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1. —  INTRODUCTION

From  the reports on the International Congress o f Photogrammetry 
held in Lisbon in September 1964 one can see that discussions on the 
merits o f analytical versus  analogic aerial triangulation are far from  being 
exhausted. Thus I believe further study o f error propagation along a strip 
o f analogic aerial triangulation is still useful.

The m ajority o f the explanations on this subject that I know of are 
usually difficult to follow  because the excessive amount of algebra hides 
the main physical aspect o f the problem. Hence I propose in this article to 
derive the formulae expressing the propagation o f accidental errors directly 
from  the double accumulation of these errors.

2. —  PROPAGATION OF ERRORS ALONG THE STRIP

In order to sim plify our development, errors in azimuth, scale and 
general tip (¢ ) w ill be treated separately. In addition we w ill only consider 
points along the axis o f the strip and take the second nadir pass point Nj 
as origin of the coordinates.

F i g . 2.1

Let us assume (figure 2.1) that stereo model ( j — 1, j )  is oriented 
without any error. Then i f  we rotate camera (j — 1) by Axj—i about its 
vertical axis, there w ill be a y-parallax N;-NJ . This parallax must be elim in
ated by moving camera j  by an amount dby  such that point Nj coincides



with N,-. Figure 2.1 shows that the displacement on the stereo model w ill 
be :

5y.s — (Xj— Xj _ l ) tan Ax,_i +  dyj

where dy, is the accidental error arising from the y-parallax elimination. 
But as Ax,—i is small, we can write :

Sy, =  ( x J— x J_ 1)  A x j_ i +  d y , (2a)

Now we see that a new i/-parallax w ill appear in N^_j, exactly equal to 
5y i, and its elimination is accomplished by a rotation of the projecting 
camera j  about its vertical axis. Obviously this rotation is also equal to 
Ax;_i- Hence, if we designate by dxj the accidental error which arises when 
we turn camera j ,  we can w rite :

Ax,- =  Ax j_ ! +  dx.

Thus we can see that the swing error of any camera can be expressed as 
a function of the swing error o f the preceding one. Therefore the follow ing 
expressions can be written :

Ay. 2 =  rfx2 
Ax* =  Axa +  tfx3 
Ax4 =  Ax3 +  rfx4

AXi_i =  Ax{_2 +  diCi_ i 

By adding these expressions we obtain :

Ax,--! =  dy,n +  dx ,3 +  dx  4  +  ••• +  d x i - t  (26)

which is the swing error of camera (i —  1).

From  figure 2.1 one can see that error §j/j- w ill be integrally transmitted 
from pair ( j  —  1,/) to ( j ,  j  +  1), since the bridging technique consists in 
equalizing coordinates o f the pass points. Consequently the total error in 
pass point N4 w ill be given by the sum of all expressions similar to (2a) 
from j  =  3 to j  — i, that is to say

i  i

=  V  Ax,--! +  V  dys

/=3 )=3

But dyj is usually very small and its random characteristic permits us to 
neglect its summation in the above expression. In addition i f  we assume 
that the strip has n  photographs, the accuracy w ill not be jeopardized if 
we replace (x, —  â —i) by its mean value between pass points N2 and N „_ 1; 
that is

(Xj— X j _ ^  ( * „ _ !— x2) / (n— 3) =  B (2c)
Then



Now, by taking into account (26) for i — j ,  we have

i  j —  1

Aÿi =  B
m=

where the double accumulation o f accidental errors is apparent. The 
development o f this expression is

Aÿi/B =  ( i— 2)d v . 2  +  (i— 3)c?x3 +  ... d y u -i (2d)

Agt is obviously the measure of lateral bending o f the strip and the swing 
error Ax<_i is the difference between the azimuth of the stereo model 
(i —  1, i) and that o f the first one. Hence, i f  we have control points on the 
first and last stereo models we can find directly the value Ay„ and the 
azimuth differences. These w ill be the closing errors which w ill be design
ated, respectively, by uyy and w A. Therefore equations (2 b )  and (2d) for 
i =  n w ill be the condition equations written below in matrix form  :

n — 2 n— 3 

1 1
{<*x} =

W y / B

m’a

where { dy. }  is the column vector o f the swing corrections. The correspond
ing correlative equations are

{rfx} =

n — 2 
n— 3

1

(2 e )

