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by Vice-Amiral A. Dos S a n t o s  F r a n c o

1. —  INTRODUCTION

In the course o f a Tidal Symposium held in Paris in May 1965 M u n k  

and C a r t w r i g h t  presented a new method for tidal prediction and analysis 
to which they gave the name “ response method Others proposed to call 
this new solution the “ convolution method ” since the tidal heights are 
obtained by a weighted sum of terms o f the equilibrium tide. This last 
name seems the more appropriate one, but this interesting method could 
also be called the “ generalised Laplace method

The paper [ 1 ] presented by these two eminent scientists is o f an 
extremely high level and they end it with a quotation from  Hilaire B e l l o c  

(1925) : “ When they pontificate on the tides it does no great harm, for 
the sailorman cares nothing for their theories, but goes by real knowledge

However I think that it is possible to explain the method in a somewhat 
less sophisticated way, and also to extract from their article a little o f this 
“ real knowledge ” so dear to sailors. This is the aim o f the present article.

2. —  BASIC CONCEPT

Let us take the height o f the lunar equilibrium tide, which is dependent 
on the cube of the parallax, as point o f departure. This height can be 
expressed as a function of the latitude cp o f the place, the declination and 
the hour angle by the well-known formula :

y > =  — , a \ -  (3sinV -  1) (3sin2 -  1)
4Tr |_ 3

+ sin 2*p sin 2¾ cos t +

+ cos2 <p cos2 5 cos 2fC 1  (2a)



where

L  =  the mass o f the Moon;
T  ss the mass of the Earth;
a s  the radius of the Earth (presumed spherical) ;
r =  the distance between the centre of the Earth and that o f the

The geodetic coefficients o f (2a) are the same, to within a few  constants, 
as those which were found by M un k  and Ca r t w r i g h t  who followed a 
somewhat transcendental procedure.

In order to simplify matters let us put :

P  being the mean horizontal parallax o f the Moon. Let us also call the 
geodetic and declinatory coefficients for the species n (n =  0, 1, 2 ) respect
ively g„ (q>) and h„ (8 ). W e may then write (2a) in the following more 
general way :

For the Sun we shall obtain a formula similar to (2b ) where we replace 
P , P  , 5 » t and K by respectively PQ, P e, 50, and K a n d  we obtain

y® = £ Sj.'f») (P©/P0 ) 3 M 5©) cos ntQ

but if  we designate the sun’s mass by S we may write :

The Laplace prediction method is based on the assumption that the actual 
tide of species n follows the equilibrium tide with a phase lag o f n^n, and 
and that this tide has as height the height o f the equilibrium tide multiplied 
by a coefficient C„. Thus for the actual luni-solar tide we are able from (2e) 
and (2/) to deduce :

Moon.

u /n  =  Pc (horizontal parallax)

and write

3La4/4Tr3 =  3LaPc /4T = (3LaP23/4T) ( \ ! \ Ÿ  =  K^PJP^ 3

>’£= Kc 2 gn(<p) (Pc/Pc) 3 hn(f>ç) COS nt€ (2b)

thus
K0  =  3SaP^/4T =  (3LaPc3/4T) (SPq/LP^3) =  0.4604 K £ 

y© = 0.4604 K £ £ gn( v ) (P0 /% ,)3 hn(8&) cos ntQ (2c)

Then by making

and
(Pc/Pc) 3 hn(0€ ) =

0.4604 (IW PQ) 3 h„(80 )  =  B® ( 2c?)

we extract from (2b ) and (2c) respectively

and
(2e)

y© = £ b« cos nt® (2 /)



However the authors of the method have preferred to express y  in terms 
o f hour angles with the Greenwich meridian as origin. In these circums
tances, for a port that is at X longitude west of Greenwich we have

=  'gw -  X and Iq  =  t°w -  X

and thus by introducing these values into (2g) and developing we obtain :

y  = S K^O p) Cn [cos n(X +  yn)  (B  ̂ cos nt%w + B® cos «f®w)

