GENERAL CHARACTERISTICS OF THE SOUTHERN BALTIC WATER LEVEL VARIATIONS AND DAILY MEAN WATER LEVEL VALUES IN THE BAY OF GDANSK FOR THE 11-YEAR PERIOD 1955-1965

by Mieczyslaw LASKA

Oceanographer Polish Academy of Sciences, Geophysical Department Marine Station, Sopot-molo, Poland

Abstract

This paper is intended as a contribution to the knowledge of water level variations in the Baltic and gives in particular the mean water level values along the Polish coast for use by persons and institutions interested in such questions.

1. — Introduction

The author has been questioned many times about the lack of publications concerning sea level variations in Polish coastal waters. The present work is small in range but it is however hoped that it will fill this lack, at least in part.

Besides the tables of daily, monthly and annual mean sea levels in the Bay of Gdansk, this work contains the general characteristics of the water level changes in the Baltic Sea, with particular reference to the water level variations in the area of the Polish coast. The series of tables is preceded by a short description of sea level variations in the Bay of Gdansk and by some characteristic records of water level changes in this region.

On the basis of an almost 13-year observational period it can be said that the automatic sea level recorders of the Marine Station of the Polish Academy of Sciences at Sopot, together with the recording stations in Swinoujscie, Kolobrzeg and Wladyslawowo (under the control of PIHM (*)) characterise the water level variations of the southern part of the Baltic Sea in an accurate way.

The paper contains only the mean water level data for the Sopot region

(*) PIHM : Państwowy Instytut Hydrologiczno-Meteorologiczny, Gdynia (State Hydrological and Meteorological Institute, Gdynia).

of the Baltic for an 11-year period, but nevertheless these data may contribute to the complex study of the hydrological phenomenon in the Baltic.

To characterise the range of the sea level variations in the Baltic the author has based his descriptions principally on data taken from the literature, from his own observations and calculations, and from the archives of PIHM, Gdynia.

The mean sea level tables given in this article were elaborated by the author at the Marine Station in Sopot of the Department of Geophysics of the Polish Academy of Sciences, which since 31 May 1953 has carried out a permanent recording service for water level variations in the Bay of Gdansk.

The recordings are carried out by means of automatic sea level recorders (mareographs) which consist generally of a gauge well, a float and a recording mechanism.

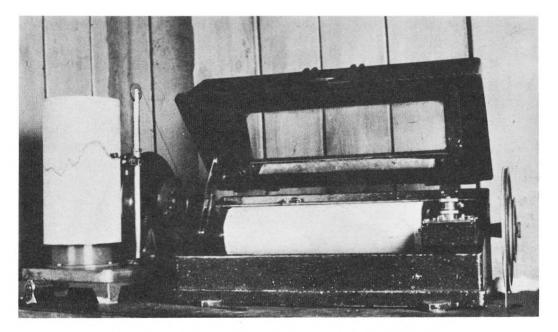


FIG. 1. — General view of the registration mechanism of the Marine Station "mareographs".

The Marine Station has two automatic recorders : one with a daily (24-hour) and the other with a weekly recording paper, having a vertical drum (see fig. 1). A change in the actual water level of 2 cm gives a registration of 1 cm on the recording paper in the first mareograph (Valday, 1949, Russian type). The scale range in the second mareograph (Munro, 1956, English type) is around 10/1. The sea level recordings are linked to a visual water level gauge and referred to a stable bench mark.

The Sopot water level gauge station is one of the best situated along the Polish coast. It gives accurate recordings of even the smallest water level changes. The measuring point and all the instruments are situated far offshore in an open sea area. The automatic sea level recorders are installed at the end of Sopot pier, 500 m offshore.

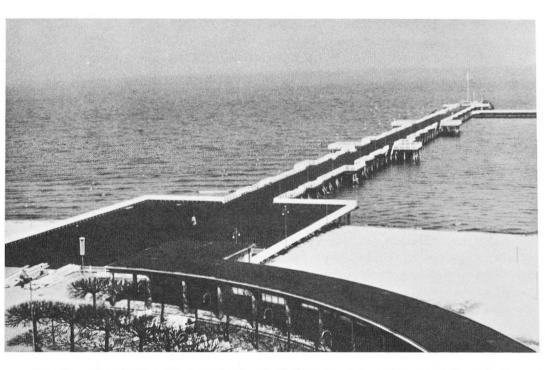


FIG. 2. — Sopot pier. Mast at the head of the pier shows the measuring place of the Marine Station.

The depth of Gdansk Bay here reaches 5.5 m. The geographical position of the observation point is : $54^{\circ}26'52''$ N and $18^{\circ}34'45''$ E. Such a positioning of the water level gauges affords a good possibility of observing the water level changes between two important Polish harbours, Gdansk and Gdynia (fig. 6).

2. - General characteristics of water level changes in the Baltic Sea

Water level changes in the Baltic sea are fairly insignificant, but the character of these variations is, however, compound and even sometimes difficult to define. The vertical movements of water masses differ depending on the causes which produce them.

By studying the literature and analysing water level records it can be clearly seen that there are two types of water level variation characteristic of the Baltic Sea, i.e. periodic and non-periodic variations.

For periodic variations, tides are of first consideration, and also the free oscillations of the water masses. The tides of the Baltic are very small, and to date, due to the small practical role they play in this basin, have never been completely elucidated. The shallow and narrow entrances through the Danish Sounds to the Baltic from the North Sea do not allow the tidal energy to penetrate the Baltic.

DEFANT [1] states that the tide wave in the Kattegat takes the form of a progressive wave travelling southwards with an amplitude of about 12-30 cm on the Jutland coast, and with a smaller amplitude of 4 cm on the Swedish coast. These values decrease to 1-2 cm in the zone of the Polish coast. Generally speaking, one can say that the amplitude of the tide wave diminishes in range in the Southern Baltic from west to east.

One of the first, after WITTING in 1911, to investigate the problem of free oscillations in the Baltic was G. NEUMANN in 1941 [11].

Choosing representative sea level records from a great number of gauge stations, and by means of a statistical study of the water level variation between Ystad (Sweden) and Koivisto (Finland), he determined the free oscillation period of the Baltic waters. This period, later theoretically and practically verified by other investigators, amounts on the average to 27.6 hours. This is the period of the uni-nodal seiche in the Baltic and Gulf of Finland system.

Other oscillation periods were also found; e.g. in the Baltic — Gulf of Bothnia system which has a period of about 40 hours, and a great number of short-period sea surface pulsations characteristic of the different water areas of the Baltic such as the Gulf of Finland, the Gulf of Bothnia [7], the Bay of Gdansk [13], and others.

The water level changes most characteristic of the Baltic are the nonperiodic variations. The forces which cause these movements are the anemobarometric effects; i.e. the wind and air pressure gradient changes.

High and low water levels in the Baltic depend quite distinctly on the different types of atmospheric situation. Making a good estimation of the influence of these climatological elements is the main problem in sea level analysis. Cyclonic and anti-cyclonic wind circulations, linked always with the various atmospheric pressure systems, are the determining factors in the sea level situation.

In the literature we may find two criterions which characterise the water level variations according to wind and air pressure changes, namely: the sea level increases — in stationary conditions — with the square of the wind value and with the decrease of air pressure, and decreases when this pressure augments. Thus a change of 1 mb in the atmospheric pressure corresponds to a water level change of 1 cm. These criterions, although completely true, correspond however to ideal conditions, mainly of static nature, e.g. in atmospheric pressure gradient changes, and they cannot always be applied without restriction to local conditions.

The Baltic is an open sea, connected by the Kattegat and the Sound with the North Sea. Due to this fact, the character of the water level variations depends mainly on the exchange of water between these two reservoirs. According to I. HELA [2] and K. WYRTKI [14], maximal changes of the Baltic mean water level caused by the inflow of North Sea waters amount to approximately 10 cm per day. Fresh river waters and precipitations in the Baltic Sea contribute to water level formation, but these waters do not have much influence on the water level variations.

The greatest influence on these variations is wind action [5]. The wind here decides not only the water exchange between the Baltic and the North Sea but it also very often participates in local surges.

Winds acting from south-west, west and north-west directions induce an uprise of the water level in the eastern part of the North Sea. The water masses accumulated in this region will penetrate into the Baltic across the Danish Sounds causing a distinct pile up in its western area. Water from that area may afterwards be shifted eastwards by the same winds. On the other hand, to these water upheavals can be added local uprises caused by local winds, giving in this case an additional surge effect.

This phenomenon explains in some way the fact that during offshore winds there can often be noted an uprise of the sea water level. Here we arrived at a simple conclusion. Examination of water level changes in a certain region on the basis of this area's coastal winds will not always be adequate since the cause which governs the piling up lies chiefly in the open sea beyond this coastal region and, as we have already said, it very often has to be sought in the North Sea. In any case we shall not be much mistaken in saying that strong and even moderate winds blowing on the Polish coast from the NW-N-NE sector lead to high water levels, and low water levels are caused by winds blowing from the SW-S-SE sector.

Maximum and minimum water level values along the Polish coast generally occur in the autumn and winter seasons, when the strongest barometric depressions occur and consequently strong on- or offshore winds appear.

FIG. 3. — Southern Baltic. Location of the main Polish sea level recorders.

A collection of water level records for any observation point for a oneyear period, for instance, shows that the level of the Baltic Sea varies continuously during this time. These variations are entirely irregular; the periods of increasing or decreasing water level last from several up to many days.

I. HELA [2] states that in the Baltic during a year about 19 such periods may be distinguished. The period of water level increase lasts on an average 9 days. The periods of decreasing water level last about 10 days.

These cycles are closely connected with the weather phenomena; faster periods of water level increase occur in cyclonic situations, where the wind force is always stronger, and decreases will be found principally during anticyclones when the winds are weaker.

Analysing annual water level tables of the Polish coastal waters, we find that high water levels are noted mainly in the second part of the year, especially from July to October. Low water levels are noted in the first half of the year. March, April and May are the periods of the lowest water level on the Polish coast. August is the month when the highest water level occurs. January, February, June and November are the periods in which the mean water level does not deviate very much from the average sea level

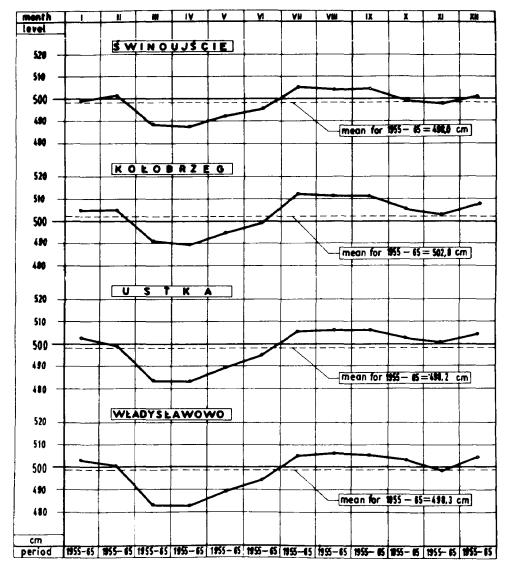


Fig. 4. — Seasonal mean water level values of the Baltic Sea on the Polish coast for the 11-year period.

of the Baltic; 500.0 cm has been chosen as the "Baltic zero" for Polish shores (*).

The above-mentioned facts are illustrated in figure 4 which shows the mean seasonal water levels for the four main automatic water level recorders situated in open sea.

The phenomena which influence the seasonal water level variations are principally : certain identical weather patterns occuring frequently at different seasons; the changes in sea water volume caused by temperature; water density differences in summer and winter seasons; the damping effect of the ice cover in winter periods.

