 'D ' 
parallel to DA, D 'B ' becomes parallel AC, thus completing the required 
figure (Fig. B) representing in magnitudes all the values o f Ka, K 6, ... K .̂ 
The value o f K d being known, the remaining values o f K a, K,,, K c, K e and K, 
can be easily scaled to three significant figures with the help o f figures B L, 
B 2 or B 3 .

Alternately, as revealed in a recent investigation, fig. B1( BL, or B 3 can 
easily be drawn more precisely and confidently in the follow ing manner : 

First plot BD on a convenient scale (viz. half, double etc. or at the 
same scale as that o f Fig. A ) along the diagonal BD subtending the full

206300
antrlp C„ at C,. so that R ll ' =  K . =  --------- . where hj is the perpendicular

h d
distance o f C from BD.

Then draw D'C' parallel to AB, intersecting BC produced at C' and 
satisfying the relation :

206300 
D'C' =  K„ = ---------

^a
where h a is the perpendicular distance o f C from AB.

Finally draw D 'A ', BA ' and C'A' parallel respectively to DA, BA, and 
CA and intersecting one another at a common point A ' simultaneously 
satisfying the relation :

206300
D 'A ' =  K, = ---------

hf
where h f is the perpendicular distance o f C from DA, thus completing the 
required diagram, w ith Fig. Bj drawn over Fig. A itself, as shown in the 
diagram at the end o f this article.

Referring back to Fig. Bj, B ,̂ or B3, instead of to Fig. A, the relations 
(5), ( 6 ) and (7) can be reduced to the following form :

AC " =  K „A « —  K „A j, cos A , — K„Ac cos (180°— ^ — A 5)
=  K „A « —  KaAa cos A 1 —  K„Ac cos (C j+ A j)

AC," =  K/A/— K/A6 c o s  A 3 —  K rAe cos (180°— A :i— C3)
=  K f A f  —  K/Af, cos A 3—  K fAe  cos (A s+ C 3)

and :
AC,' =  K d& d — K dAc  cos B 2 —  K d\ e  cos D,

However on substituting the values o f Art, Ab, ... Af  given in relation 
(13), we have from  the above,

AC," =  — A [a 2rK ttKa—  b 2 rK aK b cos A , — C2rK aK, cos (Cj +  A , ) ]  (22)

AC," =  — X[a2rK/K r +  b 2 rK fK b cos A 3 +  e2 rK fK e cos (C 3 +  A 3) ]  (23) 
and :

AC!' =  X [ d 2 rK aK d +  c 2 rK dK c cos B 2 +  e2 rK dK,. cos D 2 (24)

Now considering a2rK„, b 2 rK h, c 2 rK r ; f 2 rK;, b 2rK,„ e 2 rK r ; c 2 rK c, d 2 rK d, e2rK r; 
a2rK„, d 2 rK d, f 2 rK; as four sets o f vector elements having their moduli the 
same as the corresponding scalar quantities a2rK„, b 2 rK,„ ... f 2 rK f and their



directions as denoted by the arrows along the straight lines at the four 
corners o f fig. Blf B2 or B3, the relations (22), (23) and (24) can be expressed 
in vector form as follows :

I C r  =  —  X ( K „ a ^  +  K,. 5 ¾  +  K â K c)

=  —  X K a ( ^ K a +  b *  K b +  0 ¾ )

=  —  X K,,(a2r +  £>2r +  c2") B'O^ 

where (a2,"+fc2r+ c 2r) B 'Oj denotes the sum o f the vectors a2rK tt+fc2rK (J +  c2rK 0

and the modulus j(a2r+ 6 2r+ c 2r) B'Oj|, or (a2r +  b 2r+ c2r) B 'O l5 is the distance 
from B' of the point Oa dividing the straight line D 'O^ in the ratio 
(a2r+ c 2r) / b 2r, 0 {  being again the point dividing the straight line C 'A ' in the 
ratio a 2r/ c 2r, or again :

AC " =  —  X (a2r +  b2r +  c2r)  K œ B'Oj
or :

AC" =  —  X(a2r +  b2r +  c2-) K aL a =  — \ K 'a (25)

where L a is the resolute of the vector B'Oi in the direction of the vector Ka 
o f the first set, and is equivalent to the distance from B' o f the point of 
intersection o f B 'A ' and the arc of the circle drawn with B'Oj as a diameter. 
Similarly :

AC3' =  —  X (f 2r +  b2r +  e2r) K f D '0 3
or :

