
DAILY MEAN SEA LEVEL AND SHORT-PERIOD SEICHES

by Gabriel G o d i n

Division o f Oceanographic Research, Marine Sciences Branch, 
Department o f Mines and Technical Surveys, Canada

Abstract

Slow water-level variations and short-period seiches are found at the 
outer ends of the tidal spectrum. In order to isolate these types o f oscilla­
tion from  the body of the tide it is necessary to filter the observations. In 
this paper the filter theory is briefly set out first and then two simple 
and practical filters are discussed. The one consists of symbol products 
of arithmetical means and can be used to detect the true variations of the 
daily mean sea level. The other, which is a product of differences, isolates 
short-period seiches fairly well.

Introduction

The tidal spectrum can be divided into three regions :

1 ) The low frequency band, defined over an interval extending from
0 to 1 cycle per day;

2) The central band, lim ited to 1 to 6 cycles per day;
3) Finally, the high frequency band containing all the frequencies 

above 6 cycles per day.

The relation between period T  and frequency a is :

T  =  1/a (1)

The central band contains the diurnal, semi-diurnal tides, etc., and is 
the most important part of the spectrum. This region is investigated 
by ordinary tidal analysis, and a large number of methods have been 
formulated with this object.

W e shall therefore give our attention to the outer ends o f the tidal 
spectrum. The low frequency band contains the annual, seasonal and 
secular variations as well as certain weak waves such as Mm, Mt, and MSf ; 
some météorologie disturbances also contribute to the spectrum. In order 
to define this band it is necessary to have available a sequence covering



a fa ir ly  long interval —  of about several months, or even several years. 
The other outer band of the spectrum, the high frequency band, contains 
seiches and all the short-period oscillations. The study of this band 
necessitates samples being taken very closely in time, but only several hours 
or several days o f observation are needed. Moreover the inertia of measuring 
instruments ensures that the spectrum becomes zero for every frequency 
above, say, am ', aM being of the order o f 12 cycles per hour.

Before analysing the contribution of these outer bands it w ill be 
good to isolate them first from  the central band. In fact since this band 
contains a whole body o f waves o f unknown periods, it is necessary first 
o f all to follow  their development in time in order to recognise the 
predominating waves. W e shall then be in a better position to attempt an 
analysis.

Certain areas of the spectrum are isolated by means 0 1  a I  i l i a .  Foi 
example, the a rithm etica l mean  is a low-pass filter and it is used for 
computing the mean level. It is often thought that the mean level change 
from  day to day reflects the contribution in time o f the low frequency 
band. Unfortunately this is not true, since the arithmetical mean is a 
filter o f fa irly  poor quality; a certain proportion of the central band is 
allowed through, and the daily sampling o f the arithmetical mean, which 
is not in this case permissible, creates fictitious waves.

However we cannot reject the idea leading us to calculate the mean 
level. It is by this computation that we wish to follow  the variation in 
water level when this is freed from the diurnal and semi-diurnal tides, as 
well as other tides o f higher species. It is most desirable, both from  the 
scientific and the practical point of view  to know this mean level, but it 
must be sought with the help of a good filter.

O f this filter we require that it elim inate the central band and that it 
let through the annual, semi-annual, monthly and weekly waves. It would 
also be useful i f  this filter let through all the waves of a period higher than 
1 day without amplitude distortion, but we shall see that this is not always 
possible.

This is also the case for seiches : here we also need a filter which 
eliminates the central band, but this filter must allow the high frequencies 
through without much amplitude distortion, above all when we do not 
know precisely the period o f the seiche.

THE MATHEMATICAL, THEORY OF FILTERS

A filter is a sequence of numbers

{ U } ;  = 0, ± 1, ± 2 , ... (2)
that are convo lu ted  to a sequence of observations

{ z ( k M ) } k =  0, ±  i, ±  2, ... (3)



The result o f the convolution is written in the following way :
oooo

{ z / * A O } s s  [(A*— j )  A f] j *  =  0, ±  1, ±  2, ... (4)=  0, ±  1,

AM s the time interval which must always be lower than 1/2 c7m> <?m being 
the highest frequency contributing to z(/cA0- zt indicates the result of 
the filtering of the sequence o f observations { z(A:A0 } by sequence {
This last may be finite or infinite. In general we shall designate by the 
letter F  the filter having the temporal representation (2) and the represen­
tation (3) in the frequency space.