The system o f normal equations w ill be obtained by multiplying both 
members o f (2e) by the transposed matrix o f that multiplying vector { C }. 
Then we have

»  — 1 n — 1

^  ( n — 0 2 V  ( n - i )
_ J

i  =  2 i = 2

n — 1

V  ( n - i )
Am J
i = 2

n — 2

C! w v/ B

W  4

By applying formulae which give the sum of the whole numbers from  1 
to (n  —  2) and the sum of the squares of these numbers the above equations 
can be written as follows :

(n— 1) (n — 2) (2n— 3) / 6 (n—  1) (n— 2) / 2 
(n — 1) (n— 2)/2 n— 2

Ci

C2

The solution o f this system is

(c i
!c 2

12/(n— 1) (n — 2) (n— 3) 

—6/(n— 2) (n — 3)
-6/(/1-2) (n— 3)
2(2/1— 3 )/(n— 2) (n— 3)

w j  B 

w j  B

W a



These correlative factors being known, we can derive the formula which 
gives Ay t. Let us write (2e) explicitly, from  dx2 to dx f ^ 1 :

d % 2  — (n — 2) Ci +  C2 
dy. 3 =  (n— 3) CL +  C2

diCi_i — (n— £+1)(^  +  C2

By multiplying the first o f these equations by ( i —  2), the second by (i —  3) 
and so on, we have :

(i— 2)cfx2 — [ i n  —  2 (z' +  n) +  4 ] Ci +  (i— 2)C2 
( i —̂ ~3)dy,s — [ in  —  3 (i +  n) +  9 ] Ci +  (1  3)C2

d x t_  [ i n — (i— l)(z '+ n )+ (z— I ) 2] O  +  C2 

By adding these equations we have, according to (2d ),

i  — 2 i  —  2 1 —  2

Aja/B =  [n i(i— 2) — (i+ n ) ^  (1 + jn ) +  ^  (1 + m )2] +  ^  m C 2

m  —  I  w  —  1 m = l

Applying the general formulae giving the sums indicated above and 
perform ing some tedious algebraic transformations, we come to

B
A y t =  —  { — C j z  +  3(nC1 +  C2) i2— [(971-7 )(^  +  90,] 1 +  6(tj— D C j+ C ,} (2 g ) 

6
and we have Ay< =  0 for / =  2.

Since the first correction is to be applied to the ordinate o f N 3, the 
accuracy w ill not be jeopardized if  we write any abcissa x  in terms o f the 
mean distance between two successive pass points. Thus,

x =  (i— 2)B
and we have

i =  x/B +  2

And by introducing this value o f i into (2g ),  we come to the polynomial

A y  =  b 3 x 3  +  b 2 x 2  +  Æ̂x (2 h )

x  — 0 corresponding to the first pass point N2. Parameters ba, b2  and b 1  

could be expressed in terms o f the coefficients o f i« ( q =  0,1,2,3) in formula 
( 2 *7 ), but since these parameters can be determined directly, there is no 
interest in deriving these expressions.

Let us now study the scale error. The scale denominator o f the 
first stereo model, which we designated by K 12, can be directly found 
by means of the ground control points. However, when wre transfer 
the scale from  pair (1,2) to pair (2,3), some accidental error arises which 
we designate by rfK2. Thus the scale denominator o f pair (2,3) w ill be 
K 12 +  g?K2. In transferring scale from  (2,3) to (3,4) a new error dK 3 w ill 
arise, and so on. Hence a general expression can be written for the scale 
denominator o f stereo model (z — 1, z) :

=  K 12 +  dK2 +  rfK3 +  ... +  (2f)



Now, if  X 2, X 3, etc. are the natural scale values of the instrumental abcissae 
x2, x3, etc., we have for each pair, according to its own scale :

X3 X2 =  (x3 —  x2 )K 23 
x4 X3 =  (xt —  x3 )K 34

x *  X * _ j  — ( x i ^ i ~  i ) K i _  i t i 

Addition o f these expressions gives us

X4-

J  =  3

or, according to (21) for i =  j ,

i  j - l  

X4 —  X 2 =  (Xj —  x j _ 1) (K 12 d K m)

j =  3 m = 2

But we can replace, as we did before, the coefficients (x, —  x s_ ^ )  of ZdKm 
by their mean value B, and we have