AC£' =  —  X (P  +  &2r +  e2n  K f L f =  —  X K ', (26)
where ( f 2 r+ b 2 r-j -e2r)  D 'Q8 denotes the sum o f the vectors f 2 rK f+ b 2 rK b+ e 2 rK e, 
the modulus |(f2r+  62r+ e r2) D '0 3| or ( f 2 r+ b 2 r+ e 2r) D 'Oa is the distance from  D' 
o f the point 0 3 dividing the straight line B '0 3 in the ratio ( f 2 r+ e 2 r) / b 2r,
0 3 being again the point dividing the straight line C'A' in the ratio f 2r/ e 2r, 
and L f is the resolute o f the vector D '0 3 in the direction of the vector 
o f the second set and is equivalent to the distance from D' o f the point of 
intersection of D 'A ' and the arc of the circle drawn with D '0 3 as diameter, 
and :

AC2 ' =  X (ef2r +  c2r +  e 2r) K d C'Oa
or again :

AC*' =  X (d 2r +  c2r +  e2-) K ÆL d =  \K'd (27)

where ( d 2 r+ C 2r-f  e2r) C '02 denotes the sum of the vectors d2 r + c 2 rK c +  e2 rK e,

the modulus |(cf2r+ c 2r+ e 2r) C '0 2| or (d2' +  c2r+ e 2r) G '02 is the distance from  D' 
o f the point 0 2 dividing the straight line A '0 '2 in the ratio (c 2 r+ e 2 r) / d 2r,
0 2 being again the point dividing the straight line B'D' in the ratio e2 r/ c 2r 
and L æ is the resolute o f the vector C '02 in the direction of the vector Kd 
o f the third set and is equivalent to the distance from C' o f the point of 
intersection of C'A' and the arc of the circle drawn with C '02 as diameter.

Case ( / ) :  H a v in g  weights all equal fo r  r =  0.

For r — 0, we have from  relations (25), (26) and (27) :

ACJ' =  —  Xlfa-4B'0

where 4 B'O denotes the sum o f the vectors K a+ K 6 +  Ke and the modulus 
jB'OJ, or B'O, is the distance from  B' o f the middle point o f the straight line 
joining the middle points o f the diagonals b and d in fig. Bi.



Or again :
A C i ' =  —  4 X K l-ïÿO

or :
ACJ' =  —  4 X Kœ • L a =  —  X K ' (28)

where L a is the resolute o f the vector B'O in the direction of the vector K n 
of the first set and is equivalent to the distance from B' of the point of 
intersection of B 'A ' and the arc of the circle drawn with A 'O , as diameter, 
and K ' is equal to 4 K 0 L 0 obtainable by the direct approximate method 
of multiplication, or by using in fig. Bx an ordinary slide rule retaining 
three significant figures only.

Similarly :
A C " =  —  4 X K, ■ L, =  —  À K; (29)

where is the resolute o f the vector D O in thp direction o f the vector K, 
of the second set and is equivalent to the distance from  D' of the point 
of intersection o f D 'A ' and the arc of the same circle as in the case of 
relation (28), and Wf is equal to 4 K j l ^ p  obtainable by the direct approximate 
method o f multiplication or by using in fig. Bi an ordinary slide rule 
retaining three significant figures only.

And :
AG^= 4XKi -Ld =  XK  ̂ (30)

where L d is the resolute o f the vector C'O in the direction of the vector K d 
of the third set and is equivalent to the distance from  C' o f the point of 
intersection o f C 'A '  and the arc o f the same circle as in the case of 
relation (28), and K'd is equal to 4 K d L.d obtainable by the direct approximate 
method o f multiplication or by using in Fig. an ordinary slide rule 
retaining three significant figures only.

1
Case (2 )  : H a v in g  weights varying as 1// fo r  r =  —  .

1
For r =  — , we have from  relations (25), (26) and (27) :

2

AC'/ =  —  X ( a + b  +  c) K a L a =  —  X K ' (31)
A C * '=  — l ( f + b  +  e)  Kr L , =  —  XK/ (32)

and :
A C ! / =  X ( d + c + e )  Krf-L* =  XKd' (33)

where values o f K ', KJ and K'd can be obtained by the direct approximate 
method o f multiplication or by using in Fig. B2 an ordinary slide rule 
retaining three significant figures only.

Case ( 3 )  : H a v in g  weights varying as 1 //3 for  r  =  1 .