Deviations of the annual mean water level values from the average sea level of the Baltic are fairly small, and according to I. HELA for the 10-year period 1926-1935 are + 4.7 cm and - 5.7 cm. The total amplitude of the Baltic Sea level changes in the period 1904-1942 for the Helsinki region amounts to 130 cm, resulting from the extreme water level values for this station in the above period (+ 70 cm recorded in December 1913 and - 60cm in March 1923). The extreme monthly mean water levels for the same period are + 51 cm and - 42 cm.

Based on the calculated values shown in table 12, a diagram was established. It shows the annual mean water levels of the Baltic for certain automatic water level recording stations on the Polish coast during the 11-year period. It can be seen that the annual mean water levels for the period 1955-1965 do not here vary much either between themselves or from the average sea level of the Baltic.

Standard deviation σ , calculated by the known statistical formulae, demonstrates that the probable water level deviation from the average Baltic Sea level does not exceed ± 6.6 cm on the Polish coast. This figure agrees completely with HELA's values.

It is generally assumed that the long-term annual water level variations of the Baltic Sea remain below ± 10 cm.

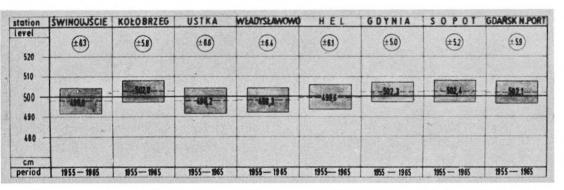


FIG. 5. — Yearly mean water level values of the Baltic Sea for the 11-year period for the main Polish automatic water level stations and standard deviation σ . The exact σ values are circled.

The characteristics of the water level variation discussed above are only representative of the " mild " vertical movements of the water surface

(*) 500.0 cm — for all Polish tide gauge stations (except Kolobrzeg, where 505.0 cm = 0.0 NN) — corresponds nominally to 0.00 NN (Amsterdam NAP — 1955).

which occur in individual months or seasons of a year and which compose the long-term changes of the annual water level of the Baltic Sea.

This description does not entirely resolve the whole problem of water level variations in this basin because one of the chief hydrological phenomena specific to the Baltic Sea was omitted, namely the storm surges, during which the level of the water surface rises by 40-60 cm per hour and the water level amplitudes approach 2-3 m and very often exceed 3 m (Swinoujscie station).

Under the term "storm surge" the author means a great piling up of the water level due to the action of wind and atmospheric pressure on the sea surface, associated usually with an existing storm. The dynamical action of winds from certain directions, linked also to a marked barometric depression may sometimes produce disastrous surges, especially in the shallow coastal waters of the Baltic. This question is distinct from the general description of water levels characteristic of the Baltic Sea. The author has already paid special attention to these phenomena in another paper [6], but some remarks will be made upon these phenomena under heading 3 below.

3. — Water level variations in the Bay of Gdansk, based on the 11-year water level recordings of the Marine Station

The problem of water level variation in the Bay of Gdansk may quite easily be solved due to the fact that the service for recording levels is well organised and was started for Hel in 1956, Gdynia in 1931, Sopot in 1953 and Gdansk in 1951 ^(*). The author does not, however, pretend to work out the problem completely, he has only attempted to give the general characteristics of the water level changes of the Baltic in this basin — mainly by his own observations and some elementary calculations — according to the aim of this paper which is to present the newest water level data from this region in order eventually to use them for more complex hydrographic problems.

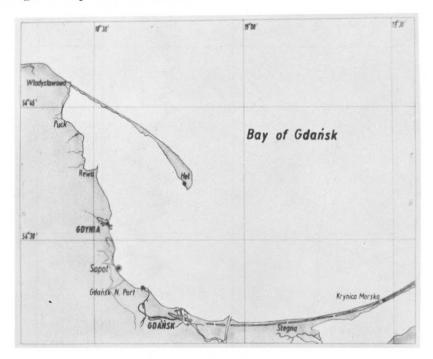
The problem of the water level changes in the Bay of Gdansk has already been discussed by other authors, but their work was rather based on a short period of observation, and very often they only dealt with isolated high water phenomena.

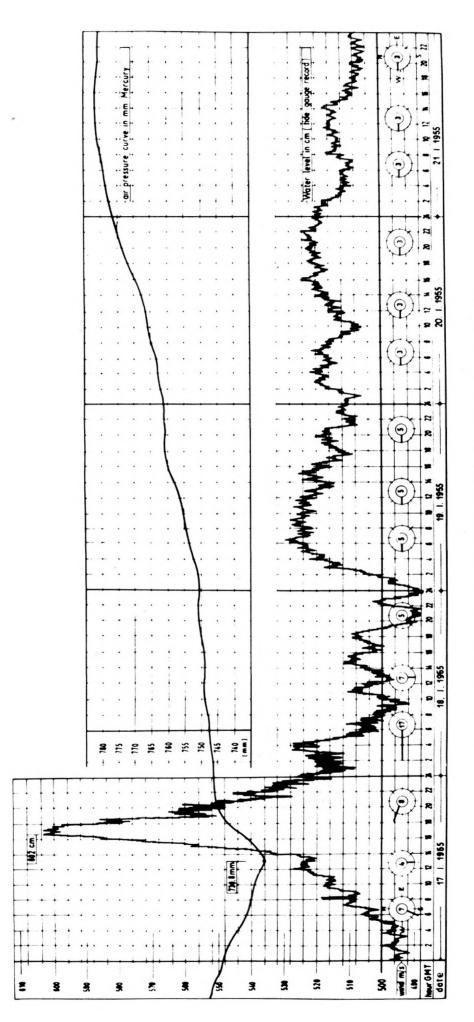
To mention some of the latest publications on this subject: LOM-NIEWSKI [9] gives a compound system of the hydrographic conditions in the Bay of Gdansk, as an example of a sea basin. At the same time he describes, on the basis of recent research work and publications, the hydrographic role of this reservoir.

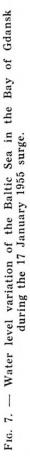
MAJEWSKI [10] gives an approximate quantitative estimation of the conformity between anemobarometric conditions and water level changes, on the basis of a 3-year observation period (1952-1954), by describing anemobarometric conditions by means of air pressure differences between Swinoujscie and Hel.

(*) Gdansk pre-war recordings are lost.

SZYMBORSKI [13], using annual sea level records taken by the Marine Station in Sopot, distinguishes four groups of water level pulsations of different periods and amplitudes. He linked the whole analysis to the prevailing atmospheric situation.




FIG. 6. — Bay of Gdansk. Location of the main automatic sea level recording stations.


Figure 6 represents the principal Polish automatic sea level stations, situated in the region of the Bay of Gdansk. Daily, as well as weekly, recordings show that the water level in the Bay of Gdansk has a continuous vertical movement. The recorded curve illustrating this movement shows a distinct trend of rise and fall in the water level. The period of time for the increase and for the decrease varies, as does the amplitude of the water level changes. The short-period variations can be easily seen on the daily water level records. The long-period changes show up on the complex collection of daily recordings. Such an assemblage gives us the possibility of finding specific cycles of water level variations.

It can be seen that the water level variations in the Bay of Gdansk have a quite regular vertical movement. The recording makes it possible to distinguish certain types of water level oscillation which differ between themselves in both magnitude and duration.

For separating the basic periods of the sea level records the author used the method of auto-correlation taken from the theory of probability. With the library programme S2, a series of water level data were used for auto-correlation and were calculated by the electronic computer Elliott 803 B. As a result, some smoothed water level curves were obtained, giving approximately the following periods : 12.3 hours, 6.2, 3.5 hours and 50 mins.

Analysing individual kinds of water level changes we arrive at the

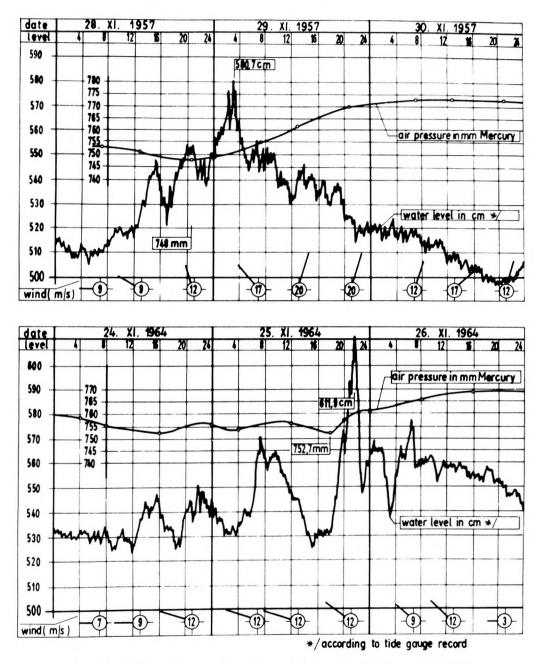


FIG. 8. — Water level in the Sopot region on 28/30 November 1957 and 24/26 November 1964, according to water level records.

conclusion that seiche phenomena occur in the Bay of Gdansk — which seems to be in some way a closed basin.

The problem posed by these phenomena is not yet completely resolved. A first approach to the matter has been given by S. SZYMBORSKI [13].

It can only be confirmed that seiches in the Bay of Gdansk develop in favourable circumstances in the form of "meridian" and "parallel of latitude" systems. It is difficult to say at present whether the seiches are uni-nodal or bi-nodal. Comparison of the Hel and Sopot water level records induces us to assume that the seiches in the meridian direction are binodal because a crest and a trough of the sea level occur at the same time. This question, however, requires more accurate and thorough study.

Barometric pressure has an important influence on the seiche formation in our regions. This is borne out by the Hel and Sopot records. The difference in the water level between these two stations during a relatively strong wind and a favourable fetch which piles up water masses in this region is rather small, but a great growth in water level has already been observed many times during a distinct lowering of the atmospheric pressure.

Some very interesting water level movement phenomena were observed in the Bay of Gdansk during the period under discussion; i.e. on 17/I/1955, 22/I and 22/VIII/1956, 28-29/XI/1957, 13-21/II/1962, 25/XI/1964 and 5-6/I/1965. During these days, as a consequence of strong winds and the decrease in atmospheric pressure, a rapid piling up of the water and a rise in water level took place. For instance, on 17 January 1955 when the air pressure amounted to 730.8 mm in Mercury and during a strong gust of wind, there followed an exceedingly high increase of water level from 520 cm to 602 cm. The same occurred, only on a smaller scale, on the other dates mentioned above.

Figure 7 and figure 8 show the atmospheric and water level situation recorded in the region of Sopot.

The above recorded phenomenon (figure 7) was dealt with by S. SZYMBORSKI in his publication "The phenomenon of seiche in the Gulf of Gdansk on 17 January 1955", where he concludes that such a suction of sea water can be produced by a barometric depression.

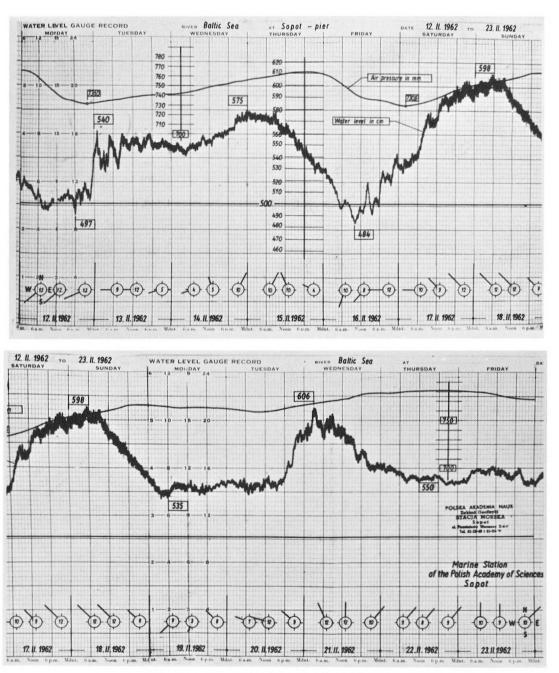
Storm surges in Polish coastal waters occur chiefly in the form of long frontal waves (e.g. the January 1962 surge, fig. 9) or long baric waves (e.g. the January 1955 surge, fig. 7) which do not have such a violent character as they would have in waters where the situation is worse on account of the existence of tides. However, due to the fact that they occur rather often, and especially because they entail material losses, careful and accurate attention has to be paid to this problem. The most dangerous in effect are surges which appear in shallow coastal waters, and such waters are typical throughout the Polish coastal area.