* j - i

X ( —  X2 =  (xt —  x 2) K 12 +  B ^  r fK »

j = a  m  =  2

Now it must be noted that K 12x2 =  X 2 since it was assumed that x 2  is 
correct. Therefore we can write.

i / - 1

X< —  K12Xj =  B V  Y  dK„

y = 3  m =  2

where the double accumulation of random errors is once more apparent. 
In addition, as x t is the instrumental abcissa, it is easy to understand that 
(X i/K12 —  Xj) is the error Ax4 we are looking for. Consequently, i f  we divide 
both members o f the above expression by K 12 and put d K / K  =  dX, we 
obtain

» 3-1

Ax4/B =  d\m

j  —3 m = 2

or, by developing,

Axj/B =  (i— 2) d \ 2  +  (i— 3 )d\s  +  ••• d \ i _ 1 (2j )
I f  we now put

1 =  AX4_ i (2 k )
expression (2 i ) can be changed into

AXi-i =  rfX2 +  d \3 +  ... +  dX{—i (21)

It is seen, merely by inspection, that (2/) and (2/) are of the same form  as 
(2 d ) and (2 b ) ,  respectively. Therefore the same reasoning w ill drive us to 
another polynomial similar to (2/i), that is to say to :

Ax =  c3x3 +  e2x2 +  CjX (2m)



Height errors still remain, and these w ill be studied for the aerial 
levelling and bz =  0 methods o f bridging. Both methods are based on bz 
values established beforehand; hence to eliminate y-parallaxes in each 
stereo model it w ill always be necessary to m odify the tip <p o f the aft 
projecting camera. Consequently, camera i w ill have tip cp in the (f —  1, i) 
stereo model and tip <p' in stereo model (i, i +  1). The difference cp' —  (ç — Sep 
can be taken as the angle between the projection planes of stereo models 
( i  —  1, i) and (i, i -f 1), as is shown in figure 2.2. I f  we designate by <J)12 the 
residual general tip o f the first stereo model we w ill have for stereo model 
(2,3) :

®23 — ¢ 1 2  “t" Sç>2

1 2 2 '  

L

3' 3
I j  

^ > 3  

1/

7Z

F ig . 2.2

4?
But the errors of setting tips <p2 and w iN appear in §çp2. So, if  we 
designate by dcp2  the total error o f setting, the above expression must be 
changed into

¢ 2 3  “  ^ 1 2  “1" 5^2 dzpv

The same reasoning may be generalized in order to find the following 
equalities :

¢ 2 3  =  ¢ 1 2  +  Scp2  "t" dcp2

¢ 3 4  =  ¢ 2 3  +  Scp3 dcp3

¢(-1,4 — ¢ 1- 2, <—i +  Scpi_i -(- cfcpi_! 

Adding these expressions gives us

i — 1

¢ ( - 1 ,1  =  ¢ 1 2  +  5<pm +  dçç2 +  +  ... +  dyi_1 ( 2 n )

Now figure 2.3 shows us that the local altimetric error at pass point is 
given by

Bz, =  (Xj —  }

or, according to (2n )  where we make i =  j,

i ~ 1 i - 1

5 Zj  —  ( X j  ----  X j _ 1)  +  6('f*rn +



NJ-1

I

Ua= ^ : :
*>■ i ,j

?i z j
Ni

F ig . 2.3

It is now very clear that the altimetric error at pass point N( w ill be equal 
to the sum o f all values of 5Zp from  j  =  3 to j  =  i, i.e.

A * t =  ^  —  +  ^  5ym +  ^  cfcpm^

/=3 m=2 m= 2

Here also the values of ( x f —  X j _ ^  multiplying Edcpm can be replaced by 
their mean value B, and the above expression w ill be changed into

1 — 1 i  j — 1

(2o)

Azt =  ¢ 12 (¾ —  x2) +  V ,  ( x } —  xy_ x) ^  Scpm +  B ^  ^  d(pm

j = 3 m = 2  j = 3 m = 2

Therefore, i f  we put

< / - 1

|^ A z4 —  ( X f — x 2)  <D12 —  ( x ,  —  X y - i )  89™ J /  B  =  04

4=3 m—2

we can write
i  j — 1

0» =  dcpm =  ( i— 2 )d cp 2 +  ( i— 3 ) d ç j3 +  ••• +  d c p i_ i  (2 /))

