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Abstract

A method is described for the approximate separation of the periodic 
and aperiodic processes contained in current observations. The short period 
irregularities, assigned mainly to turbulence, are first removed by applying 
a smoothing operator to the data. The low frequency band of the aperiodic 
process is then isolated with the help of a low pass filter. This low frequency 
variation is removed from the observations and the residues are analyzed 
for the presence o f tidal constituents.

#***

The observation of currents in the open sea is a difficult task and it can 
be done only for relatively short intervals of time; on the other hand the 
information which it yields on the mass transport, the tidal oscillations 
and the turbulence o f the flow  is of great value. It is therefore quite evident 
that the data obtained should be subjected to the most thorough analysis 
possible.

W e assume that a current measurement embodies the linear super­
position of three independent processes : turbulence fluctuations, periodic 
(mainly tidal) oscillations and a “ steady” flow.

The turbulence fluctuations are usually of a short period compared 
to those of the tidal oscillations. The tidal oscillations are found over a 
range of frequencies extending from 1 cycle/day to 8 cycles/day; they are 
of constant amplitude and phase and they constitute the regular portion 
of the record. The steady flow  is created by gradients in pressure, salt or 
temperature, by the wind etc., and it cannot be expected to be constant in 
time : over a short interval, we may then consider the steady flow  to be an 
aperiodic function o f time. Its irregularities unfortunately cover the whole 
range of frequencies and certainly overlap the tidal band.

The three processes cannot be separated exactly from a short record 
of observations but such a separation should at least be attempted.



Some necessary mathematical notions

In spectral analysis a function may be defined in time ( t) or in 
frequency (a ); any of the two definitions specify the function completely 
and the choice o f one variable in preference to the other is a matter of 
convenience. W e write the time representation o f an abstract function 2  
as z (t )  and its frequency representation (or spectrum ) as Z ( o ) .  The transi­
tion from one representation to the other is effected by a Fourier transforma­
tion:

Z (a ) =  I z { t ) e ~ 2̂ at dt-J_
z (t )  =  / Z(_o)e2ltiat da  

— «

An abstract linear operator -P may also have a t and a o representation 
as well, these we write as f ( t )  and F(a)- W e define the operation:

^  • Ï
to mean

/» oo

/ f ( t— t0)z ( t )d t
-go

in time, and
F (a ) • Z(a)

in frequency.
As a mathematical quantity, a current observation is a two dimensional 

vector and it can be written as:

2(f) = [* (0 , {/(#)]

The pair of real numbers x ( t ) and y(t ) are its components in the x  
and y  directions. W e assume that the vertical component of the velocity 
vector can be measured independently o f its horizontal components.

A two dimensional vector is mathematically equivalent to a complex 
number and we therefore identify z (t )  with the complex number z (t ) which 
can have any of the following representations:

/ [x ( f ) ,y (0 ]

z (t )  =  | x ( t ) + i y ( t )  i =  V  —  1
( | z (/) | e^(t)

| z (t ) | is the magnitude of z (t ) while ç(0 is its phase. There are related 
to x  and y  through the relations:

|z(f)| -  [x (/)2 +  y(f)2] 1/2

ç(f) =  arc tan y ( t ) / x ( t )

The pair representation o f complex numbers is useful for practical 
calculations while the other two representations serve for algebraic mani­



pulations. A  complex number may be stored in a computer as the couple 
of real numbers:

Or, y )  or (|z\,

The first encoding is to be preferred since linear operations on complex 
numbers imply pairs of identical operations on their x  and y components. 
In general the complex number aeib where a itself is complex may be 
interpreted as a vector a rotated counter-clockwise by an angle 6 .

Our basic assumptions and these newly introduced notions permit 
us to write a given current observation at a time t as:

where :

7»

z(f) =  d(f) +  a0(t )  +  2  ai e2lrio‘ ' 1 ¥* 0
I— — n

d ( t ) == the instantaneous value of the turbulence process; 
a0( t )  == the “ steady” flow  at time t;
at == the complex amplitude of the /th tidal constituent; 
a, == its frequency;
n == the number of tidal constituents.

W e note
a__, =  —  Oi

by definition 
and

a*  i a,

The latter relation holds because z (t )  is a complex quantity.

The smoothing of the data

I f  d(t ) contains only high frequencies it may be removed from z (t ) by 
applying a smoothing operator -S- to the sequence of observations.