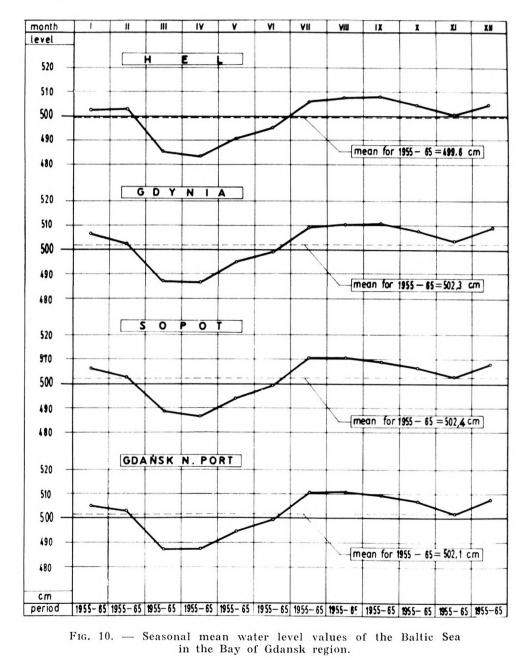
About 80 % of the southern Baltic coast is exposed to sea attack. Each year losses in beaches, damage to dunes, river revetments, shore protections and groynes, scouring along hydraulic constructions, silting in harbour entrances, destruction of breakwaters and harbour structures can be noted.

It can be seen that the water surges on the Polish coast occur mostly in autumn and winter. The most dangerous up to now are the surges which occur in January and February. Less severe, but still nevertheless frequent, surges are noted in October, November and December.

Sea abrasion and crushing wave effects in the storm surges are more dangerous when they appear during high water level in the locality, and when the duration of this high water level is long.

This can be proved by two examples; the surge of 17 January 1955, and that of 13-21 February 1962. In both cases the water level rose to




FIG. 9. — Water level in the Sopot region during the 13/21 February 1962 storm surge.

almost the same height, but the February surge was the more disastrous in effect, due to the time it lasted.

The high water level, of over 550 cm, lasted about 8 hours in Wladyslawowo during the January surge, and in the February surge about 5 days. Consequently the material losses were incomparably higher in the last case.

It should be stressed, in conclusion, that the basic effects influencing the degree of destruction during a storm surge are the following : the duration of the surge, its structure and its locality, the duration of actual high water level, the dynamical parameters of the approaching waves, and the characteristics of the sea shore and structures attacked.

The general characteristics of water level variations in the Bay of Gdansk, in spite of the morphometric differences of this basin, do not differ very much from the Baltic sea level variations. Figure 10 demonstrates this well.

Some anomalies of the water level changes in the Bay of Gdansk, which differentiate it from the rest of the Polish waters, can only be observed in isolated cases, usually during storm surges, when the highest water level peaks for Sopot, Gdynia and eventually Gdansk, are much sharper and higher than those for Wladyslawowo, Ustka or Kolobrzeg.

A much quicker rising surge and higher water levels during such phenomena do not have very much influence on the long-term mean annual water variations in this reservoir. From the diagram (figure 5) it can be seen that the annual water level in the Bay of Gdansk for the 11-year period oscillates around the "zero level" of the Baltic and that the standard deviation σ has indeed a very small value in this region.

Although we have said that the correlation between high water level and the wind action is not certain, we may say that for the slowly generating changes of level in the Bay of Gdansk the winds are blowing from the N-NE sector and that a high water level is then observed, and that winds from the W-S sector push the water out of the Bay.

The diagram of the monthly mean water level curve in the Bay of Gdansk for the 11-year period was drawn up according to table 12 (Fig. 11).

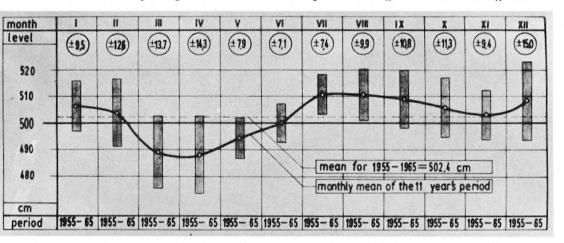


FIG. 11. — Mean water level curve for the 11-year period in the Sopot region. Vertical columns show the dispersion of the standard deviation σ . The exact σ values are circled.

The vertical columns show the dispersion of the standard deviation σ . The most probable and also the highest deviation from the "zero" point noted in the 11-year period amounts to ± 15.0 cm (December) and the smallest ± 7.1 cm (June).

Computation table 12 giving the monthly and annual mean water levels in the Bay of Gdansk for the Sopot region for the period 1955-1965 demonstrates that in spite of the great annual deviation : +12.4 cm in 1961, and -4.9 cm in 1960, the mean deviation from the zero level of the Baltic Sea for the same period amounts to only +2.4 cm.

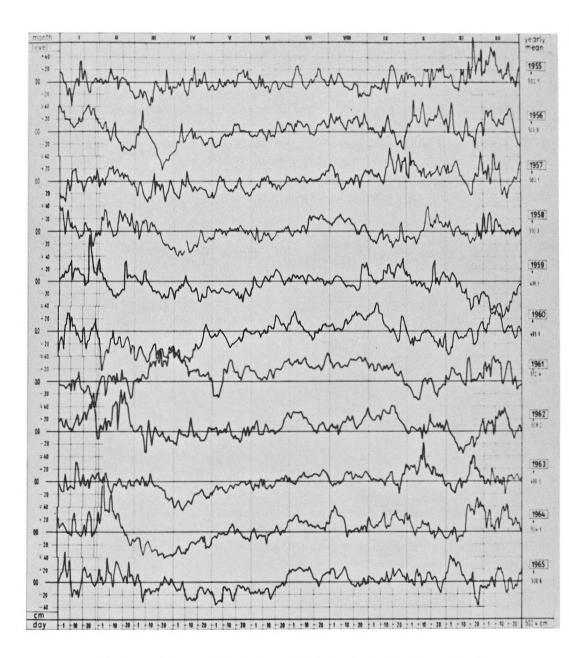


FIG. 12. — The annual course of daily mean sea level fluctuations at Sopot region in the years 1955-1965.

		_					~~																						_		
XII	508.3 510 4	516.5	537.7	528.1	530.5	541.3	558.1	549.0	539.1	553.7	528.3	528.5	517.0	517.9	522.7	509.8	506.8	514.5	514.6	513.1	533,9	511.8	501.8	510.5	501.8	502.4	493.5	508.9	519.4	530.6	521.6
IX	512.3 500.2	509 2	507.9	509.6	515.6	505.8	495.9	490.3	491.5	491,6	485.3	499.5	522.9	511.0	520,5	499.8	496.5	505.6	533.6	505.4	512.2	524.2	574.5	533,8	512.5	529.7	540.0	535.1	554.3		514.5
×	513.2 517 7	504.5	512.2	514.9	508.5	510.1	508.2	492.7	500.1	499.8	501.7	495.4	495.4	501.0	521.1	520.9	518.0	521.8	490.7	501.8	522.3	511.8	504.1	510.9	523.2	516.5	523.9	519.0	522.4	529.9	510.8
XI	479.0	478 6	494.4	492.3	491.6	496.5	493.5	490.6	492.6	489,9	490.2	501.0	506.2	498.5	482.9	494.1	505.7	523.8	527.3	527.0	522.1	514.3	505.6	490.0	496.9	503.3	512.3	503.7	500.2		499.4
IIIA	495.8 504 6	511 0	504.2	499.3	497.7	502.7	513.0	514.5	511.2	507.3	501.7	496.2	492.1	491.0	491.7	489.8	487.6	488.5	488.2	487.0	488.7	496.2	494.8	475.1	481.4	476.4	480.3	483.6	479.2	478.4	493.8
ΝI	493.4 102 0	491 4	504.3	506.9	512.6	523.7	526.6	516.4	511.3	511.6	495.8	492.6	490.6	488.4	495.2	495.0	505.4	505.0	499.7	503.0	510,1	507.0	523.6	519.8	514.5	507.0	501.1	503.8	499.9	495.8	504.6
ΙΛ	503.0 500.4	497.3	494.3	488.7	491.5	497.7	511.9	492.1	506.5	494.7	490.1	494.9	492.3	481.5	488.5	498.3	500.6	498.6	501.3	499.7	493.9	487.9	488.3	493.7	498.7	498.2	496.3	493.7	493.7		495.6
Λ	494.1 404.0	487.6	487.7	489.8	492.5	506.2	496.4	492.1	491.5	498.0	494.4	501.0	502.6	498.2	499.0	499.8	503.6	491.8	494.1	500.2	512.1	513.7	514.4	515.7	519.8	507.7	508.2	518.4	504.1	504.5	501.1
IV	493.6 401.0	491.4	499.5	496.2	494.0	501.7	507.6	495.6	485.5	485.1	478.2	486.2	504.4	506.3	500.0	525.7	510.0	492.7	491.1	506.2	497.0	496.8	510.1	517.0	502.0	494.2	488.1	487.7	492.2		497.9
II	473.1	476.9	475.6	489.6	483.0	473.7	485.0	484.2	479.0	472.1	464.8	461.3	476.3	469.0	484.9	502.1	502.5	493.0	491.0	486.6	492.5	481.0	486.9	486.8	520.5	499.0	489.9	494.3	478,9	492.9	484.5
II	502.0 505.0	502 D	496.4	501.8	503.4	498.3	501.0	512.3	522.3	511.5	507.4	504.4	506.3	510.2	487.4	502.3	504.6	507.7	506.6	504.5	503.7	494.9	497.7	485.0	484.0	484.4	478.3				500.9
I	518.2	519.3	499.9	500.5	496.1	477.0	489.5	482.7	459.3	480.4	490.6	499.3	505.9	504.7	493.5	533.5	533.5	504.7	517.2	518.2	507.8	495.3	483,5	482.8	498,2	498.6	502.6	504.9	501.4	499.8	500.2
Date	- 0	4 6	, - 1	. 2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Mean

4. — Tables of Daily Mean Water Level Values in the Bay of Gdansk for the 11-year period : 1955-1965