3 m—2

Comparing (2/)) w ith (2d) we see that they are analogous, and the same w ill 
be observed i f  we transpose the first two terms o f the second member of 
(2/j) and compare the result with (26). Thus a similar development w ill 
give us

0t =  flj i 3 +  a '2  x 2  +  a [  x

and if we put

1II a'a «2' aî !| = — Il a3 a2 ai II
the above polynomial and formula (20 ) give us

i i-i
Az =  (x,— x 2) <D12 —  ^  (x,- —  x ^ -, )  ^  8cpm +  a 3x 3 +  a2x 2 +  a xx  (2<7)

/=3 m=2



This expression is a general one, since i f  the bridging is done without 
establishing the bz values beforehand we need only make gcp =  0  in order 
to use the formula.

It can now be pointed out that however formulae (2ft), ( 2 m )  and (2q )  
have been derived for pass points on the strip’s axis, these formulae can 
be considered as continuous functions of x  without jeopardizing accuracy. 
There it is possible to admit that the centre of gravity of the control points 
in the first stereo model is the origin o f all computations. Hence the 
follow ing expressions can be derived from the above-mentioned formulae :

3 Ay / 3  x  =  3bsx 2  +  2 6 2 ^ +  b x =  AA (azimuth error)
3  A x  /  3  x  =  3 c3x 2 -+- 2c2x  -+- =  AX (scale error)
3  Az /  0  x  — 3a3 .r2 +  2a 2x  +  o, =  A<1> (tip error)

3. —  SOME PRACTICAL CONSIDERATIONS

W e believe it would be useful at this point to show with figures an 
interesting result of our reasoning. In table X II o f B a c h m a n n ’ s  book 
Théorie  des E rreu rs  de VOrientation  Relative  (1943), we find the five 
parameters obtained from  25 relative orientations of the same stereo model. 
That table also shows us all the parameters’ deviations from their mean 
values. The complete independence o f each one of these 25 operations 
permits us to assume that they are the relative orientations o f 25 stereo 
models of an aerial triangulation having 27 photograms. Thus it is possible 
to consider the deviations shown in that table as bridging errors in x, cp, co, 
by  and bz, this last parameter not having been established beforehand. It 
is well known that in this kind of bridging a strong bending appears in 
the strip due to the earth curvature effect and other small systematic 
errors. W e shall here investigate the effect of the doubly accumulated 
random errors which has a considerable role in that bending.

The second column of table 3-1 shows the deviations of B a c h m a n n ’ s  
table concerning the parameter cp- The third and fourth columns contain 
the figures resulting from single and double accumulations, respectively, 
o f the deviations. Consequently the third column is, according to (2n ) ,  
equal to < for 0 12 =  6 9  =  0 , and the fourth column records the values
of computed by formula (2p ) .  Obviously the last figures recorded in these 
columns are the closing errors and w e . It is evident that in this special 
case w#  should be equal to zero because it is the sum of deviations from  
an arithmetical mean, thus the figure we see there is a rounding off error 
which we w ill take as w®.

Replacing Wj,/B and wA in expression (2/) by 0 4 and respectively, 
we can find Cj and C2 for n  =  27 and compute d<pc by expression ( 2 e )  
where we replace dx by dcp. Columns 5, 6  and 7 o f table 3-1 show the 
computed values o f d<pc, ¢,, and 0 C.

W e are now in a position to correct the strip’s bending, that is to say, 
the altimetric errors resulting from  that bending. These corrections are



T a b l e  3-1

i ckp i î > 9 A®c 9c Az A zc d i f f .