The presence of short period oscillations implies that z (t )  is sampled 
at short intervals of time, let us say A t.

W e choose as a smoothing operator :

s - = ( a fcA -)3 ( l )

<5Lfc indicates in time the summation o f k consecutive observations; (9Lh/k  
therefore simply means an averaging of k consecutive observations. The 
exponent indicates the repeated application of such an operator to the same 
portion of the sequence of the observations. The spectrum of (1) is

/ sin Ttk à t a \ 3
S(a) -= --------------- )

\ k  sin Tt A t o f

which is shown in fig. 1. W e note that it effectively cuts o ff all frequencies 
beyond 1 cycle/hour.

The application in time of the operator (1) is effected in the following 
way. W e select a portion of the sequence of observations

{ z i j U t )  }



Fig. 1. — ■ The spectra o f  the smoothing operator (é t t/ i ) '  and o f  the lo w  pass f i lter
<dU./24)» ( < W 25).

On the scale used, the spectra o f  the smoothing operators fo r  k  =  12, 6 and 4 are nearly
identical.

which contains 3( k— 1) +  1 =  3k— 2 elements. W e write explicitly this sub­
sequence as :

z l>  Z 2> •••> Z k ’ Z k +  1 » . . . »  Z 2k> Z 2 k + 1 ’  •••> Z Sk  —  2  ( 2 )

Applying &.k/ k  to 2  means in time computing the sequence of averages:

Z 1 =  (Zj+Z2 + . . . + - Z f c ) / ^ >  z 2 =  (•z 2 +  - "  +  -Z f c + l ) / ^ f > ••■» Z 2 k — 1 =  ( Z 2k — l  +  - "  +  Z 3fc — 2)

(&Lk/ k ) 2 2  means

=  (^1  +  ̂ 2 + . .. +  Zfc) / / f ,  =  ( z 2 + • ■ • + -Zf c + l ) / ^ :» •••» — (^ ft +  . . .+ ^ 2 fc —1 ) / &  

and finally (<3Lk/ k ) 3 & stands for :

z =  (Zj -(- Z2 -(- ... +  zk) / k  (3)



The application o f (.<Xk/ k ) s to a sequence of 3k— 2 consecutive observa­
tions results then in a single number z which does not contain any 
contribution from d(t ) . Table 2 gives some additional details on this 
smoothing operator. W e have avoided giving its time representation because 
it is complicated as well as superfluous; it is preferable to restrict ourselves 
to its operational aspect displayed in (3).

The smoothed sequence can be sampled at larger time intervals than 
At, which is of order of a few minutes; we choose this new time step to 
be one hour and we write the smoothed sequence as:

{ z0’) } )  — —  N i .....N i

In what follows whenever the time step A t is not mentioned, this 
implies that it is equal to one hour and we write:

n
z(y) =  a0(y) +  2  ai e2,ria‘3'

1 =  — n

The low frequency band

W e may now apply a low pass filter to the smoothed observations. 
Our choice is

P  =  (< W 2 4 )*  (< W 2 5 )
whose spectrum is

/ sin 24 7i a \ 2 / sin 25 tc  a \
F (a ) =  ( -------------- ) ( --------------- )

\ 24 sin tc a / \ 25 sin ẑ o  /

F (a ) is displayed in fig. 1 : it cuts off the frequencies which equal or exceed
1 cycle/day. This includes the tidal frequencies.

The operation results in time into the sequence:

{a 0' ( ; ) }  ;  =  N .....0, ..., N N <  Na

2N +  1 is the number of hourly observations left after smoothing and low 
passing.

W ith the help of the ûq (/) ’s we may form the sequence o f the residues

{  z r ( j )  }  =  {  Z ( / )  ------ <*0 ( / )  }

an element of which we may write as
n

zr(/) =  2  ° l e2aia,} +  e(/)
1 =  — n

where :
e (/) =  a0(/) —  a0 (/)

The notation reflects our belief that the sequence of the residues 
contains primarily the contribution of the tidal constituent.