In order to understand the effect of a filter on the spectrum of 
observations we note that any sequence of numbers defines a function of o, 
called the spectrum of the sequence. Thus { f, } defines the spectrum

Sim ilarly the sequence of observations { z (k \ t )  } defines the spectrum

Spectrum Z (a )  is unknown since only a finite portion o f observations is 
available, and if  the sequence { z(k£±t) } consists o f a consecutive sequence 
of observations on the water level then Z (o ) is the tidal spectrum. Moreover 
the spectrum F(ct) o f filter F is exactly  known since the definition of the 
f i 's automatically defines spectrum F (a ).

Let us now see the effect o f the convolution of F  with Z  on spectrum 
Z (a ). Definitions (5) and (6) being quite general, we deduce that sequence 
{ zf{kA t )  } also possesses a spectrum that we call Z '(a ) for the moment, 
and which we can compute with the help o f definition (4) :

oo

(5)

Z (a ) — 'V '  e~2!tik̂ to (6)

no oc 00

00 00

OC X

j —  ---  00 —  00

=  F (o ) Z (o )

where we have written :

/  =  *  —  J



Thus we have
Z '(g) =  F (a ) Z (a )

which indicates that when Z is convoluted by F in time, spectrum Z (a ) is 
multiplied by F (a ) for all the values of a on which the spectra are defined.

I f  F (a ) is zero on certain intervals of o, it follows that Z ' ( o ) is also 
zero on the same intervals, thus any band o f Z (a )  can be isolated through 
the judicious application of a filter F.

Equation (7) implies certain characteristics desirable for a filter :

I ) F  (a ) should have a value close to unity in the band o f concern, 
and be zero anywhere else.

2) Sequence {  fj } should be finite and as short as possible in order to 
use only a minimum number o f observations.

3) Numbers themselves should be as simple as possible in order io 
make the computation o f the convolution easy.

These characteristics are mathematically contradictory : hence a 
compromise must be found. W e prefer first to transgress 1) a little in order 
to comply with 2) and 3). Afterwards we shall use products of filters 
which w ill allow condition 1) to be satisfied to a high degree, as well as 
conditions 2) and 3).

W e may convolute the sequence o f observations { z (kA t )  } as many 
times as we wish by a sequence o f filters

The result o f this repeated convolution is the follow ing :

oc « .  oc

{ * / ^ . . . / „ < * 4 0 }  =  ^  V -  . . / £ • .  {z [ (&  j j  jfM ... j n)  A f ] }

A— - i,— - Jn=_ x (8)

and the spectrum of the sequence is :

Z "  -  '  (CT) =  FiCo) F 2(o ) ... F n(o ) Z (a )  (9)

If the F_,(a)’s are small outside the areas o f concern their product is 
still smaller, and i f  their value is close to unity in the band sought for 
their product is also close to unity. Thus we can expect that a product of 
fa irly rough filters w ill allow us to satisfy 1), as well as 2) and 3) which 
only need a simple temporal representation.

A SIMPLE AND PRACTICAL FILTER FOR COMPUTING 
THE DAILY MEAN LEVEL

The representation as a filter of the arithmetical mean is the following:

{f j } J =  0, ±1 , ±2 , ...



where

, . / ( 2 N  +  »  j =  0. ± 1 .....  =,=N
I o | y | > N

The convolution of (10) with the sequence o f observations { z(k&t)  } 
gives the sequence

u -  . (11)2N +  1 - - - - -
i= -N

which is a sequence o f arithmetical means of 2N +  1 consecutive observa­
tions. ( 1 0 ) defines the spectrum

sin K2N+ D  «  A f a]
S^v + ivO) — --------------- ------------------  (12)

2N + 1 ( 2 N + 1 ) sin 7i At a

which we have computed with the help of (5) and (10). The summation 
of the exponentials in (5) can be made analytically in our case. Now an 
even number of elements can be chosen also from  the sequence ( 1 0 ) ;  the 
spectrum is then

sin [2N n  Af a]
S2 N(a) =  — — ^ ( 13)  

2N sin u A t o

I f  the arithmetical mean of 24 consecutive observations is computed 
the spectrum o f this mean is S2 4 (a)- I f  A* =  1 hour as is frequently the case 
in tidal observations, spectrum S2 4 (o ) is zero for all the frequencies which 
are a multiple o f 1/12 cycle per day. This filter thus completely eliminates 
solar tides S1( S2, S3, etc. Moreover, like any arithmetical mean, filter (13) 
is in fact a low-pass filter since it becomes small for high frequencies.