2 -  o, 2 — 0, 2 _ 0 2 -  5, 3249 _ 5, 3249 _ 5, 3249 0, 0 _ i . 1 1, 1
3 -  1, 1 - 1, 3 - 1 5 -  4, 8788 - 10, 2037 - 15, 52S6 - 0, 3 - 3, 1 2, 8
4 -  6, 5 - 7, 8 - 9 3 -  4 ,4 32 8 _ 14, 6365 - 30, 1651 - 1, 9 - 6, 0 4, 1
5 -  5, 4 - 13, 2 - 22 5 -  3, 9867 - 18, 6232 - 48, 7883 - 4, 5 - 9. 8 5, 3
6 2, 3 - 10, 9 - 33 4 -  3, 5406 - 22, 1638 - 70, 9521 - 6, 8 - 14, 2 7, 4
7 -  0, 8 - 1 1, 7 - 45 1 -  3 ,0945 - 25, 2583 - 96, 2104 - 9, 0 - 19, 2 10, 2
8 -  2, 0 - 1 3, 7 - 58 8 -  2, 6485 - 27, 9068 - 124, 1172 - 11, 8 24, 8 12, 0
9 -  17, 3 - 31 , 0 - 89 8 -  2, 2024 - 30, 1092 - 1 54, 2254 - 18, 0 _ 30, 8 12, 8

10 -  7, 0 - 38, 0 - 127 8 -  1 ,7563 - 31, 8655 - 186, 091 9 - 25, 6 - 37, 2 11 ,6
1 1 -  9, 5 - 47, 5 - 175 3 -  1, 3102 - 33, 17 57 - 219, 2676 - 3 5, 1 - 43, 9 8, 8
12 4, 6 - 42, 9 - 218 2 -  0, 8642 - 34, 0399 - 253, 3075 - 43, 6 - 50, 7 7, 1
13 9, 2 - 33, 7 - 251 9

COO1 - 34, 4580 - 287, 7655 - 50, 4 - 57, 6 7, 2
14 16, 2 - 17, 5 - 269 4 0 ,0 28 0 - 34 ,4300 - 322, 1955 - 53, 9 - 64, 4 10, 5
15 -  0, 4 - 17, 9 - 287 3 0, 4741 - 33, 9559 - 356, 1514 - 57, 5 - 71, 2 1 3, 7
16 -  10, 2 - 28, 1 - 31 5 4 0, 9202 - 33, 0357 - 389, 1871 - 63, 1 - 77, 8 1 4 ,7
17 -  2, 6 - 30, 7 - 346 1 1, 3662 - 31, 6695 - 420, 8566 - 68, 2 - 84, 2 1 6, 0
18 -  5, 8 - 36, 5 - 382 6 1 ,8123 - 29, 8572 - 450, 7138 - 76, 5 - 90, 1 13, 6
19 -  5, 9 - 42, 4 - 425 0 2, 2584 - 27, 5988 - 478, 3126 - 8 5, 0 - 95, 7 10, 7
20 6, 0 - 36, 4 - 461 4 2, 7045 - 24, 8943 - 50 3, 2069 - 92, 3 - 100, 6 8, 3
21 3, 6 - 32, 8 - 494 2 3, 1 505 - 21, 7438 - 524, 9507 - 98, 8 - 105, 0 6, 2
22 -  6, 5 - 39, 3 - 533 5 3 ,5966 - 18, 1472 - 54 3, 0979 - 106, 7 - 108, 6 1, 9
23 17, 0 - 22, 3 - 555 8 4 ,0 427 - 14, 1045 - 557, 2024 - 111,  2 - 111, 4 0, 2
24 10, 5 - 11, 8 - 567 6 4 ,4 88 8 - 9, 61 57 - 566, 8181 _ 113, 5 - 113, 4 0, 1
25 7, 9 - 3, 9 - 571 5 4 ,9 34 8 - 4, 6809 - 571, 4990 - 114, 3 - 114, 3 0, 0
26 4, 6 0, 7 - 570 8 5, 3809 0, 7000 - 570, 7990 - 114, 2 - 114, 2 0, 0

G, = -  o , 4460769 ; C : - 5, 8 2 70000 d<: c = (n - i ) C I + C

Az.

equal to the quantity between brackets in formula (2o) where 0 12 =  =  0 
and where B is the mean distance between two consecutive pass points. 
Consequently we have :



But 0t is expressed in centesimal minutes and the above formula must be 
changed into

=  (Of / 6366)B

Finally, by assuming B =  1273.2 m (0.2 X  6366) we can write

AZi =  0.2¾

W e have computed w ith this formula the figures recorded in columns 8 
and 9 o f table 3-1 by using the true and computed values of 0t, respectively. 
The last column shows the final height deviations. For the hypothetical 
strip chosen as example high values of the height deviations are the 
consequence o f the deviations o f the relative orientation which reach about 
20 «.

Figure 3.1 gives a visual idea o f the results.