61

Mean for 1955 = 502.1 cm

BALTIC WATER LEVEL VARIATIONS

	1956
	for
le 2	levels
Table	sea
	mean
	Daily

																	_				_						_		_			
IIX	499.6	494.2	534.2	535.0	522.0	531.9	532.6	536.0	518.0	519.0	515.6	508.6	511.0	520.0	514.1	513.9	510.8	522.0	525.6	530,3	528.5	538.3	538.6	527.9	522.0	510.3	499,0	488,3	482.0	478.4	477.3	515,6
XI	514.6	522.9	509.2	497.3	516.6	547.0	533.3	512.1	497.0	495.0	496.0	500.6	494.6	488.7	485.3	495.7	505.8	521.0	503.6	495.7	497.0	492.3	493.8	490.0	472.3	499.0	508.9	513,6	514.0	516.7		504.3
×	495.9	501.6	514.3	508.5	515.6	517.0	551.4	525.7	527.3	517.0	514.6	516.4	531.3	548.6	541.3	527.0	513.0	509.3	517.2	522.3	519.3	520.0	519.3	526.2	523.0	529.9	542.0	536.2	529.3	524.0	512.5	522.5
XI	511.8	504.0	507.0	502.7	507.8	503.0	499.4	500.4	499.8	494.4	490.5	495.6	508.5	498.5	508.5	519.4	529.6	511.7	501.8	499.3	504.0	499.8	491.0	480.6	479.5	485.6	486.9	475.8	470.9	489.3		498.5
IIIA	508.5	517.8	530.9	522.7	519.5	514.4	524.3	518.3	523.0	525.5	515.8	514.4	509.4	505.4	502.3	512.4	518.5	518.3	516.1	515.1	522.2	520.2	525.2	525.7	519.7	507.7	514.2	512.5	520.6	530.3	517.6	517,6
ΝII	511.3	512.1	512.0	505.0	498.4	513.4	509.3	518.3	515.3	515.9	513.6	508.6	507.6	509,3	512.6	511.8	506.6	496.8	497.7	495.6	495.0	499.0	504.8	510.7	512.1	511.5	514.4	517.1	518.8	512.1	506.1	508.8
ΙΛ	494.3	491.7	493.7	495.5	492.4	493.1	500.1	502.5	501.9	504.3	495.4	494.6	484.3	490.4	503.9	493.9	491.2	494.8	491.5	494.8	503.9	516.2	514.1	509.1	502.8	499.3	504.9	502.8	508.3	514.3		499.3
>	490,3	482.8	476.1	474,7	476.3	477.0	477.8	487.3	491.6	496,3	497.4	492.3	495.6	492.5	498.0	495.4	499.7	504.2	513.0	511.9	513.4	511.8	506.7	502.8	501.6	503.3	503.7	499.4	499.5	500.3	494.2	495.7
IV	467.9	470.0	481.5	484.2	482.6	497.1	514.2	491.3	481.1	485.7	493.0	494.6	498.2	503.7	506.6	488.7	499.4	489,9	489.3	490.6	492.5	492.1	486.1	481.5	478.3	482.5	481.4	485.8	490.6	490.3		489.0
III	474.5	491.6	496.8	495,0	510.5	504.6	534.3	507.2	505.7	505.0	500.0	495.9	493.8	489.5	488.6	482.0	479.7	473.6	462.4	458.1	454.2	448.4	439.9	449.2	453.0	456.8	454.9	454,2	461.0	463.3	465.9	479.0
II	513.9	515.5	511.3	505.5	503.0	511.0	516.2	500.2	503.9	496.9	485.0	490.6	506.3	515.0	493.2	488.0	486.2	482.6	483.8	473.8	469.2	475.0	473.5	471.9	470.8	470.5	473.8	478.6	474.5			491.0
I	540.5	548.0	533.7	530,0	533,1	520.6	520.1	519.5	520.1	513.0	512.8	505.0	508.7	513.0	513.8	523.8	516.2	516.0	527.0	528.3	522.0	530.9	533.0	540.0	543.5	533.3	525.1	537.0	536.1	525.9	521.3	525.5
Date	-1	2	3	4	5	9	2	œ	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Mean
_													-				_				_											

Mean for 1956 = 503.9

INTERNATIONAL HYDROGRAPHIC REVIEW

	x	530.1 510.3 504.3
	IX	517.2 511.2 519.2
57	IIIA	518.3 527.5 526.3
Table 3 Daily mean sea levels for 1957	ΝI	504.9 500.5 500.2
Table 3 sea leve	IA	482.7 488.6 487.1
ly mean	>	481.1 473.9 477.3
Dai	ΛI	480.6 480.7 477.8
		·····