W e realise, however, that (13) is not a perfect filter and that it does 
not become zero for all the points o f the central band. Some contribution 
from  M2, No, 0 1( etc. w ill be found again in the filtered set (11). As, for

M 2 m 2

example, the amplitude ratio o f ------  or ------may be of the order of 1 0 0 /1 ,
M/ Mm

sequence (11) can be disturbed by M 2 in the same proportion as by Mm 
or Mf . If, at worst, the contribution of M 2 and other constituents in the 
central band is sampled in varying phase conditions this creates a fictitious 
wave which does not exist in reality, and this wave masks the actual waves 
arising from long-period constituents.

I f  we wish to eliminate nearly all the waves having an angular speed 
that is a multiple o f M i we can use the arithmetical mean o f 25 hourly 
data. In this case the spectral function is S2 5 (o ) and it is zero for all the 
waves whose angular speed is a multiple of one cycle per 25 hours. On the 
other hand this filter lets in a certain proportion of other waves.

Thus neither one o f the filters we have considered is by itself perfect, 
but a combination of both may certainly be very useful. Consider, for 
example

S^S24 or S2 4S2 5  (14)

where we have used the symbolic notation for filter F. Figure 1 illustrates 
the spectra S24(a ), S25(a ), X0(a ), S|5(a ) S24(a ) and S|4(a ) S25(a ) whilst



Fig.  1. —  Graphs o f  the spectra
S24(o)i SjsfcO. X<,(o)> S|, (ojSajfa) and Sâ (o )S21(o ) as functions o f 2Ato-  A ll these 

functions are standardized and 2Ato varies between the values 0 and 1. The functions 
Sdi (o ) S.* (a ) and (a) S2, (a) have been multiplied by the factor 100 in the interval 
(.07, 1.00) so that their variation in this interval may be followed. X„(a)  is the spectrum 
of the Doodson X0 filter and it is given by the expression

1 sin 25 tzAto sin 24 izAto
X0(o) =  —  cos 2-jiA t e --------------------------------------

15 sin 5 n&to  sin 8 u A to



table 1 gives their numerical values versus 2 A to- The maximum value o f
2 A to  can only be unity or else the law of sampling would be violated. It is 
seen that either one or other o f the filters (14) has an almost equivalent 
selectivity, and that they actually cut the central band as well as the high 
frequency band. X0(a ), which is Doodson’s filter, cuts the tidal waves of 
the central band fa irly  well, but it has disquieting peaks almost everywhere 
else and its use is not recommended.

It would therefore seem that one or other o f the filters (14) could be 
employed for the efficient computation of the daily mean level. I f  we select 
S225 S24 we need 72 consecutive observations. A  sequence o f means is first 
computed for 24 observations, then a series of means for 25 o f these means, 
and finally the mean o f this last series which gives the daily mean level 
as normally understood. This value holds good for time 1130 o f the 
central day i f  the first observation is taken at 0000 on the preceding day, 
and the last at 2300 on the follow ing day. The computation o f the mean 
level with S|4 S25 requires 71 consecutive observations and the result 
represents the mean level at 1200 on the central day. W e give below an 
example of the process to be followed for Sf5 S24. Let the observational 
sequence be :

preceding day : central day : fo llow ing day :

z(00), z(01), ..., z(23) 2(00), z(01), ..., z(23) z(00), z(01 )......  z(23)
which w ill be rewritten in the form

z (l ) ,  z(2 ), z(3), ..., z(72)
W e first compute the sequence o f means

{X t} i =  1, 2, 3, ..., 48
where

24

x < =  2  z(/c+i') 
fc=0

then the sequence
{Yy} j  =  1, 2, 3, ..., 24

where
24

Yj =  V  X i+J 
i = 0

T a b l e  1

Value  o f  spectra  S24(a ), S25(a ), X „(a ), S|5(a ) S24(a ), S25(a ) Sf4(a )
in term s o f  2 A to