The constituent ellipse

A  given constituent I contributes the terms

z , ( j ) =  a _ l e - 2lritri> +  a, e2wiai> (4 )

to the current at the instant j . (4 ) is a periodic function of j  and its 
period T ; is equal to:

T ;  =  1/a,

O ver this time interval the tip o f the vector represented by  (4 ) d raw s  
an ellipse whose sem i-m ajor and sem i-m inor axes are o f length:

M, =  j a, j +  J a_ ,  | (5)

m, =  | a; | —  | a_ ,  | (6 )

The m a jo r  ax is is inclined to the x  axis by  an angle 0; w h ich  is given by

1
0j =  —  (a i  +  a  _ ;) (7 )

2

and the value j 0 (not necessarily an integer) o f j  for w h ich  the vector (4 ) 
points along the sem i-m ajo r axis is:

1
jo =  —;-------- ( a  _ ( —  oli)  (8 )

4 71 Cl

a; and are the phases  of a, and a _ t since w e m ay w rite these quantities 
as:

a l = \ a l \ eiai ; a _ t =  | a _ t \ e™-,

F orm u las  (5 ) to ( 8 ) indicate that all the elements o f the constituent 
ellipse can be evaluated from  the quantities at and a _ ( . These form ulas  
w ere quoted w ithout p ro o f by  T a y lo r  (1920). W e  set out to give this proof.

(4 ) can be rew ritten  as

z,(j) =  | a _ j  | +  | a, | e*(«» + ! »»i« =

=  e  i  »<a,+a_,l [  | a _  ( | +  i  +  | O, | e i ( 2 ” a l i  +  i

w hich  we interpret as the vector

| a _ l j + i  4- | at | ei,2* ai* + è < « , - “V  (9 )

rotated by  an angle £(o j  +  0 - i ) -

The vector (9 ) can be written more concisely as

M; cos Tjf 4 - 1 rrij sin -q,
where :

M ,  =  I a ,  I +  j « _ i  I 

m, ==\a l \ —  \a_ l \ 

tjj =  2tzoij +  i (a î  — a _ E)



Fig. 2. —  The elements o f the ellipse draw n by a given tidal constituent of frequency ai, 
over a period T,, in terms of the magnitude and phase of the complex numbers a, and a.,.

Its x  and y components are

X  — M; COS YJi 

y -  m t sin tji 

and these satisfy the equation of an ellipse:

x 2 y2
------ +  - ? —  =  1
M? m'f

The tip of the vector z t( j ) w ill therefore draw an ellipse with semi­
major and semi-minor axes of length M, and m (, inclined at an angle 
i (a i+ a _ i)  to the x  axis, over the time interval T ,. This proves formulas (5)

1
to (8). (8 ) is verified by noting that yj, =  0 when j 0 — ------ (a _ i —  a f) and

4tt Oi
at this instant the vector zt( j )  has components (M, cos 0,, M, sin 0,).

Fig. 2 shows in a schematic fashion the elements of the tidal stream 
ellipse in terms of the phase and the magnitude of the complex numbers 
a, and a_, . I f m, >  0, the rotation of the constituent, vector is counter­
clockwise, if  m, <  0, it is clockwise. I f m, =  0, the constituent ellipse is 
a straight line.

Our next task is to obtain estimates of a, and a _ ( .



The tidal constituents

The easiest way to obtain estimates of these quantities is to apply the 
least square condition to the sequence of the residues, i.e.

N

2  I e (j) I2 =  Min-
i = - N

which is equivalent to

or
n

Z (am) 2  ai A-im (10)
I= —n

where

ZCom) =

A;m —

(1 0 ) stands for the matrix equation:

Z  =  aA  (11)

Z and a are row vectors with 2n components and A is a 2nx2n. This 
matrix can be partitioned in the following way:

/ m  =  1 2 . . .  n  —  1-2 ... — n

II1
2

n

A+

*v

A _

—  1
—  2

A _ A +

—  n

wherê we have used the following symmetry properties of the elements of 
the A matrix :

A(t —m — A — i m A i,m — A — i' — rn

a and Z are partitioned in a similar fashion

a =  (a + , a _ )

Z =  (Z + ,Z _ )

j =  -  n

* sin [ (2 N + l )K ( a , - o j ]

j = - s  sin 7t (a (— am)



The +  sign refers to the positive values of the index and the —  sign 
to its negative values.