												_										_											
I II III IIV V VII VIII IX X 479.4 490.3 490.3 490.3 490.3 490.3 490.3 490.3 490.3 490.3 490.3 490.3 490.3 490.4 500.5 526.3 511.2 511.2 510.3 477.1 505.7 477.6 477.8 497.1 500.2 526.3 510.2 537.5 511.2 510.3 534.7 467.1 506.3 493.4 486.9 500.1 493.9 504.6 506.1 507.6 533.5 511.3 544.7 467.1 508.3 493.4 495.3 500.1 502.3 500.4 506.4 506.1 507.6 533.5 514.7 544.7 506.1 507.6 507.6 533.5 514.7 556.6 533.5 514.7 556.6 533.5 514.7 556.6 533.7 506.9 506.4 506.1 507.6 506.4 506.4 506.7 507.6	XII	514.1	512.3	519.3	502.4	529.4	509.2	495.4	514.8	546.2	540.6	520.9	518.8	520.6	531.8	493.1	477.6	483.5	491.5	484.8	473.4	480.1	493.2	495.1	499.4	500.4	508.6	506.3	505.7	517.7	529.4	532.8	508.0
I II II IV V VI VII VIII IX 479.4 490.3 490.3 490.4 490.3 490.5 557.5 511.2 477.1 505.7 477.6 477.8 477.3 480.7 473.3 518.3 517.2 477.1 505.7 477.6 477.8 477.3 487.1 500.5 526.3 511.2 477.1 505.7 477.3 487.1 500.5 526.3 511.2 470.1 499.3 499.3 497.4 499.4 501.1 517.2 470.1 499.6 501.0 492.4 502.1 511.2 511.2 479.4 502.5 477.0 349.5 500.7 501.3 512.5 510.1 470.4 494.0 500.7 501.8 499.6 506.4 511.2 501.5 517.8 497.4 500.1 511.6 506.4 511.4 499.7 500.1 511.6	XI	520.7	512.9	526.3	513.7	514.0	516.6	524.7	527.8	531.4	533.2	524.9	515.1	509.0	509.4	502.7	501.8	496.6	496.C	490.6	482.8	478.8	478.2	500.6	504.0	513.9	509.0	509.3	521.1	548.9	520.7		511.2
IIIIIIIVVVIVIIVIII4773490.6491.11482.7504.9518.34773490.6490.3490.7490.5552.5525.34771505.7477.6477.8477.3487.1500.2528.34771505.7477.6477.8477.3487.1500.2528.3477.1496.8500.1477.3487.5503.3524.1508.1508.2494.4486.9501.0493.9502.1511.2508.3594.4486.9500.7504.3499.0495.9508.3507.2507.2507.3507.1511.2508.3507.2507.7507.4499.0495.9517.4513.9574.1497.1501.8497.4517.4513.9574.5502.1511.2511.4513.9547.2500.7500.7501.7510.9514.2500.7500.7501.8497.4511.4513.9447.0500.7501.7497.9511.4513.9447.1849.4496.0501.7497.9510.9513.9513.9447.2499.7500.9493.2510.9513.9513.9447.2499.7501.7499.9511.4513.9447.2499.7501.6501.7499.9511.4513.9447.2499.7501.6501.7 <t< td=""><td>х</td><td>530.1</td><td>510.3</td><td>504.3</td><td>548.8</td><td>524.7</td><td>533.5</td><td>534.9</td><td>526.6</td><td>526.3</td><td>521.6</td><td>514.7</td><td>518.2</td><td>505.9</td><td>518.7</td><td>522.1</td><td>508.1</td><td>505.3</td><td>511.9</td><td>511.3</td><td>517.9</td><td>506.8</td><td>512.8</td><td>515.7</td><td>518.6</td><td>526.1</td><td>514.9</td><td>514.1</td><td>510.1</td><td>515.3</td><td>521.7</td><td>525</td><td>518.6</td></t<>	х	530.1	510.3	504.3	548.8	524.7	533.5	534.9	526.6	526.3	521.6	514.7	518.2	505.9	518.7	522.1	508.1	505.3	511.9	511.3	517.9	506.8	512.8	515.7	518.6	526.1	514.9	514.1	510.1	515.3	521.7	525	518.6
IIIIIIIVVVIVII479.4490.3493.3480.6481.1482.7504.6477.1505.7499.3480.7477.8487.1500.2477.1505.7499.3487.4477.8487.6500.2477.1505.7499.3474.5494.3495.5502.5467.1505.3494.4486.9501.0493.9504.6503.1508.2494.4486.9501.0493.9504.6503.1508.2494.4486.9501.0499.0502.1486.9517.8494.0500.7504.3499.0508.3547.5494.0500.7504.3499.0519.9517.4515.8477.0501.8499.0511.4515.8477.0501.4499.7501.3511.4515.8477.0501.4499.7501.3511.4515.9513.0494.2497.5501.3511.4515.9513.0494.2497.5501.3511.4515.9513.0497.5500.9499.2501.5514.6500.3447.5501.3500.3517.4515.8477.0501.4499.7501.3511.4515.8477.0501.4497.5501.3501.5511.4511.3494.2501.3501.5511.4510.3497.5501.3501.6 <td< td=""><td>IX</td><td>517.2</td><td>511.2</td><td>519.2</td><td>517.3</td><td>511.4</td><td>507.6</td><td>510.1</td><td>506.4</td><td>514.5</td><td>506.3</td><td>501.6</td><td>500.8</td><td>496.7</td><td>506.4</td><td>521.0</td><td>521.5</td><td>532.5</td><td>553.7</td><td>536.8</td><td>533.6</td><td>518.1</td><td>512.1</td><td>519.4</td><td>533.0</td><td>545.0</td><td>528.4</td><td>516,9</td><td>531,8</td><td>531.0</td><td>538.0</td><td></td><td>520.0</td></td<>	IX	517.2	511.2	519.2	517.3	511.4	507.6	510.1	506.4	514.5	506.3	501.6	500.8	496.7	506.4	521.0	521.5	532.5	553.7	536.8	533.6	518.1	512.1	519.4	533.0	545.0	528.4	516,9	531,8	531.0	538.0		520.0
IIIIIIIVVVI479.4490.3490.3490.3490.6491.1482.7477.1505.7477.6477.8477.3487.1477.1505.7477.6477.8477.3487.1477.1505.7477.6477.8477.3487.1477.1505.7474.3486.93487.1477.1505.7499.3474.3486.9497.1490.0506.3499.4498.9501.0499.3503.1508.3494.4496.0502.7499.3508.3507.5501.2494.0501.6501.8517.4515.8477.0516.3495.7504.0517.4515.9517.4513.0494.2500.7519.9524.5467.0516.3495.7504.6517.4515.9513.0494.2504.0501.8501.5515.9513.0494.2485.5509.9501.5515.9513.0494.2485.5509.9501.5514.5499.3494.2497.5509.9501.5514.5499.3494.7500.6491.2501.5514.4500.3495.3495.7492.7501.5515.9513.0498.7509.9497.5501.5514.5500.3495.3495.5509.9501.5514.5500.3495.7496.7501.65	IIIA	518.3	527.5	526.3	524.1	513.5	506.1	511.2	511.6	497.4	495.9	487.4	489.3	400.9	497.8	499.9	496.1	498.2	505.0	503.9	493.2	500.9	510.3	509.2	502.4	489.6	501.4	505.2	511.0	517.2	518.4	514.5	505.7
IIIIIIIIVV479.4490.3493.3490.6481.1477.1505.7477.6477.8477.3477.1505.7477.6477.8477.3477.1505.7477.6477.8477.3477.1505.7477.6477.8477.3477.1505.7477.6477.8477.3477.1505.7477.6477.8477.3477.1505.7474.6490.7500.1472.6499.0500.1472.6494.3486.9510.1496.6500.7503.1508.3494.4486.9500.7503.1508.3474.0494.0500.7508.3520.5470.2492.0500.7517.4515.9477.0501.2495.5517.4515.9513.0495.5483.5511.9522.3479.0495.5483.5511.9511.4511.4501.2485.5511.9513.9495.0495.5487.5511.9511.7492.6511.7488.3501.6502.7495.0495.0495.5501.5501.9511.4500.3495.7501.5502.6511.7495.7502.6501.5502.6478.9486.5494.5501.5502.6478.9486.5494.5501.3495.7502.0478.9495.7 <tr< td=""><td>ΝI</td><td>504.9</td><td>500.5</td><td>500.2</td><td>503.3</td><td>502.5</td><td>504.6</td><td>502.1</td><td>500.1</td><td>498.4</td><td>499.0</td><td>506.3</td><td>506.4</td><td>501.7</td><td>499.2</td><td>498.6</td><td>501.3</td><td>503.3</td><td>503.2</td><td>501.3</td><td>500.9</td><td>501.6</td><td>501.6</td><td>501.0</td><td>504,2</td><td>503.1</td><td>506,2</td><td>511.4</td><td>511.3</td><td>508.8</td><td>516.8</td><td>516.3</td><td>503.9</td></tr<>	ΝI	504.9	500.5	500.2	503.3	502.5	504.6	502.1	500.1	498.4	499.0	506.3	506.4	501.7	499.2	498.6	501.3	503.3	503.2	501.3	500.9	501.6	501.6	501.0	504,2	503.1	506,2	511.4	511.3	508.8	516.8	516.3	503.9
IIIIIIIIIIV 479.4 490.3 493.3 480.6 477.1 505.7 477.6 477.8 477.1 505.7 477.6 477.8 477.1 505.7 477.6 477.8 477.1 505.7 477.6 477.8 477.1 505.7 477.6 477.8 477.1 505.7 477.6 477.8 477.1 505.3 494.4 486.9 503.1 500.2 489.3 474.3 494.4 522.3 474.0 516.3 517.8 477.0 516.3 494.0 508.3 520.5 477.0 516.3 517.4 517.8 477.0 516.3 517.4 513.9 477.0 516.3 517.4 513.9 477.0 516.3 517.4 513.9 477.0 516.3 510.9 511.4 513.9 477.0 511.4 513.9 477.0 516.3 510.9 518.1 478.0 497.2 501.5 519.3 477.0 497.2 501.5 511.7 498.0 496.5 501.5 511.7 498.0 496.5 501.5 511.7 498.0 496.5 501.5 502.6 473.3 488.0 501.5 502.6 478.0 502.0 501.3 495.0 496.6 486.5 502.9 496.6 478.0 502.9 </td <td>١٨</td> <td>482.7</td> <td>488.6</td> <td>487.1</td> <td>492.7</td> <td>495.5</td> <td>493.9</td> <td>492.4</td> <td>499.3</td> <td>504.3</td> <td>501.8</td> <td>506.9</td> <td>500.6</td> <td>508.0</td> <td>509.9</td> <td>497.5</td> <td>499.5</td> <td>490.4</td> <td>496.0</td> <td>494.3</td> <td>492.7</td> <td>487.5</td> <td>494.4</td> <td>491.2</td> <td>486.5</td> <td>492.3</td> <td>491.8</td> <td>495.3</td> <td>498.1</td> <td>504.8</td> <td>505.9</td> <td></td> <td>496.1</td>	١٨	482.7	488.6	487.1	492.7	495.5	493.9	492.4	499.3	504.3	501.8	506.9	500.6	508.0	509.9	497.5	499.5	490.4	496.0	494.3	492.7	487.5	494.4	491.2	486.5	492.3	491.8	495.3	498.1	504.8	505.9		496.1
I II III 479.4 490.3 493.3 477.1 505.7 477.6 477.1 505.7 477.6 477.1 505.7 477.6 477.1 505.7 477.6 477.1 505.7 477.6 477.1 505.7 477.6 477.1 506.3 494.4 503.1 508.2 483.7 486.9 517.8 474.0 508.3 520.5 477.0 517.4 517.8 477.0 517.4 513.9 474.0 517.4 513.9 473.3 517.4 513.9 473.0 517.4 513.9 473.0 517.4 513.9 473.0 517.4 513.9 473.3 517.4 513.9 473.3 511.4 513.9 473.3 511.4 513.9 473.3 511.4 513.9 514.5 511.4 <td>></td> <td>481.1</td> <td>473.9</td> <td>477.3</td> <td>484.5</td> <td>494.3</td> <td>501.0</td> <td>508.0</td> <td>502.7</td> <td>500.7</td> <td>504.0</td> <td>495.3</td> <td>490.7</td> <td>489.8</td> <td>485.5</td> <td>483.5</td> <td>487,5</td> <td>483,4</td> <td>483,8</td> <td>491.1</td> <td>490.8</td> <td>493.7</td> <td>502.6</td> <td>505.6</td> <td>505.0</td> <td>494.5</td> <td>487.0</td> <td>485.7</td> <td>479.5</td> <td>481.9</td> <td>477.0</td> <td>477.8</td> <td>490.3</td>	>	481.1	473.9	477.3	484.5	494.3	501.0	508.0	502.7	500.7	504.0	495.3	490.7	489.8	485.5	483.5	487,5	483,4	483,8	491.1	490.8	493.7	502.6	505.6	505.0	494.5	487.0	485.7	479.5	481.9	477.0	477.8	490.3
I I II 1 1 1 479.4 490.3 496.0 477.1 505.7 496.0 477.1 505.7 499.8 467.1 496.8 499.8 467.1 496.8 499.8 467.1 505.7 499.8 467.1 505.3 503.1 503.1 506.3 503.2 503.1 508.3 522.3 503.1 508.3 522.3 517.4 515.8 517.8 517.4 513.9 521.4 517.4 513.9 521.4 511.4 513.9 511.4 511.4 513.9 511.4 501.5 511.7 499.0 501.5 511.4 511.7 496.6 511.4 511.7 502.9 502.9 500.3 502.9 500.3 495.7 500.3 495.7 500.4 501.3 <td< td=""><td>IΛ</td><td>480.6</td><td>480.7</td><td>477.8</td><td>474.3</td><td>472.6</td><td>486,9</td><td>503,6</td><td>495.0</td><td>494.0</td><td>492.9</td><td>516.3</td><td>501.2</td><td>494.1</td><td>494.2</td><td>488.5</td><td>486.5</td><td>491.5</td><td>487.0</td><td>485.3</td><td>487.2</td><td>489.3</td><td>488.0</td><td>486.7</td><td>486.9</td><td>486.5</td><td>485.3</td><td>478.0</td><td>474.0</td><td>473.3</td><td>474.5</td><td>1</td><td>487.1</td></td<>	IΛ	480.6	480.7	477.8	474.3	472.6	486,9	503,6	495.0	494.0	492.9	516.3	501.2	494.1	494.2	488.5	486.5	491.5	487.0	485.3	487.2	489.3	488.0	486.7	486.9	486.5	485.3	478.0	474.0	473.3	474.5	1	487.1
I 1 479.4 477.1 477.1 477.1 477.1 477.1 477.1 477.1 477.1 477.1 477.1 477.1 477.1 477.1 477.1 477.1 477.1 477.1 472.6 486.9 503.1 508.3 517.4 508.3 517.4 508.3 517.4 508.3 501.5 501.5 507.5 507.5 507.1 508.3 500.3 507.5 507.1 508.3 509.7 508.3 500.3 500.3 500.3 500.3 500.3 500.3 500.3 500.3 500.3 500.3 500.3 500.3 500.3 500.3 500.3 500.3 500.5 500.3 500.3 500.5 500.3 500.5 500.3 500.3 500.3 500.5 500.3 500.3 500.3 500.5 500.3 500.5 500	Ш	493.3	490.3	477.6	489.3	500,1	494.4	483.7	478.3	474.0	470.2	467.0	475.0	473.3	482.8	498.1	513.0	479.0	500.3	493.6	495.0	486.8	496.3	494.0	478.3	466.6	478.9	481.8	490.5	502.0	494.0	488.0	486.6
	п	490.3	496.0	505.7	499.8	496.8	506.3	508.2	517.8	522.3	520.5	524.5	515.8	513,9	518.1	520.0	515.9	508.3	511.4	514.5	504.6	511.7	509,9	510.3	502.6	501.3	496.4	495.7	500.4				508.5
Date 1 1 2 2 3 3 6 6 6 1 1 2 1 1 2 2 2 2 2 2 2 2 2 3 3 0 3 3 0 8 8 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 6 6 6 6	I	479.4	473.2	477.1	472.6	467.1	490.0	503.1	486.9	484.4	508.3	519,9	517.4	521.4	510.9	499.3	501.5	500.6	499.0	496.6	483.0	486.8	496.8	505.5	507.5	507.1	496.8	500.3	509.7	502.9	518.1	509.8	501.1
	Date	1	7	3	4	5	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Mean

BALTIC WATER LEVEL VARIATIONS

Mean for 1957 = 503.1

	•			_	_		_					_			_		_	_				_					_					
IIX	530.0	517.3	495.8	501.4	523.3	530.7	522,1	495.3	500.1	515.0	520.6	515.4	507.4	511.9	503.5	500.9	501.2	500.1	496.3	500.6	502.6	496.5	500.2	504.3	506.2	498.6	493.3	499.1	495.1	502.6	502.2	506.3
XI	515.0	509,9	503.8	517.3	506,5	503.3	495,8	491.1	503.5	505.7	508,1	501.3	496.7	496.3	496.7	499.5	492.9	497.1	491.3	484.3	482.5	487.3	490.4	485.4	489.7	514.9	491.6	499.4	486.1	513.2		498.8
x	491.4	492.6	491.4	487.7	489.1	490.1	492.7	483.1	478.1	488.2	488.3	499.1	500.8	500.7	505.2	514.3	533.4	540.1	522.3	508.1	512.0	505.5	518.3	513.1	528.6	524.6	514.2	515.2	510.0	507.3	507.4	504.9
IX	494.2	493.0	487.5	486,0	483.4	486.8	480.1	485.7	491.5	499.2	496.3	504.6	487.0	490.2	494.3	495.2	489.2	483.0	483.9	484.8	473.8	481.2	487.0	484.2	485.5	506.2	515.4	494.4	486.0	483.5		489.8
NII1	513.0	512.6	508.1	514.9	514.6	519.9	520.2	523.8	522.0	527.5	520.7	517.7	514.7	515.6	518.7	519.0	520.0	515.0	512.6	511.0	508.0	503.7	496.0	497.0	494.3	504.7	509.6	509.5	510.4	504.5	498.7	512.2
ΝII	500.3	496.4	492.3	495.7	500.2	498.4	502.4	500.6	497.4	497.9	507.3	509.0	505,5	496.7	505.3	519,0	525.7	517,2	523,5	523,3	521.6	520.6	522,0	517.5	522,6	526.2	524.5	519.4	519.8	515.9	515.0	510.9
VI	499.2	494.5	489.2	486.2	506.9	493.7	482.1	485.6	484.5	494.6	497.9	493.4	493.2	497.1	491.5	489.0	485.9	488.1	490.2	494.2	500.2	498.6	499.0	499.0	501.2	498.2	501.4	505.4	503.8	508.8		494.8
N	490.0	488.4	499.6	504.4	498.7	502.3	502,9	501.7	495.7	498.4	500.4	493.6	498.0	500.4	505.0	500,2	502.4	500.3	504.9	500.6	506.1	499.5	509,9	507.5	503.1	501.5	495.6	501.9	494.1	496.7	501.7	500.7
IV	473.2	467.3	462.4	460.1	467.1	467.7	462.1	465.2	468.0	-x/	485.6	472.2	466.0	467.5	468.2	473.6	478.0	478.2	475.6	483.8	489.0	501.0	498.0	490.2	484.0	482.1	486.0	489.4	489.4	486.6		477.1
111	497.8	517.0	515.0	487.3	491.0	506.3	516.2	511.8	518.0	517.3	499.0	499.8	510,1	514.0	507.3	510.0	504.0	499.0	496.6	497.3	496.8	488.4	482.2	480.8	478.5	479.7	478.0	474.4	470.2	470.0	474.6	496.4
п	493.9	496.1	523.8	518.4	535.8	533.0	524.2	504.0	517.9	505.2	497.0	492.2	494.3	494.7	500.4	515.2	533.0	523.1	515.0	521.0	528.8	522.5	520.4	512.8	507.0	530.0	510.0	503.2				513.3
I	543.0	533.8	538.4	517.9	495.8	509.6	535.6	521.2	507.0	514.8	504.6	506.7	508.8	500.1	496.8	488.6	495.0	492.5	496.7	510.6	514.1	507.0	500.2	504.0	504.0	491.4	475.2	485.5	499.2	492.0	499,0	506.1
Date	-	~1	ŝ	4	ъ	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Mean