2 A to S24 S25 X 0 S|5 s 24 S|4 S25

0.000 1.000 1.000 1.000 1.000 1.000
.01 .977 .975 .955 .927 .929
.02 .908 .900 .829 .736 .743
.03 .800 .785 .646 .493 .503



2  M a S24 $25 Xo 02 C “J2S 2̂4 $24 S2r,

.04 .662 .637 .443 .269 .279

.05 .505 .471 .257 . 1 1 2 .1 2 0

.06 .341 .300 .115 .031 .035

.07 .189 .139 .030 .004 .005

.08 .042 . 0 0 0 .0 0 0 . 0 0 0 . 0 0 0

.09 — .074 — .109 . 0 1 0 — .0 0 1 — .0 0 1

.1 0 — .157 — .181 .039 — .005 — .004

.1 1 — .205 — .215 .066 — .009 — .009

. 1 2 — .218 — .213 .075 — .0 1 0 — . 0 1 0

.13 — .2 0 2 — .182 .065 — .007 — .007

.14 — .161 — .130 .041 — .003 — .003

.15 — .105 — .066 .015 — . 0 0 0 — . 0 0 1

.16 .042 . 0 0 0 0 0 0 0 0 0 0 0 0

:17 . 0 2 0 .058 .003 . 0 0 0 . 0 0 0

.18 .072 . 1 0 1 .025 . 0 0 1 . 0 0 1

.19 .109 .126 .057 . 0 0 2 . 0 0 2

.2 0 .128 .129 .087 . 0 0 2 . 0 0 2

.2 1 .128 .114 . 1 0 1 .0 0 2 . 0 0 2

.2 2 . 1 1 1 .084 .090 . 0 0 1 .0 0 1

.23 .081 .043 .054 . 0 0 0 . 0 0 2

.24 .042 . 0 0 0 . 0 0 0 . 0 0 0 .0 0 0

.25 . 0 0 0 — .040 — .059 . 0 0 0 . 0 0 0

.26 — .039 — .071 — .106 . 0 0 0 . 0 0 0

.27 — .069 — .090 — .132 — .0 0 1 . 0 0 0

.28 — .089 — .094 — .129 — .0 0 1 — .0 0 1

.29 — .095 — .084 — .103 — .0 0 1 — .0 0 1

.30 — .087 — .062 — .063 . 0 0 0 . 0 0 0

.31 — .069 — .033 — .025 . 0 0 0 . 0 0 0

.32 — .042 . 0 0 0 . 0 0 0 .0 0 0 . 0 0 0

.33 — .0 1 0 .031 .004 . 0 0 0 . 0 0 0

.34 . 0 2 0 .056 — .014 . 0 0 0 . 0 0 0

.35 .047 .071 — .045 . 0 0 0 . 0 0 0

.36 .066 .075 — .079 . 0 0 0 . 0 0 0

.37 .075 .067 — .103 . 0 0 0 . 0 0 0

.38 .073 .050 — .109 . 0 0 0 . 0 0 0

.39 .061 .027 — .095 . 0 0 0 . 0 0 0

.40 .042 . 0 0 0 — .064 . 0 0 0 . 0 0 0

.41 .017 — .025 — .025 . 0 0 0 . 0 0 0

.42 — .009 — .046 . 0 1 1 . 0 0 0 . 0 0 0

.43 — .032 — .059 .036 . 0 0 0 . 0 0 0

.44 — .050 — .063 .046 . 0 0 0 .0 0 0

.45 — .061 — .057 .041 . 0 0 0 . 0 0 0

.46 — .063 — .043 .027 . 0 0 0 . 0 0 0

.47 — .056 — .023 . 0 1 1 . 0 0 0 .0 0 0

.48 — .042 . 0 0 0 . 0 0 0 .0 0 0 . 0 0 0

.49 — . 0 2 2 .0 2 2 — .004 . 0 0 0 .0 0 0

.50 . 0 0 0 .040 . 0 0 0 .0 0 0 .0 0 0

.60 — .030 — .049 .013 . 0 0 0 .0 0 0

.70 .044 .032 .063 . 0 0 0 . 0 0 0

.80 — .042 . 0 0 0 — .436 . 0 0 0 .0 0 0

.90 .025 — .029 — .039 . 0 0 0 . 0 0 0

1.00 . 0 0 0 .040 — . 2 0 0 .0 0 0 .0 0 0



DAILY MEAN SEA LEVEL 

F in e  structure in the vicinity of the tidal constituents

Constit­
uents 2  A fa S24 S,5 Xo s|5 s24 SI* S25

0 . 0 0 0 1.00000 1.00000 1.00000 1.00000 1.00000
.001 .99976 .99974 .99954 .99925 .99927
.002 .99905 .99897 .99815 .99701 .99971
.003 .99787 .99769 .99585 .99327 .99345