( 1 1 ) can be extended into

Z A _ | _  -f- ct_A _
Z =  a+ A _  +  a _ A  +

Addition and subtraction of these two equations yield

c =  Oi(A+ +  A _ )  
s — a2{ A + —  A _ )

which has for solution

where we have defined 

1
a i = =  —  (a+ +  a _ )

2

1
a? =  —  (a , — a _ ) / i

2

1

aj =  c (A + +  A _ ) - !
(12)

a2 =  s(A , — A _ ) - 1

c„ =  —  [Z (a m) +  Z (— am)]  =  cos 2 K O mj

1 ^—  [Z (a m) —  Z (— am)]/ i =  2 j z'-0‘) sin 2 n om j
2  j = - x

( 1 2 ) is in a format suitable for practical computations.
The matrix elements

. , sin [(2N +  1) 7i (a j— am) ]  sin [(2N +1 ) iz ( o t +  am)]  
(A+  ±  A _ ) (m =

sin n (oi —  am) sin n  (a ; +  am)

and the inverse matrices (A + ± 2 A _ ) - !  must be calculated for each analysis 
since 2N+1 varies from one set of observations to another.

ax, a2, c and s are stored in a computer as rows of n pairs of real 
numbers. Similarly zr(y) and a ^ ( j )  are strings of 2N +  1 pairs o f real 
numbers; the c and s vectors are obtained by multiplying the x  and y 
components o f zr( j )  by cos 2 7z omj  or sin 2 n o M j  and summing. The c 
and s vectors components stand for:

cm =  [ 2  xr( j )  COS 2 71 am j  , 2  Ijr( j )  cos 2 71 am j  I, etc.
L i - —N j -= — N J

In this fashion we obtain values for ax and a2; from these we deduce: 

a+ =  ci! -f- ia2 a _  — ax —  ia2

and a2 are stored as the pairs (ala!, aly)  and (a2x, a2y) and

=  ( a2py (I2x}



SO th a t

— ( l̂,r ^2y* ! ^2«)
=  ( » 1, -f- « 2»» ° 1i/---a2x)

W e may estimate also £(/') through

n
£ (/) — Zr( j )  ---  2  a l e2,,i '’ , ,

1 =  — n

The expected error on the estimate o f the complex amplitude of the 
tidal constituent is o f the order of

\a  ~  i7/(2N +  l ) 4

o2 =  — 1—  y .  i s w  i2
2N n

Once a(, (/), £(/), at and a_ , are obtained, these quantities may be interpreted 
physically bearing in mind the limitations of the analysis.

Example

W e have subjected a set o f current observations in the Strait of Belle 
Isle to this type of analysis. The observations were initiated at 0900 hours 
on the 18th of August 1963 and they extended over 32 days and 20 hours. 
The depth at which they were taken was 13 metres and the interval of 
sampling was Af =  5 minutes.

Fig. 3 shows a portion of these observations before and after the 
smoothing by (<9L12/12)3. The periodicities and the trends are apparent in 
the unsmoothed data in spite of the marked blur brought about by the 
short period fluctuations. X and Y in the diagram indicate the components 
x ( t ) and y ( t )  of the current vector, XBAR and YBAR stand for x(/) and 
y(/ > in the notation utilized in the paper.

Fig. 4 shows first the result of the application of ((3,24/ 24)2 ((9L25/25) 
to ( x ( j ) , y ( j ) ) .  The curves labelled XAO and YAO stand for the x and y 
components of a'0(/). W e note the tendency of the steady flow to reverse 
its direction and vary its intensity in time. W e show as well the x and y 
components of zr( j )  which are labelled XR and YR ; this function does 
exhibit marked periodicities and it is searched for tidal constituents.

The curves XPR and YPR in fig. 5 show the x and y components of
n

the function a„ (/) +  ^  ate2*laii obtained from the least square condition
I — —n

and the low passing; they are put immediately between the x and y 
components of z(J). This function is defined only over the inner portion 
of data due to the unavoidable loss of data introduced by the use of the 
smoothing and low pass filters.



XBAR

I 'BAR

Y a /v w ^

P ig . 3. —  The application of the smoothing operator (<&12/12)3 to a portion of the observa­
tions on the current in the Strait of Belle Isle taken at five minute intervals.