Table 4 Daily mean sea levels for 1958

64

INTERNATIONAL HYDROGRAPHIC REVIEW

Mean for 1958 = 500.9

x/ watch repair

	r 1959
	\mathbf{for}
le 5	levels
Table	sea
	mean
	Daily

IIX	483.6	480.0	476.7	477.1	474.3	462.1	449.6	449.0	450.4	447.9	454.7	463.7	463.7	465.1	456.4	442.0	444.2	448.9	459.1	452.1	451.6	469.4	466.1	475.3	484.7	478.5	478.8	488.9	493.9	495.5	492.2	467.0
XI	507.3	509.6	505.0	499.0	507.6	514.1	512.0	510.6	505.3	490.0	497.2	499.1	492.8	482.9	482.5	481.4	488.8	471.7	472.6	471.0	455.1	458.1	470.5	477.0	477.7	478.2	462.6	470.7	479.9	483.2		487.1
Х	516.2	509.4	512.1	500.4	495.2	498.0	500.4	501.8	492.2	495,6	500.2	498.4	490.1	496.6	497.2	488.8	487.2	490.4	480.1	490.2	498.0	522.2	533.2	495.4	506.4	500.9	492.4	504.2	510.4	516.8	511.7	501.0
IX	511.0	508.8	510.3	504.0	499.9	501.0	495.0	501.6	498.2	499.5	501.6	503.4	518.1	516.7	512.9	527.3	527.8	515.1	511.8	514.4	504.6	518.2	524.1	528.2	525.4	520.7	530.3	538.2	520.5	510,9		513.3
VIII	498.4	495.4	496.7	502.0	506.9	508.8	508.2	507.7	506.1	505.6	500.6	497.1	494.6	490.9	490.2	492.3	492.1	491.4	492,8	492.9	492.6	487.6	485.9	486.3	489.9	512.2	528.6	527.2	522.6	530.1	520.5	501.7
ПΛ	506.6	499.6	508.4	511.5	508.8	505.9	510.9	507.7	503.0	508,6	509.4	504.8	500.9	495.3	508.6	511.1	509.0	507.5	503.9	501.5	500.0	501.5	505.6	503.9	501.5	503.5	502.7	493.6	493.0	499.6	497.9	504.1
Ν	483.8	490.8	508.1	500.5	494.5	491.8	490.1	490.0	491.6	499.1	505.8	508.0	504.5	500.5	499.0	508.2	508.4	507.3	513.0	519.9	517.6	516.7	513.7	508.1	503.5	497.9	494.6	497.4	500.7	503.2		502.3
Λ	482.8	485.4	485.9	481.5	481.2	480.3	483.7	488.0	488.9	486.9	483.5	483.3	483.7	481.5	480.8	482.8	486.5	487.0	481.0	477.8	483.0	472.9	471.5	480.0	466.0	479.3	490.2	485.0	480.9	477.1	476.2	481.8
IV	468.4	483.8	486.6	484.4	493.0	489.6	496.8	491.0	500.6	510.4	495.6	508.8	499.8	494.0	495.5	501.1	503.9	515.6	543.6	522.8	492,9	495.6	493.3	486.7	480.0	476.2	476.2	477.4	480.2	482.7		494.2
III	510.3	505.1	502.0	498.9	498.8	494,9	497.1	515.0	517.4	502.7	498.9	496.2	492.5	490.4	484.6	484.9	485.4	480.0	484.3	482.4	478.2	477.2	477.1	480.6	474.7	475.8	474.0	489.3	490.9	488.3	484.3	490.7
п	536.8	514.5	513.5	502.7	506.6	499,1	492.8	491.1	487.8	488.3	484.2	476.8	478.1	473.8	480.1	477.0	480.6	486.7	487.3	486.7	527.2	532.9	506.6	510.6	510.0	506.5	507.9	509.4				498.4
I	502.1	505.8	511.0	506.1	517.9	513.8	515.0	525.9	526.4	532.0	502.6	516.4	521.3	518.6	521.0	515.8	512.1	510.3	510.4	508.0	493.5	497.3	498.0	527.8	575.1	543.5	525.5	514.6	514.8	510.1	529.9	516.9
Date	1	2	en	4	ç	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Mean