£ .004 .99622 .99590 .99263 .98807 .98839oJ .005 .99410 .99360 .98850 .98141 .98191
.006 .99151 .99079 .98347 .97332 .97403
.007 .98845 .98747 .97755 .96384 .96480
.008 .98494 .98366 .97075 .95301 .95424
.009 .98096 .97934 .96310 .94085 .94240

.071 .16787 .12440 .02449 .00260 .00351

.072 .15299 .10953 .01975 .00184 .00256

.073 .13830 .09490 .01554 .00125 .00182

.074 .12382 .08051 .01186 .00080 .00123

.075 .10955 .06639 .00869 .00048 .00080

.076 .09549 .05254 .00603 .00026 .00000

.077 [Oj] .08167 .03897 .00384 .00012 .00026
j .078 .06809 .02568 .00212 .00004 .00012
< .079 .05475 .01269 .00085 .00001 .00004
2
P5 .080 .04167 .00000 .00000 .00000 .00000
HH .081 .02885 — .01238 — .00044 .00000 — .00001
a .082 .01630 — .02443 — .00049 — .00001 — .00001

.083 [K J .00403 — .03616- — .00018 — .00001 .00000

.084 — .00796 — .04756 .00047 — .00002 .00000

.085 — .01965 — .05862 .00145 — .00007 — .00002

.086 — .03105 — .06933 .00273 — .00015 — .00007

.087 — .04214 — .0797 .00428 — .00027 — .00014

.088 — .05293 — .08971 .00609 — .00043 — .00025

.089 — .06339 — .00935 .00812 — .00063 — .00040

.151 —  .09875 —  .05892 .01302 —  .00034 —  .00057

.152 —  .09253 .05227 .01096 —  .00025 —  .00045

.153 —  .08625 —  .04562 .00903 — .00018 —  .00034

.154 —  .07994 —  .03898 .00724 —  .00012 —  .00025

.155 —  .07359 —  .03237 .00561 —  .00008 —  .00018

.156 —  .06722 —  .02579 .00414 —  .00004 —  .00012
►j .157 — .06083 —  .01926 .00283 —  .00002 —  .00007
■<
z .158 [N2] —  .05444 —  .01278 .00170 —  .00001 —  .00004
«
»— ^ .159 —  .04805 —  .00635 .00076 .00000 —  .00001i-J .160 —  .04267 .00000 .00000 .00000 .00000a .161 [M2] —  .03530 .00628 — .00057 .00000 .00001
§ .162 —  .02897 .01247 — .00094 .00000 .00001
(4C/3 .163 —  .02267 .01856 — .00111 — .00001 .00001

.164 —  .01641 .02456 — .00107 — .00001 .00001

.165 —  .01021 .03045 — .00084 — .00001 .00000

.166 [S2] —  .00406 .03622 — .00040 — .00001 .00000

.167 [K2] .00202 .04187 .00024 .00000 .00000

.168 .00803 .04739 .00108 .00002 .00000

.169 .01395 .05277 .00212 .00004 .00001



and finally
24

z 0 =  2  Y <
y=i

W e obtain
zo(1130) =  Zo/15000 (15)

which is the mean level at 1130 on the central day. This computation is 
very simple to programme and fast with an electronic computer.

One or other o f the (14) filters allows through the Z 0, Sa, Ssa, Mm, M( 
and MS/ constituents almost entirely and becomes zero on the central band. 
However these filters reduce by about 50 % the amplitude of the waves 
having a period o f about a \ cycle per day, which is rather unfortunate. It is, 
however, impossible to imagine a simple filter winch is flat evervwhere in 
the low  frequency interval and which becomes zero suddenly for any 
frequency above or equal to 1 cycle per day. Table 2 gives the amplitude 
o f long-period constituents in percentages after a filtering by one of the 
(14) filters.