s ( j )  contains some contributions from parts of the low frequency band 
because o f the imperfection of the low pass filter. For instance 72.1 %  of 
an oscillation of period  ̂ cycle/day contained in a0( j )  w ill be left in 
zr<j) while 27.9% of it has been put into (j) by applying ((9L24/24)2((9L2ü/25) 
to -Z . This phenomenon could have been avoided by using a better low 
pass filter but as a rule such a filter would be too costly on data. e(y) also 
contains the fluctuations of a0{ j )  which have frequencies overlapping those 
of the tidal constituents: such a type of oscillation of frequency 2 cycles/day 
is quite obvious in the diagram. W e note that these oscillations do vary 
in time and therefore they reveal themselves as noise. They are also short 
frequencies superimposed on the lower frequency oscillations which are 
interpreted as reflecting possibly the lower part of the spectrum of the 
turbulence which could have escaped the smoothing operator. Finally e (.j) 
contains some portions of the tidal constituents themselves, which cannot 
be resolvea by the analysis or which were only imperfectly resolved, on 
account of the distortion introduced by the vagrancies of the steady flow.
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A ll in all such an analysis conveys the impression that the noisiness 
of the record is quite high and this most likely holds for the majority of 
current observations near the surface. This implies that the three processes 
present in currents can only be separated with the help of very long series 
of observations which, for the moment, are not available.

The standard deviation of the observations is equal to .38 knot and 
the expected error on the magnitude of the complex amplitude is .01 knot.

The values of the elements of the ellipse of the tidal constituents 
which are separable, are given in table 1. The hourly values of are
not listed; these can be read off the plots of XAO and YAO  noting that 
each division of the vertical scale stands for 1 knot.

ADDITIONAL, NOTES 

The Filters

The filters which we propose are relatively simple but they introduce 
an appreciable distortion in the spectra of the functions to which they are 
applied.

The distortion in the amplitude of the tidal constituents is of no 
consequence since the distortion can be evaluated accurately and the 
analyzed amplitudes accordingly readjusted. I f a power spectrum analysis 
of do ( j )  was performed, which is not recommended, aé (/) could be 
readjusted to contain the whole low frequency band of a0( j ) .

The number of observations needed for the application o f a filter of 
the form  :

<3Lt (9L4
is equal to (k — 1)/) +  (^— 1) +  1. Table 2 lists some suggested smoothing

T a b l e  2
Characteristics of the filters suggested in the paper

it Operator

Interval
of

observation 
lost by 
its use

% Reduction in the amplitude 
of the constituents of frequency

Smoothing operator
lutes minutes a = 1 2 4 8 cycles-day
5 C«.ia/12)* 165 .82 3.31 12.84 44.96
to («.«/6)3 150 .76 3.31 12.60 44.32
5 0*4/4)3 135 .62 3.16 12.18 43.24

Low pass filter
Dur hours a =  1/15 1/2 1 2 4 8 cycles-day
1 (<St24/24)2(él2g/25) 70 2.3 72.1 100 100 100 100



operators as well as their distortion characteristics; it gives also the same 
information for the low pass filter.

In our method the filtering entails a total loss of 70 hours +  1 hour 
45 minutes =  71 hours 45 minutes, or about three days of observations. 
For this method to be practicable one needs at least five days of observations. 
For a shorter interval one has to have recourse to filters even worse than 
those proposed.

The choice of the constituents

Very few tidal constituents can be separated from observations covering 
an interval of only a few days. Table 3 gives a list o f the constituents which 
we propose to look for whenever it is possible.

In the course of a given analysis we must decide which ones of this 
set are separable: this is achieved by submitting the frequencies o f pairs 
of constituents to the Rayleigh’s test

I ot —  Oi+i | 2N % 1

2N +  1 being the number o f hourly observations available for the application 
of the least square requirement.

Two constituents can be separated if  the difference of their frequencies 
multiplied by 2N is larger than 1 in absolute value. To apply the test and 
pick the frequencies of interest we use the pair arrangement displayed in 
table 3. The names in the pair stand for the frequencies.

T a b l e  3

L is t  of the tid a l constituents to be tested  fo r  sep arab ility

Name Frequency
cycles/hour Pair Arrangement

m2 .08051 Zero, M2
.08333 M2, S2

L2 .08202 S2 > l 2
n2 .07899 m2, n2
(½ .07769
Ka .04178 m2, k x

Oi .03873 Kv  Ot
NOx .04027 0 lt NOx
Qi .03722 Oi, Qi
oot .04483 K,, 0 0 1
Jl .04329 Kl J,
m4 .16102 Ma, M4
ms4 .16384 m4, ms4
mn4 .15951 m4, mn4
m8 .32205 m4, m8



W e calculate the frequency difference of the first pair and apply 
Rayleigh’s test. I f  the test succeeds we retain the second constituent of 
the pair; if it fails we move on to the next pair and repeat the test. In this 
way we obtain, arranged by species and in their relative order of importance, 
a list of the constituents which may be separated from a given set of data.
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