Mean for 1959 = 496.5

1960
\mathbf{for}
levels
sea
mean
Daily

Table 6

Date I II III IX X XI																														_			
I II III IV V VI VII VII VII IX X 460.6 490.3 458.4 459.6 491.0 496.3 511.5 508.4 522.4 501.4 480.2 480.8 452.9 459.6 491.0 496.3 511.5 508.4 522.4 501.4 487.7 736.4 476.7 451.9 492.0 499.3 551.1 527.6 494.0 512.6 458.4 476.7 451.1 491.7 500.2 530.1 479.6 491.0 512.6 458.4 476.7 451.2 490.5 532.5 500.6 530.1 491.6 512.6 457.3 490.6 591.7 502.8 591.6 491.6 591.6 591.6 491.6 591.6 491.6 591.6 491.6 591.6 491.6 591.6 491.6 591.6 591.6 591.6 591.6 591.6 591.6 591.6 591.6 591.6 <td>XII</td> <td>504.0</td> <td>503.4</td> <td>497.7</td> <td>512.2</td> <td>511.6</td> <td>524.2</td> <td>536,8</td> <td>534.9</td> <td>541.2</td> <td>540.2</td> <td>534.8</td> <td>532.3</td> <td>524.3</td> <td>529.0</td> <td>521.9</td> <td>505.8</td> <td>497.0</td> <td>497.0</td> <td>503.0</td> <td>507.0</td> <td>509.0</td> <td>506.0</td> <td>510.0</td> <td>504.2</td> <td>495.0</td> <td>489.8</td> <td>492.0</td> <td>504.0</td> <td>509.4</td> <td>506.6</td> <td>499.6</td> <td>512.4</td>	XII	504.0	503.4	497.7	512.2	511.6	524.2	536,8	534.9	541.2	540.2	534.8	532.3	524.3	529.0	521.9	505.8	497.0	497.0	503.0	507.0	509.0	506.0	510.0	504.2	495.0	489.8	492.0	504.0	509.4	506.6	499.6	512.4
II <td>IX</td> <td>476.2</td> <td>466.4</td> <td>462.2</td> <td>465.6</td> <td>475.1</td> <td>474.8</td> <td>494,0</td> <td>501.2</td> <td>498.0</td> <td>492.3</td> <td>489.6</td> <td>490.7</td> <td>492.4</td> <td>489.4</td> <td>490.3</td> <td>494.2</td> <td>492.2</td> <td>498,0</td> <td>503.4</td> <td>504.6</td> <td>501,2</td> <td>489.0</td> <td>479.1</td> <td>478.3</td> <td>481.0</td> <td>496.3</td> <td>505.0</td> <td>510.2</td> <td>514.4</td> <td>516.3</td> <td></td> <td>490.7</td>	IX	476.2	466.4	462.2	465.6	475.1	474.8	494,0	501.2	498.0	492.3	489.6	490.7	492.4	489.4	490.3	494.2	492.2	498,0	503.4	504.6	501,2	489.0	479.1	478.3	481.0	496.3	505.0	510.2	514.4	516.3		490.7
IIIIIIIIIIVVVIVIIVII460.6490.3458.4455.9450.8492.6496.3516.8508.0487.7487.2488.8455.9460.8497.2497.3516.8508.6487.7436.4471.9471.8497.2497.3524.8508.6487.7436.4471.9471.8493.9498.6526.1508.6487.7436.1471.9471.8493.9498.6526.1508.6508.0458.4472.1451.8500.5499.7504.6505.1501.0471.3456.1445.3458.3499.6517.7504.6501.0477.9456.1457.3499.7517.7504.6517.7501.1458.1459.6495.5499.7501.6517.7504.6501.1458.1457.2499.7501.6517.7504.6517.3501.5501.1458.1477.2448.1499.5511.2504.6509.6481.2448.1477.2448.1477.2449.7511.2519.0493.1480.3474.4488.1477.2489.1477.2504.4519.3493.6493.9508.6498.2508.6499.7550.4550.4501.5501.1468.3458.1477.2477.2504.6517.0493.6477.3448.2477.3<	x	501.4	494.0	484.3	479.6	490.0	487.6	491.6	487.3	484.6	486.4	484.6	492.3	497.0	497.3	501.5	499,8	501.0	501.2	498.0	496.8	492.0	492.2	484.2	484.0	481.6	474.4	488.0	478.2	476.9	487.0	497.9	490.1
IIIIIIIVVVIVII 466.6 490.3458.4459.6491.0496.3511.5 482.2 488.8452.9460.8497.4516.8 482.2 486.8452.9460.8497.2497.3524.8 482.7 465.1455.9460.8497.2497.3524.7 502.6 477.7452.9494.7500.2532.0 508.0 458.4472.1451.8500.5499.7534.7 512.6 471.3465.1448.7503.2497.0509.9 501.0 475.9447.2458.5496.8497.0509.9 5202.6 471.3460.1457.2496.8497.0509.9 501.0 475.9454.4458.5496.8497.0509.9 501.0 475.1448.7500.5499.7517.2 500.5 490.1456.2488.1490.9507.7 510.5 500.1457.2488.1497.0509.9 501.1 456.2458.1476.7508.6498.7 500.5 488.2476.1476.2508.0498.2 500.5 490.3475.2488.1476.7508.6 500.6 488.2470.1488.2476.7508.6 510.5 488.3477.1476.2508.0498.7 493.3 447.1488.2476.2478.2508.0 493.3 447.1 <td>ΧI</td> <td>522.4</td> <td>527.6</td> <td>527.9</td> <td>530.1</td> <td>530.5</td> <td>537.6</td> <td>545.0</td> <td>544.5</td> <td>530.6</td> <td>529.8</td> <td>527.4</td> <td>517.8</td> <td>512.6</td> <td>510.2</td> <td>507.6</td> <td>506.2</td> <td>502.6</td> <td>497.0</td> <td>502.0</td> <td>505.3</td> <td>502.0</td> <td>497.8</td> <td>489.2</td> <td>484.4</td> <td>486.4</td> <td>509.5</td> <td>524.0</td> <td>523.8</td> <td>518.0</td> <td>508.2</td> <td></td> <td>515.4</td>	ΧI	522.4	527.6	527.9	530.1	530.5	537.6	545.0	544.5	530.6	529.8	527.4	517.8	512.6	510.2	507.6	506.2	502.6	497.0	502.0	505.3	502.0	497.8	489.2	484.4	486.4	509.5	524.0	523.8	518.0	508.2		515.4
IIIIIIVVVIIIIIIVVVI 460.6 490.3 458.4 459.6 491.0 496.3 487.7 487.2 487.8 452.9 460.8 497.2 497.3 487.7 487.7 465.9 471.9 497.2 497.3 487.7 487.7 465.1 446.1 465.9 497.2 497.3 487.7 436.4 471.9 471.8 493.9 498.6 470.3 447.2 472.1 451.8 500.5 499.7 508.0 475.9 476.1 451.8 500.5 497.7 508.0 477.3 466.0 451.3 499.6 497.0 539.6 471.3 466.0 451.3 499.6 497.0 509.6 471.3 450.2 498.6 497.0 502.4 501.0 475.9 476.7 498.6 497.0 509.6 471.3 450.2 498.6 497.0 509.6 471.3 470.1 475.2 508.6 498.4 476.7 458.6 479.0 502.4 507.0 471.3 470.2 479.2 508.4 498.3 479.7 479.2 508.6 479.2 509.4 479.2 479.2 479.2 508.4 470.7 479.2 479.2 479.2 508.4 498.4 470.1 470.2 479.2 508.4 498.4 <td>IIIA</td> <td>508.4</td> <td>508.0</td> <td>512.1</td> <td>508.6</td> <td>500.6</td> <td>502.8</td> <td>504.2</td> <td>505.1</td> <td>504.6</td> <td>502.6</td> <td>500.4</td> <td>506.6</td> <td>517.0</td> <td>519.3</td> <td>510.0</td> <td>513.2</td> <td>515.0</td> <td>519.0</td> <td>526.8</td> <td>524.8</td> <td>528.8</td> <td>531.4</td> <td>525.0</td> <td>528.6</td> <td>527.8</td> <td>525.2</td> <td>522.3</td> <td>519.3</td> <td>519.2</td> <td>517.3</td> <td>525,3</td> <td>515.5</td>	IIIA	508.4	508.0	512.1	508.6	500.6	502.8	504.2	505.1	504.6	502.6	500.4	506.6	517.0	519.3	510.0	513.2	515.0	519.0	526.8	524.8	528.8	531.4	525.0	528.6	527.8	525.2	522.3	519.3	519.2	517.3	525,3	515.5
IIIIIIIIIIVV460.6490.3458.4459.6491.0482.2488.8452.9460.8492.6482.2488.8452.9460.8492.6487.7457.4462.1465.9494.7487.7458.4471.9471.8493.9487.7458.4471.9471.8493.9470.3447.2471.9471.8493.9508.0458.1455.1451.8500.5512.6468.1457.9460.0498.6501.0475.9456.1457.3499.4501.0475.9454.1457.2488.1501.0475.9454.1457.2488.1501.0455.1456.9456.8529.2460.1456.3456.3501.0456.3456.1476.7501.0457.9456.1476.7501.0457.9456.1470.5470.1460.2488.3450.9457.2498.4476.3456.2498.4476.3456.2498.4476.3476.3498.3470.1480.2498.3470.1480.2498.3470.3488.8498.4476.3474.4488.3470.1480.2498.3470.3488.8498.4477.3448.2498.3470.3488.8498.3470.3486.	IIV	511.5	516.8	524.8	526.1	532.0	524.7	517.7	512.5	517.2	509.9	507.7	501.6	500.6	498.2	498.4	499.7	493.3	492.4	485.4	490.9	498.0	498.7	497.8	504.2	500.3	502.7	511.2	511.6	512,8	508.6	508.0	506,9
IIIIIIIIIIIIIIIIIIIIIIII 460.6 490.3 458.4 459.6 459.6 482.2 488.8 452.9 466.8 465.9 487.7 457.4 471.9 471.8 470.3 447.2 476.7 465.9 470.3 447.2 476.7 465.9 470.3 447.2 476.7 465.9 470.3 447.2 476.7 465.9 508.0 458.4 472.1 451.8 512.6 468.1 457.9 460.0 512.6 468.1 457.9 460.0 512.6 468.1 457.9 460.0 512.6 468.1 457.9 450.2 510.5 474.4 457.2 450.2 510.5 501.1 457.8 459.6 481.2 480.3 450.9 457.2 509.6 481.2 458.6 454.1 482.0 492.9 477.3 480.2 482.0 492.9 477.3 480.2 482.0 492.9 477.3 480.2 483.3 470.7 476.3 457.2 493.6 474.4 465.2 474.4 483.3 470.7 477.3 472.6 493.4 492.0 474.4 477.3 492.2 477.3 477.3 477.3 492.2 477.3 477.3 477.3 482.2 476.4 477.3 <	ΙΛ	496.3	497.4	497.3	498.6	500.2	499.7	497.7	490.5	495.5	497.0	502.4	497.8	498.2	508.0	508.4	508.5	504.0	503.3	512.3	526.3	524.4	521.0	517.2	512.8	510.0	513.3	510.9	500.8	500.4	511.8		505.4
IIIIIIIIIII 460.6 490.3 456.4 482.2 488.8 452.9 487.7 456.4 452.9 487.7 436.4 471.9 470.3 447.2 476.7 508.0 458.4 471.9 470.3 447.2 476.7 508.0 458.4 471.9 470.3 447.2 476.7 508.0 458.4 471.3 501.0 475.9 456.1 529.2 466.1 457.9 501.0 475.9 456.9 507.7 480.3 479.7 509.6 481.2 468.8 492.0 492.9 477.3 492.0 492.9 477.3 492.0 492.9 477.3 493.6 491.2 465.2 509.6 481.2 466.5 492.0 492.9 477.3 492.0 492.9 477.3 492.0 492.9 477.3 493.6 492.1 465.5 507.0 474.8 477.9 483.6 492.7 456.9 505.2 465.9 465.5 503.4 491.8 460.5 503.4 491.8 465.5 503.4 477.9 465.5 503.4 477.9 465.5 503.4 496.5 456.5 503.4 496.5 456.5 503.4 496.5 456.5 503.4 <	Λ	491.0	492.6	497.2	493.9	494.7	500.5	503.2	499.4	498.6	496.8	492.0	488.1	482.0	479.2	475.2	476.7	480.0	480.0	483.0	484.2	485.0	490.6	486.9	484.2	488.8	502.2	500.2	505.1	-199 . 3	490.5	498.8	191_0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ΛI	459.6	460.8	465.9	471.8	462.9	451.8	448.7	451.3	460.0	458.5	457.3	457.2	450.2	458.0	458.1	472.2	470.1	480.2	476.8	472.8	474.4	479.3	484.2	491.9	501.3	512.6	504.2	500.8	494.3	490.0		472.6
$ \begin{array}{c} I\\ I\\ 460, 6\\ 482, 2\\ 482, 2\\ 482, 2\\ 508, 0\\ 512, 6\\ 530, 6\\ 530, 6\\ 530, 6\\ 530, 6\\ 530, 6\\ 530, 6\\ 530, 6\\ 492, 0\\ 492, 0\\ 492, 0\\ 492, 0\\ 493, 3\\ 501, 0\\ 530, 6\\ 498, 3\\ 501, 0\\ 483, 3\\ 501, 0\\ 483, 3\\ 503, 6\\ 494, 3\\ 503, 6\\ 498, 3\\ 503, 4\\ 483, 3\\ 503, 4\\ 483, 3\\ 503, 4\\ 483, 3\\ 503, 4\\ 510, 5\\ 503, 4\\ 512, 4\\ $	III	458.4	452.9	462.1	471.9	476.7	472.1	465.1	460.0	457.9	454.4	450.9	454.1	463.0	468.8	476.3	479.7	480.8	477.3	473.2	465.2	457.8	455.5	471.9	460.5	459.7	458.9	463.0	467.1	465.5	468.5	471.2	465.2
	П	490.3	488.8	467.4	436.4	447.2	458.4	468.1	471.3	466.1	475.9	488.3	489.6	501.1	481.2	478.7	480.3	490.1	492.9	474.8	475.4	475.1	482.2	488.3	491.8	485.7	476.3	465.9	477.9	476.4			477.3
Date 1 2 3 3 5 6 6 6 6 6 6 7 7 9 1 1 6 1 1 6 1 1 6 1 1 6 1 1 6 6 7 7 6 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8	Ι	460.6	482.2	492.0	487.7	470.3	508.0	512.6	530.6	529.2	501.0	524.8	507.7	510.5	509.6	493.6	498.4	492.0	482.0	483.0	498.3	507.0	483.3	472.1	483.6	485.2	494.3	505.2	503.4	512.4	519.8	503.6	498.2
	Date	1	2	e	4	5 C	9	2	80	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Меал

Mean for 1960 = 495.0

66

·····																_																
ИX	521	531	514	522	529	505	532	540	536	530	534	535	528	531	510	497	496	504	514	526	532	530	514	495	502	509	498	487	493	4.94	496	515.6
XI	508	504	503	507	523	520	519	513	511	510	513	512	506	499	495	494	514	536	539	506	498	503	504	502	500	505	514	514	506	504		509.4
х	497	493	491	488	483	478	474	475	472	470	473	483	499	503	505	501	496	503	504	505	499	492	481	478	474	489	489	491	494	495	494	489.3
IX	522	524	528	526	517	518	518	528	527	523	518	517	525	520	526	519	522	522	528	523	516	513	514	509	509	516	512	504	494	493		517.7
VIII	538	530	530	520	525	527	530	529	526	522	522	524	525	523	523	528	533	536	534	535	533	534	533	538	538	537	532	533	538	531	529	530.2
VII	529	528	525	528	531	530	536	527	530	527	533	535	538	529	527	523	521	523	520	520	520	523	523	526	523	519	521	526	533	541	545	527.7
IΛ	516	516	516	515	509	505	504	504	501	504	507	505	502	510	519	518	510	504	514	520	519	518	519	518	522	526	532	532	532	536		515.1
Λ	498	477	477	476	479	475	481	487	502	520	520	513	516	528	535	533	525	517	515	515	516	506	506	502	508	516	523	524	524	525	518	508.3
IV	550	543	544	542	539	533	534	533	534	524	524	509	515	516	516	517	518	515	520	516	508	508	509	511	507	510	512	515	502	506		521.0
III	501	502	506	499	505	502	511	510	506	503	506	520	531	524	531	531	523	533	550	528	550	527	524	533	534	524	543	555	550	554	557	524.9
II	491	499	508	509	508	476	484	506	510	507	502	509	509	496	514	510	510	510	520	503	506	506	502	495	482	473	477	500				500.8
Ι	497	495	494	4 94	493	488	492	494	496	484	503	501	485	503	505	516	499	488	486	484	483	486	494	490	479	478	465	460	458	466	486	488.5
Date	-	7	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Mean

67

Table 7 Daily mean sea levels for 1961

								_																								
XII	508	496	509	517	511	512	519	495	500	524	520	521	533	524	533	528	538	530	524	508	504	503	503	494	488	494	500	502	510	507	497	511.4
XI	517	511	503	499	496	492	490	483	483	477	469	476	472	463	467	478	478	479	479	484	492	490	476	482	490	488	492	504	511	520		488.0
x	501	496	497	506	507	505	504	503	500	502	506	501	488	512	499	496	500	507	528	515	511	509	507	508	514	505	515	505	511	501	510	505.5
XI	528	523	521	518	518	519	526	526	526	517	527	534	534	530	529	529	528	537	541	540	540	529	530	520	517	515	514	512	508	502		524.6
NII	506	510	512	506	507	502	511	493	503	508	514	516	514	518	524	518	517	519	526	519	509	504	507	510	512	513	519	523	534	529	537	514.2
ΝΠ	525	520	529	532	531	530	531	528	528	532	527	520	523	522	517	515	511	511	506	501	501	498	500	509	510	511	515	512	504	501	500	516.1
ΙΛ	504	509	504	514	517	505	495	496	496	494	500	512	511	500	498	501	503	501	502	496	498	500	502	505	505	511	520	522	530	529		506.0
٨	505	503	505	507	498	494	501	499	498	502	504	498	508	516	506	493	492	489	494	488	488	489	483	486	498	506	496	492	508	493	498	498.0
IV	481	482	479	494	503	499	495	495	493	495	491	492	504	522	505	500	491	493	498	491	490	485	485	486	484	488	494	507	506	503		494.4
III	500	500	501	503	508	510	494	494	468	466	496	518	512	491	478	498	509	500	496	493	492	495	499	491	490	484	486	493	485	485	485	494.5
Π	489	511	504	502	514	522	501	516	517	508	518	542	540	548	544	502	542	568	543	552	564	543	546	537	518	509	510	503				525.5
I	514	521	512	509	506	520	510	509	503	506	501	507	513	520	528	509	512	515	524	528	532	519	529	536	544	536	554	563	533	511	488	519.7
Date	1	2	3	4	ъ	9	7	80	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Mean