T a b l e  2

Q u otien t  o f  the am plitude o f  the long -per iod  
constituents before  and after filtering

Sf5S24 or Sf4S25 

^ filtered 

A

Constituent S|B S24
%

2̂4 S25
%

Zo 100.0 100.0
s a 100.0 100.0
Saa 100.0 100.0
Mm 99.3 99.3
MSf 97.7 97.7
Mf 97.2 97.4

Example

W e have computed the daily mean value for three Canadian ports 
with the help o f S225 S24; we shall call this mean level T0  as in (15). W e have 
compared z0  with z, the mean level computed with the help o f the 
arithmetical mean. A t the same time we have reckoned the fictitious wave 
A (/) created by the faulty sampling of z .

The ports we chose are the following :

St. John, N.B. (45°15'N, 66*04'W )
Victoria, B.C. (48°26'N, 123*23'W )
Vancouver, B.C. (49°17'N, 123°07'W )



F ig .  2. —  C o m p a r i s o n  b e t w e e n  v a r i a t i o n  o f  z, t h e  d a i l y  m e a n  le v e l  c o m p u t e d  w i t h  th e  h e lp  
o f  th e  a r i t h m e t i c a l  m e a n  S34, a n d  zi, t h e  l e v e l  c o m p u t e d  w i t h  th e  h e l p  o f  t h e  f i l t e r  Sfs S^.



and we reckoned z~0(/ )>  z(j )  and A (/) for the month o f January 1965 (/' is 
the day variable). To  compute A (/) we took into account the contribution 
o f M2, N2 and to the arithmetical mean of 24 consecutive hourly data. 
In the case of St. John, N.B., the contribution of A (/) can at certain times 
have an amplitude o f 14 cm which is far from negligible. It we compute 
T — A, we are removing the largest imperfection from  z, and the variation 
o f z(/) —  A (/) must be very close to that of Such is the case, as we can
see in figure 2, but there are oscillations in F— A which we do not find in 
zJJ. These are oscillations of periods o f the order o f a ^ cycle per day which 
are reduced more strongly by S|5 S24 than by S24. Table 3 gives the com­
ponents o f the A (/) curve for the three ports in the month o f January.

T a b l e  3

Principal com ponents  of the fictitious wave  A (/')

A (/) =  a 1 cos (24.38^— b 3) +  a2 cos (25.373— b 2 ) +  a3 cos (37.45^- 
where

- b 3)

ai
cm o

«2
cm

b 2

o
« 3
cm

b 3

o

St. John, N.B.......... —  10.7 034.4 00.9 086.0 — 03.4 257.8
Victoria, B.C.......... —  01.3 291.4 02.8 068.7 — 00.5 151.1
Vancouver, B.C. . . . —  03.3 207.8 03.6 043.6 —  01.0 064.4

These  values hold for January 1965. The suffixes 1, 2 and 3 refer to 
the M2, Oj and N2 waves. /' varies from 0 to 30 during this month.

SHORT-PERIOD SEICHES

It is not easy to separate seiches whose periods overlap those o f the 
tidal constituents. Moreover, short-period seiches of, say, one hour or less 
are to be found in the high frequency band and they can be isolated by 
simple filters.

The simplest filter cutting off the long-period waves is the following :

f, = 0
/=±1

! j  I >  i
(16)

I f  this filter is applied to two consecutive observations, separated by a time 
interval At, the spectrum o f (16) is

H (o ) =  --- (---e-2atoA*l/2 _j_ g2jrloAil/2) — £ Sjn ft fatO
2

(1 7 )

Filter H is therefore a dephasing filter, and its spectrum H (a) has its first 
maximum when

1
Afao =  —  (18)



Figure 3 shows the —  i‘H (o ) curve. W e see that H is a filter o f rather poor 
selectivity, but it w ill suffice for the case o f short-period seiches. W e 
shall now convince ourselves that this is so.

I— I A t  = 5 min.
Largeur  de Fa ba nde cen trale limitee 

I I A t ~ I 5 m i n .  aux ondes S e x -d iu rn e s  en fonction de A t .

I------------------------------------1 A  t = 30 min.