+  sin «(X  + yn) (B^ sin nt^w +  B® sin «r®w)j
Now if  we put

Kcg„(^) C„ cos n(X +  7„ )  = un

Kcg„(^) C„ sin w(\ +  yn)  =  vn (2/î)

B« cos nt%w +  B® cos =  a„(t)

sin « 4 v + B® sin nt°w =  è „ ( 0  (2,)

we have as a result :
? =  % a'nW +  vH bn( t ) ]  (2/)

which supplies the height of the tide at time t by the convolution or 
weighted sum of the theoretic values an(t )  and bn(t ) .  It is obvious that the 
weights u„ and v n must be determined by the tidal analysis.

It can be clearly seen that (2j )  is a new mathematical representation 
of the Laplace assumption which served us as our point of departure. W e 
shall see later on how the authors of the method we are considering have 
generalised the use of (2/) •

I f  we were to carry the development further it would be possible to 
consider additionally the term of the equilibrium tide that depends on the 
fourth power o f the parallax. However, the development which we have 
just carried out would not have been altered in any way.

3. —  GENERALISING THE METHOD

When establishing formula (2j )  we only took into account the coefficient 
C„ and the phase lag nyn for species n and for any relative position o f the 
Sun and the Moon. This pair of constants can be converted into a single 
pair o f weights un and vn. If, however, in place o f the astronomic coefficients 
an{t ) and bn(t ) corresponding to time t we were to take as astronomic coef
ficients for tidal prediction at time t those that correspond to time (f  —  x), 
in analysing the tidal observations we would find new values u„ and vTn 
which would make it possible to express the height of the tide at time t 
by the expression

yt = 2  Wnan (t -  t )  +  vnbn (t -  t ) ]  (3 a )

I f  the values of C„ and were true constants the difference between 
these new weight values and un and vn would only depend on interval x-



However we must consider that in interval z there is an alteration to the 
luni-solar tidal wave of species n which is produced by variations in parallax 
and by the movements o f the disturbing bodies in declination altering 
the astronomic coefficient and the angular frequency of the «-diurnal 
equilibrium wave. But since there is an alteration of the sea’s response 
to the action o f the disturbing bodies which corresponds to an alteration 
in the characteristics of the equilibrium tide the values of C„ and nyn 
will no longer be the same.

By making z vary and by determining by analysis the pairs o f weights 
u„ and vn we would be able to determine the height of the tide at time t 
for each value of x, but this would be a simple repetition o f the original 
Laplace procedure whose lack of accuracy made L a pl a c e  himself plan to 
use harmonic analysis. In actual fact values o f y t would be found which 
would have important differences which would have to be adjus ted tlir ough 
simple averaging. There is, however, a more accurate procedure. This 
consists of generalising (2j )  by making z =  s Af where A t is an interval of 
time selected beforehand and where s =  0, ±  1, ± 2 , ..., and by writing

=  -  SAt) +  Vn K ( '  -  (3*>
where the weights ii* and  v * are local constants determined by the least 
squares method of analysis.

It should be noted that each pair of weights u£ and vsn determined by 
this method is part o f a set expressing the average conditions in which we 
may define the correlation between the actual tide at any time t and the 
equilibrium tide in the interval between time (f  +  | S | A t) and (f —  | S [ A0» 
where | S | =  | s | max.

Formula ( 3 b )  is precisely the one established by M unk  and Ca r t w r i g h t  

to whom we are also indebted for the suitable choice of Af =  2 days and 
for the maximum value of ±  3 to be given to s. The justification o f this 
last value is not quite satisfactory enough, a fact which the authors 
themselves point out in their paper [ 1 ].

4. —  SOLAR RADIATION

Here we have an interesting innovation. The authors of the method 
have in fact found a way of introducing the effect o f solar radiation into the 
computations, and thus the oscillations produced by periodic météorologie 
phenonema may be fairly logically explained.