For r =  1, we have from  relations (25), (26) and (27) :

AC " =  —  X(a2 +  &*+c2) Ka L a =  —  XK ' (34)
AC3' =  —  X ( f 2  +  b 2 + e 2)  Kf ~Lf =  —  XK/ (35)

and

AC2"  =  X(e?2 + c 2 +e2) Kd-L„ =  XK^ (36)



where values o f K ', K; and can be determined first by making use of the 
values o f the squares of the lengths obtained from computations in the 
cosine formulae (1), (2) and (3) and then by the direct approximate method 
of multiplication or by using in Fig. B2 an ordinary slide rule retaining 
three significant figures only. Hence combining the values for AC^ AC" and 
AC3,' and remembering that AC2 —  ACt —  AC3 =  AC, we obtain for all three 
above cases,

AC”  =  X (IVj "1“ ky +  1¾ )
or

X =  A C "  / (K£ +  K; +  1¾ ) (37)

Now substituting the above value for X in relations (14), (15) and (16), 
the linear corrections A a, A b, ... A f  can be easily obtained by the direct 
approximate method o f multiplication or hy using an ordinary slide rule 
retaining three significant figures only. Obviously the signs of the linear 
corrections for the sides are opposite to those for the diagonals.

Similarly substituting the above values for X in relations (28) and (29) 
for case (1), in (31) and (32) for case (2) and in (34) and (35) for case (3), 
the angular corrections AC! and AC3 can also be easily obtained by the 
direct approximate method of multiplication or by using an ordinary slide 
rule retaining three significant figures only. On obtaining the values of 
ACi and AC3, the corresponding value of AC2 for the whole angle can 
immediately be deduced from the relation :

AC2 =  ACj +  AC3 +A C

In short, the entire computational drill can be summarised as under :

(a ) Plot fig. A with measured lengths.
(b ) Compute AC from  relation (4), an operation entailing a single 

addition and a single subtraction which can easily be carried out mentally.
(c) Scale h d from fig. A.

(d) Compute K d from  relation (21), an operation entailing a single 
division involving only three significant figures, which can be easily carried 
out by the approximate method o f division or by using an ordinary slide 
rule.

(e) Plot fig. Bj, B2 or B3 according to instructions on page 122 with 
C'A' =  K d .

(/) Scale Ka, K 6, ... Kr and L„, L , and L d from fig. B1; B2 or B3.

( g )  Compute K ',  K/ and K'd from relations (28), (29) and (30), or (31), 
(32) and (33), or (34), (35) and (36), as the case may be, an operation of 
simple multiplications involving three significant figures in each case, which 
can be carried out by the approximate method o f multiplication or simply 
by using an ordinary slide rule.

(h ) Sum up K '-fKJ +  K^ —  an operation entailing a simple addition 
involving three significant figures only which can easily be carried out 
mentally.

( i )  Compute X from  relation (37) —  an operation entailing a single 
division which can easily be carried out as in (d) above.



( j )  Compute A a, A b, ... A f  from  relations (14), (15) and (16), as the 
case may be, an operation entailing simple multiplications involving in 
each case three or less significant figures, which can be carried out by the 
approximate method o f multiplication or simply by using an ordinary slide 
rule.

( k )  Compute ACi and AC3 from  relations (28) and (29), or (31) and (32), 
or (34) and (35), as the case may be, an operation entailing simple multiplica­
tions involving in each case three or less significant figures, which can be 
carried out as in ( j )  above.

(/) Compute AC2 from  relation (4), an operation similar to (ft) above.

An example is worked out below in order to make the practical routine 
o f computations clearer. T h e  numerical example quoted is taken from  the 
articles by B . T .  M u r p h y  and G.T. T h o r n t o n - S m i t h  (E.S.R., X IV , 106, 
October 1957 and E.S.R., XV I, 124, April 1962) so that direct comparison 
w ith  the results computed by the suggested method may be possible.

Given data

Measured lengths :
a =  69 847.62 feet 
b =  83 587.77 

c =  44 679.24 

d  =  102 017.34 

e =  65 824.23 

f  =  94 277.10

Computed plane angles :

Cx =  56° 3 9 '59"13  

C2 =  133° 53'55'.'97 
C3 =  77° 14' 02'/85

Computed spherical angles :

1
Cx H-----£l =  56° 39' 59'/38 

3

1
C2 +  —  e2 =  133° 53' 56'.'13 

3 

C3 +  y  e3 =  77° 14' 03"27



Adjustment

Case (? ) : H a v in g  weights all equal.

Plot fig. A  w ith measured lengths.

From  relation (4) derive : AC" =  +6752 .

From  fig. A  scale : h d =  20800.
206300

From  relation (21) compute : K j = --------- =  9.92 .
F  Æ 20800

Plot fig. Bj .

From  fig. Bj scale :

K 0 =  4.62 ; K„ =  6.56 ; K c =  8.88
K e =  7.60 ; K ; =  3.63

and also :
L a =  2.58 ; L , =  1.16 ; L d =  6.25

From  relations (28), (29) and (30) obtain :

K ' =  4 L a • K„ =  47.7
K; =  4L/-K , =  16.8
K'd =  4 L d K d =  248.0

Sum =  312.5
From  relation (37) compute :

6.52
X -- ------  - 0.0208
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From  relation (14) compute :

Aa =  — 0.096 ; \ b  =  +  0.137 ; AC =  — 0.186 ; 
Ad  =  +  0.207 ; Ae =  — 0.158 ; A f  — — 0.076 . 