F ig .  3. —  T h e  s p e c t r a  — *H(a) a n d  — H *(o)  as  f u n c t i o n s  o f  A  ta-

Since H is dephasing and gives a filtered value falling between two 
observations we decide to use

— H2 (19)
which has as a spectrum

— H2(a) =  sin2 71 A/a (20)
Thus, we eliminate the dephasing factor, and we reduce the filtered 

data to the instant o f observation and we reinforce the selectivity.
—  H2(o ) is shown in figure 3.

The procedure to fo llow  for applying —  H2 in time is the following. 
W e have three data separated by an interval of time A t

z {— At), z(0), z (& t )
W e compute

X + =  2(A0 — 2(0)

X _  =: 2 ( 0 ) — 2(— AO
then

2,(0) -  —  (X _ — X + ) (21)
4

which is the value filtered by — H2 at time 0.



T a b l e  4

Values of a0 and  T 0 corresponding  to the different choices  
o f  time interval A t

A*
min

CTo
cycles/m in

To
min

1 1/2 2
2 1/4 4
5 1/10 10

10 1/20 20
15 1/30 30
30 1/60 60

The rate of sampling in time must obviously be smaii, and iis value 
depends on the period o f the seiche, which may be estimated by eye. Table 4 
gives the values o f a0  and T 0 corresponding to the various choices o f A t. 
Having estimated the magnitude of the period of the seiche to be studied, 
we decide with the help o f table 4 on the time interval A t, then we carry 
out the filtering with the help o f —  H2 which gives the sequence

{jz.(*A/)} k =  0, ±1 , ±2 ,... (22)

This sequence is almost entirely free from the contributions o f the central 
band, as table 5 w ill convince us. Since —  H2(a ) has no oscillations we 
show it in table 5 for a few  values of a only.
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Spectrum  —  H2(a)

At = 1 2 5 10 15 30 min.

Species

d iu rn a l
sem i-d iu rn a l
q u a rte r -d iu rn a l
s ix th -d iu rn a l
tw e lfth -d iu rn a l

cycles
/ d ay

1
2
4
6

12

cycles
/m in

1/1440
1/720
1/360
1/240
1/120

0.0000
.0000
.0001
.0002
.0007

0.0000
.0001
.0003
.0007
.0027

—  I

0.0001
.0005
.0019
.0043
.0171

12( ct)

0.0005
.0019
.0076
.0170
.0670

0.0011
.0043
.0170
.0381
.1464

0.0043
.0170
.0670
.1464
.5000

This table indicates that it is not advisable to use the filter —  H2 for 
seiches o f periods higher than 30 minutes, unless the seiche has an 
appreciable amplitude; in this case — H2 can be used to isolate the seiches 
which have a period o f as much as several hours.

Since the period o f a seiche is first of all estimated by eye, and since
—  H2(a ) is far from being flat, we must know the behaviour of —  H2(a ) 
in the neighbourhood o f ao- Table 6 has been computed with this aim.

The true frequency o f the seiche is probably not exactly a0(=  1/2 A t ).  
W e therefore write
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Spectrum  —  H 2(a) in the üicinity of its peak, in percentage of its
m aximum value

1
T iA ta  — —  u ±  e

1 1
e —  H(e) =  cos2e

o 0

X  100 X  100
0.64 0.01 99.99
1.27 .02 99.96
1.91 .03 99.91
2.55 .04 99.84
3.18 .05 99.75
3.82 .06 99.64
4.46 .07 99.51
5.09 .08 99.36
5.73 .09 99.19
6.37 .10 99.00
9.55 .15 97.70

12.73 .20 96.05
19.10 .30 91.27
25.46 .40 84.84
31.83 .50 77.01

The definition o f a0 involves
1

7iA£(<7o+Aa) =  —  ±  e (23)

where g is the error in non-dimensional unities. From  (23) we deduce the 
relationship between A a and e which is the follow ing

2s
Aa = ------ CT0 (24)I I it

It can be seen from  table 6 that an error o f 32 %  is permissible in the 
estimation o f the seiche frequency without the filtering by —  H2 decreasing 
its amplitude appreciably.

In figure 3 we have indicated the w idth of the central band, that we 
shall here lim it to the sixth-diurnal waves, in terms of certain values o f A t.