It is well known that in the harmonic method as at present practised 
we take into account several constituents of astronomic origin whose coeffi
cients in the harmonic development are so small that they could be 
neglected. But the frequencies o f these constituents coincide with those 
o f several oscillations of well-defined météorologie origin and this justifies 
the retention of these constituents in the practical computations. The 
constituents Sa and Ssœ are cases in point. A quick look at the theory of 
radiation w ill thus be well justified.



It is not difficult to establish the formula expressing the solar radiation 
<31 corresponding to a point on the surface o f the globe. Let k be the 
constant o f solar radiation —  equal to 1.946 cal cm -2  m in -1  —  and which 
is the radiation received over a surface o f 1 cm2 during one minute, normal 
to OO ' (see fig.) and at distance r from  the source. I f  this same surface 
were situated on P  and i f  it were still normal to O 'P  the radiation value 
would be k (r /x ) .  However if this surface is horizontally placed the radia
tion value w ill be k (r /x )  cos z' or in practice

=  k ( r j x )  cos z for 0° <  z <  90°

=  0 for any other value o f z

Thus we see that the Earth is transparent to gravitation but opaque to 
radiation. In order to take this very important fact into account the authors 
have had recourse to a development of (R  in spherical harmonics which 
permits the transformation o f the expression just established into a series 
of continuous terms. Since such a development goes beyond the lim its 
which we have set we shall restrict ourselves to giving the following 
practical formula where we have made f©/rQ »  P Q/PQ :

CTL = k (P0 /P0 ) ^ + - cos z +  ^y (3 cos2z -  1)̂ J (4a)

In this formula the first term in the square brackets multiplied by the 
general coefficient gives us the mean radiation since the ratio (P 0/P0) is 
very close to unity, and in these circumstances its variation can therefore 
be ignored. Only the other two terms therefore remain to be considered.

Now we can express the zenithal distance z in function of the latitude, 
declination and hour angle by the well known formula :

cos z  =  sin<̂ > sinô© +  cos<p cosSq  cos t&

thus according to (4a) after several transformations we have :

[
_ , 1 1

C R=  ^ (P q/ P q ) j — sini£ sinS© +  — cosip cos50  cos f©

+  (3 co s2 -  1 )  (s in 2 S© -  ^ )

15
+ ---- sin 2ip sin 2 f c  cos64 u  u

+  —  cos2 *p cos25q  cos 2¾ I (4 b )
64 1]



where the two first terms arise from  the development o f cos z and the last 
three from that of (cos2 z —  1). Comparing (2a) with these three last terms 
we see that there is an analogy between each of these terms and those 
in (2a) corresponding to the same species. W e also see the terms of (4b )  
with equal n ( 0,1) have different geodetic and declinatory coefficients which 
means that they cannot be grouped together.

In order to make the notation simpler let us express the geodetic and 
declinatory coefficients o f the first two terms o f (4b )  by respectively 
9 » (<f) and h\ (60), and those o f the last three terms by g "  (<p) and (S0).

Thus

0 1 =  k I ,  gln(<p) (P0 /Po ) h ln(8 Q )  cos n t0

i ^ 11/ /T> /T> \ I.U/ç. ^ --- ,
A. £  g n W >  V1© / 1© ;  « «  W q J <--u5

where if we make

and (P©/P©)^(S©) = B‘ (4c)

(P©/P©> *"(5©) = B̂ 1 (4d )

we shall have :

(R- =  £ k[gln (ip) B*, cos ntQ + B" cos nt&] (4e)

Still following the Laplace assumption the actual tide corresponding to 
each term in (4e) w ill be given by introducing coefficients C£ and C”  and 
phase lags ny* and n y ” into formula (4e). Replacing fe by (tgv —  X) we 
obtain :

= $  * [£ „ ( * )  cj, b‘„ cos «(f© w -  X -  7„ )

S n ^ )  c "  b"cos «(f® w -  X -  7 1̂)] 

where by developing and making

kgln (v?) C* cos «(X  + Ÿ„) = un

kg\ Op) Cl„ sin «(X  + 7*) = v„

s’, cos = cx(r)
, o  (4f )

sin « r GW =  /3( r)

we obtain :

y * =  ?  + finit)] +  z  [M; < ( 0  +  v'„ f%t)] (4h)