From  relations (28) and (29) compute :

A C i' =  — 0799 and AC3"  =  -0-/34 
From  relation (4) compute : AC2' =  +  5719

Case (2) : H a v in g  weights varying as 1 /1.

Plot fig. A w ith measured lengths.

From  relation (4) derive : AC" =  +6752 

From  fig. A  scale : h d =  20800.

From  relation (21) compute : K d =  9.92 .

Plot fig. B2.

From  fig. B2 scale :

K a =  4.62 ; K t =  6.56 ; K 0 =  8.88 ;
K e =  7.60 ; K, =  3.63 ;

and also :
L „  =  3.97 ; L ; =  1.97 ; L d =  8.67 .



From  relations (31), (32) and (33) obtain :
K'a =  (er +  & +  c )L a-K0 =  36.3 x  10s 
K; =  ( f + b + e ) ~ L r K ,  =  17.4 x  105 
K ’t =  ( d + c + e ) L d-Ktf =  184.3 x  10s

Sum =  238.0 x  105
From  relation (37) compute :

6.52
X  = - - - - - - - - - - - - x  1 0-5 =  0.0273 x  10-5

238.0

From  relation (15) compute :
A a =  — 0.09 ; A b =  +0.15 ; Ac =  — 0.11 
Ad  =  +0 .28  ; Ae =  — 0.14 ; Af  =  — 0.09 

From  relations (31) and (32) compute :

AC/' =  — 0799 and AC3"  =  —  0748 

From relation (4) compute : AC2'=  +5705.

Case  (.?) : H a v in g  weights  va ry ing  as 1/12.

Plot fig. A with measured lengths.

From  relation (4) derive : AC" =  +  6752 .

From  fig. A scale : h d =  20800.

From  relation (21) compute : K d =  9.92 .

P lot fig. B3 .

From  fig. B3 scale :
K a =  4.62 ; K„ =  6.56 ; K c =  8.88 ;
K e =  7.60 ; K ,  =  3.63 ;

and also :
L „ =  4.42 ; L ,  =  2.43 ; L d =  8.99 . 

From  relations (34), (35) and (36) obtain :

K ; =  (a2+&2 +  c2) L a K a =  28.3 x  105 
K'f =  (/2+& 2+ e 2) L r K,  =  17.8 x  105 
KJ =  (cf2 +  c2 +  e2) L d K d =  149.3 x  10s

Sum =  195.4 x  10®
From  relation (37) compute :

6.52
X = --------- X 10-5 =  0.0334 x  10-5

195.4

From  relation (16) compute :

A a =  — 0.08 ; A& =  +  0.15 ; Ac =  — 0.06 ; 
Ad  =  +0 .34  ; Ae =  — 0.11 ; Af  =  — 0.11 

From  relations (34) and (35) compute :

ACT =  — 0795 and AC:;' =  - 0759 .

From  relation (4) compute : A C . " =  +4798 .



ABSTRACT OF RESULTS

Adjustment corrections at various weights

New values Old values

1 1// i / p 1 1// 1/P
a —  0.10 —  0.09 —  0.08 —  0.10 —  0.09 —  0.08
b +  0.14 +  0.15 +  0.15 +  0.14 +  0.15 +  0.15
c —  0.19 —  0.11 —  0.06 —  0.19 —  0.11 —  0.06
d +  0.21 +  0.28 +  0.34 +  0.21 +  0.28 +  0.35
e — 0.16 —  0.14 —  0.11 —  0.16 —  0.14 —  0.11
f — 0.08 —  0.09 —  0.11 —  0.08 —  0.09 —  0.11

A Ct — 0".99 —  0".99 — 0".95 —  0".99 —  1".01 —
A C2 +  5".19 +  5".05 +  4".98 +  5". 18 +  5".03 —
A C, — 0".34 © 00 —  0".59 —  0".35 —  0".48 —

The results of the above comparison are found to be highly satisfactory
—  the disagreement being only of the order o f ±  0.01 in the case o f linear 
adjustments and o f ±0 .0 2  in the case of angular adjustments.

CONCLUSION

In view  of the sim plicity of the practical routines for the computations 
enumerated in the example quoted and o f the ease and speed w ith which 
the results o f adjustments can be worked out to within the geodetic standard 
o f accuracy, the graphical method suggested should prove very suitable for 
adjustments o f trilatération figures considered in the present article.