Daily mean sea levels for 1962

Table 8

68

INTERNATIONAL HYDROGRAPHIC REVIEW

Mean for 1962 = 508.2

																								_								
XII	501	494	497	503	497	493	521	514	499	496	509	509	496	504	493	507	502	479	492	508	509	508	510	504	502	507	511	508	501	502	507	502.7
XI	492	497	497	497	487	484	483	482	489	496	499	505	488	498	500	459	498	507	511	532	528	541	540	520	522	518	513	505	509	507		504.8
х	522	524	516	525	525	522	527	515	510	518	528	542	532	562	541	520	529	524	519	511	511	524	521	508	512	508	512	506	513	502	495	520.1
IX	509	507	502	501	505	502	503	500	501	504	503	500	498	491	503	505	508	515	516	502	496	496	495	493	497	480	500	512	511	527		502.7
VIII	502	499	495	493	499	495	497	501	496	497	501	505	512	514	516	511	512	515	502	504	506	511	509	505	509	505	506	509	515	516	513	505,5
IIV	507	499	500	497	497	495	502	506	509	506	510	514	508	508	506	508	508	509	508	512	512	511	511	508	508	512	519	517	515	514	508	507.9
VI	495	488	485	497	492	495	488	501	504	491	503	490	488	488	492	495	489	492	493	496	503	503	502	503	506	504	500	510	507	499		496.6
Λ	479	484	486	492	494	487	490	491	492	487	486	482	482	488	493	494	491	489	495	496	495	494	497	500	500	500	500	495	497	499	502	492.2
IV	466	458	463	470	470	462	458	455	456	463	464	470	469	467	464	472	478	480	480	482	482	485	488	484	478	475	472	476	474	482		471,4
III	497	501	504	500	495	495	509	504	491	499	492	498	514	508	498	494	492	493	493	492	490	488	488	486	486	486	474	472	470	472	475	492.1
II	514	502	503	498	500	515	514	501	492	489	479	488	497	497	494	498	506	503	496	494	494	494	488	499	504	494	495	494				497.9
ч	498	495	484	484	485	513	494	486	491	494	493	490	488	532	530	520	503	491	505	516	497	493	498	504	488	505	512	507	504	506	513	500.6
Date	1	2	e	4	5	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Mean

Mean for 1963 = 499.5

BALTIC WATER LEVEL VARIATIONS

69

Laule y Daily mean sea levels for 1963

	7																											_				
ЯШ	539	532	506	518	535	531	506	510	501	513	520	522	504	519	533	540	532	533	544	532	525	520	518	509	511	521	519	513	515	504	499	520.1
хı	489	489	490	496	501	493	507	505	493	483	491	492	494	491	500	499	531	542	543	532	536	535	526	537	553	554	537	549	541	542		515.7
×	529	517	529	514	509	505	499	494	505	506	505	506	517	513	511	513	508	515	506	496	497	502	489	493	497	507	503	501	497	493	490	505.4
XI	523	515	510	509	506	506	511	508	515	515	518	526	531	510	504	510	509	510	523	527	527	535	524	520	519	519	520	516	511	529		516,9
ΠΛ	513	522	534	531	543	538	532	525	524	525	524	523	519	510	491	501	503	498	502	500	504	505	506	499	501	509	503	509	510	499	513	513.4
ΝI	518	519	517	520	524	526	527	518	515	517	516	514	517	518	515	509	510	511	508	509	506	509	511	508	506	505	506	507	501	516	512	513.4
IA	495	501	506	498	493	489	494	495	494	492	493	494	480	496	495	4 98	498	501	498	505	511	504	500	494	501	503	499	505	507	516		498.5
Δ	488	490	493	492	490	499	498	497	497	499	496	496	496	501	507	509	513	508	496	500	505	502	498	495	493	490	492	488	490	488	484	496.5
VI	463	466	468	475	478	472	465	466	468	465	474	471	478	482	484	484	482	480	482	486	485	489	493	484	494	473	477	577	476	480		477,2
Ħ	486	485	490	491	490	477	470	464	469	480	483	485	480	474	467	470	471	472	470	461	463	465	466	464	459	460	461	462	463	464	461	471.7
II	511	533	513	527	566	589	534	536	535	532	552	559	534	532	527	520	531	528	515	507	509	501	495	497	491	482	478	480	489			520.8
I	526	521	507	510	516	511	507	503	498	501	497	494	514	531	517	500	498	496	494	496	500	513	494	515	528	533	524	493	500	498	507	507.8
Date	1	2	e	4	5	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Mean

Table 10 Daily mean sea levels for 1964

70

INTERNATIONAL HYDROGRAPHIC REVIEW

Mean for 1964 = 504,8

		_	_						_						_													-				
IIX	491	492	488	496	494	502	507	502	494	491	513	524	518	523	514	515	502	488	483	498	503	505	497	488	489	495	491	502	513	511	519	501.6
XI	513	514	527	542	539	533	537	530	524	531	530	528	522	509	511	507	500	494	500	504	501	516	493	474	475	462	462	493	493	490		508.5
×	514	508	499	500	504	496	495	513	520	508	514	506	493	501	498	503	514	516	515	510	503	505	508	507	503	491	488	482	493	501	503	503.6
XI	509	509	505	506	502	500	499	498	496	502	507	502	501	504	517	505	499	505	505	522	509	510	515	518	520	517	512	508	509	502		507.1
VIII	513	520	520	521	517	506	505	506	510	513	516	521	524	520	513	504	502	497	496	495	492	493	498	497	493	497	496	507	496	497	498	505.9
ΠΛ	518	516	520	520	518	519	520	521	523	522	520	517	518	520	519	524	520	516	510	505	504	503	500	493	499	504	510	510	513	514	516	513.9
ΓΛ	482	483	481	485	482	483	487	480	483	482	482	487	490	490	480	471	475	480	485	490	493	490	493	494	497	498	494	499	510	513		487.9
N	485	480	473	463	465	470	470	472	469	492	493	490	485	490	488	482	470	470	482	485	495	495	492	490	493	492	486	487	491	490	483	482,8
IV	497	496	489	485	489	487	494	502	489	482	476	470	472	476	472	470	475	470	475	484	488	492	490	490	483	480	485	490	485	482		484.0
ш	499	495	506	513	503	500	485	468	482	489	485	488	490	481	482	486	485	485	490	486	4 90	499	495	497	50£	506	501	497	496	506	503	493,5
п	207	522	503	509	496	499	503	540	519	515	515	501	491	518	533	531	527	519	513	507	501	510	509	498	533	508	513	509				512,5
I	497	506	515	516	526	548	519	508	535	523	498	475	489	487	481	488	475	492	504	517	525	515	508	508	509	515	503	497	495	494	497	505.3
Date		2	ŝ	4	S	9	2	æ	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Mean

Table 11 Daily mean sea levels for 1965 71

Mean for 1965 = 500.6 cm

BALTIC WATER LEVEL VARIATIONS

r		
Monthly mean	506,4 504,2 504,2 489,0 489,8 499,8 510,7 510,5 500,5 500,5 500,5 503,0 503,0	502.4
1965	505.3 512.5 493.5 484.0 484.0 482.8 487.9 513.9 503.6 503.6 503.6 503.6 501.6	500.6
1564	507.8 520.8 471.7 471.7 477.2 496.5 498.5 513.4 513.4 513.4 513.4 515.7 515.7 515.7 515.7 515.7	504.8
1963	500.6 497.9 497.9 492.1 492.1 492.2 507.9 505.5 505.7 502.1 502.7 502.7 502.7 502.7	508.2 499.5
1962	519.7 525.5 525.5 494.5 494.4 498.0 506.1 514.2 514.2 514.2 505.5 505.5 511.4	508.2
1961	488.5 500.8 524.9 524.9 521.0 515.1 515.1 513.7 513.7 515.6 515.6 515.6	512.4
1960	498. 2 477. 3 477. 3 465. 5 465. 5 505. 9 505. 9 515. 4 490. 1 490. 7 512. 4	495.1
1959	516.9 498.4 490.7 494.2 494.2 502.3 502.3 501.0 501.0 513.3 501.0 487.1 487.1	500.9 496.5 495.1
1958	506,1 513,3 496,4 477,1 500,7 590,9 512,9 498,8 504,9 506,3 506,3	
1957	501.1 508.5 486.6 487.1 490.1 503.9 505.7 503.9 511.2 511.2 508.0	503.1
1956	525.5 491.0 479.0 489.0 499.3 508.8 517.6 498.5 517.6 522.5 504.3 515.6	503.9
1955	500.2 500.9 484.5 501.1 497.9 504.6 549.6 499.4 510.8 514.8 514.8 514.8 514.8	502.1
Year Month	L H H A A A A A A A A A A A A A A A A A	Annual mean

Monthly and annual mean sea levels of the Baltic Sea in the Bay of Gdansk for the 11-year period 1955-1965

Table 12

Mean sea level for the 11-year périod 1955-1965 = 502.4

72

References

- [1] DEFANT, A. : Physical Oceanography, Vol. I, II, 1961.
- [2] HELA, I.: Über die Schwankungen des Wasserstandes in der Ostsee mit besonders Berücksichtung des Wasseraustausches durch die dänischen Gewässer. Merentutkimuslaitoksen, Julkaisu, 134, 1944.
- [3] LASKA, M. : Sea water level observations and precise levelling of the Marine Station's automatic water level recorders. Bul. Ocean. of the Marine Station, Sopot, 1958. In Polish, unpublished.
- [4] LASKA, M.: Daily mean sea levels of the Baltic Sea in the Bay of Gdansk and daily mean atmospheric pressure. Acta Geoph. Polonica. Perm. publication.
- [5] LASKA, M. : L'influence du vent sur les phénomènes dynamiques de l'eau des bassins clos et peu profonds. Arch. Hydrotechniki, XII, 4, 1965. In Polish, abstract in French.
- [6] LASKA, M.: The prediction problem of storm surges in the Southern Baltic, based on numerical calculations. In Polish, abstract in English. In the press.
- [7] LISITZIN, E.: Uninodal seiches in the oscillation system Baltic proper — Gulf of Finland. *Tellus* 4, 1959.
- [8] LISITZIN, E. : Some characteristics of the variation in the water volume in the Baltic as a function of air pressure gradient changes. Soc. Sc. Fen. Comment. Phys. Math., XXVI, 2, 1960.
- [9] LOMNIEWSKI, K. : The Gulf of Gdansk. In Polish, abstract in English. Zeszyty Geogr. WSP w Gdansku, 1, 1959.
- [10] MAJEWSKI, A. : La dépendance des hauts niveaux d'eau dans la baie de Gdansk des gradients de la pression atmosphérique. In Polish, abstract in French. Wiad. Sl. Hyd. Met. VIII, 2, 1960.
- [11] NEUMANN, G. : Eigenschwinkungen der Ostsee. Aus der Arch. der Deutschen Seewarte u.d. Marineobs. 61, Band 4, 1941.
- [12] ROSSITER, J. R. : Note on methods of determining monthly and annual values of mean water level. International Hydrographic Review, Vol. XXXV, No. 1, 1958.
- [13] SZYMBORSKI, S. : The phenomenon of seiche in the Gulf of Gdansk on 17th January 1955. Acta Geophysica Polonica, IV, 1, 1956.
- [14] WYRTKI, K. : Schwankungen im Wasserhaushalt der Ostsee. Deutsche Hydrographische Zeitschrift, VII, 3/4, 1955.