In the case of long period constituents we do not have u0 to consider 
because {30(0  =  (¾ (0  =  0, as expressions (4/) and (4g )  show. However in 
the lists o f constants un and vn given by the authors [ 1 ] we find values o f v0 
corresponding to (3o(0- Thus the long period radiational tide for which s 
is always zero can be expressed by

%"<<£) C " cos «(X  + 7 “ ) =  un 

kgl„l(<p) C " sin «(X  + 7 " )  =

B̂ 1 cos nt®w = a’(t )  

B' 1 sin nt®w =  (3’(t )

y  = «o “ oW +  voPoW  + « ( 0  +  v X (o (4/)



However the authors explain that in this case the values o f (30 (#) and fj£ { t) 
are given by

Pa =  (365.242/27r) [ac (f  + At/4 ) +  a0(t -  A t /4)] (4/)

P’0 =  (365.242/27T) [« ; (/  + At/4 ) +  a’0(t  -  At/4 ) ]  (4k)

It should be noted that if  the list of values of u„ and vn for Honolulu 
and Newlyn given by the authors in their paper f l ]  is examined we find 
considerable weights for the semi-diurnal and long period species. For the 
case of the diurnal tide the values of u„ and vn are less important but still 
however fa irly  significant for the second convolution of (4ft). On the other 
hand, the weights for the diurnal part of the first convolution are negligible. 
Ca r t w r i g h t  [2 ], in the paper which he submitted to the Tidal Symposium 
held in Monaco in 1967 employed only the second convolution of (4ft) for 
// =  2. The question of long period tides is not treated in that paper.

5. —  THE SHALLOW W ATER TERMS

In his latest paper [2 ] C a r t w r i g h t  has simplified the introduction of 
the shallow water corrections by starting from  the heights o f the purely 
astronomic diurnal and semi-diurnal tides. In order to do this he used 
two new functions y '  and in quadrature with those given by (2e) and 
(2/). Let us therefore write

=  2 K<£«„(¥?) B„ sin nt^
and

% = £ B« sin nt&

thus

^ =  + -¾ = ?  (Bn Sin ntt  +  Bn Sitl nt®> ( 5a>

By a development similar to the one which allowed us to find (2j )  we 
obtain :

ÿ  =  £ K A W  -  Vnan W  (56)

W e then see that y can be computed without any difficulty since the 
elements figuring in (5b) are exactly the same as those in (2/). Furthermore 
(56) is the transformation of (5a) when the coefficients C„ and the phase 
lag ny» have been introduced. Thus we may write :

ÿ =  % sin n<-k  ~  yn) + B« sin n^ O  ~  %,)]

By putting

*© =  % _  ^
we obtain

ÿ =  £ CntBn + COS n(-9 +  %,) Sin ntC -  Bn sin +  COS ntC>\



whence by making

K £s „ ( ^ )  C„[bJ +  cos  n { 6  +  y n )\ =  R„ cos n(3„
(5c)

K# n(^) C« Bn Sin + ? „ )  =  Rn sin n&n

we have as a result

ÿ  =  2 R„ sin n(tz  -  j3n) (5cf)

Starting from (2c) and (2/) we likewise obtain :

y  =  % R n c o s  « (%  -  f t , )  (5 e )

It is obvious that (5d) is equivalent to (56) and (5e) to (2/).
Considering now only two oscillations —  one belonging to species n 

and the other to species p  —  according to (5a) and (be ) we may write :

yn =  Rn COS - f t , )  j>n =  R„ sin «(*«; -  ft,)

yP = RP cos p(t<i -  h  ) yP = Rp sin -  0P) (5-/)
Let us introduce the two vectors that are defined in the compJex plane by

= yn + 'ÿn (5*)
and

$p =  yp +  iÿp (5/3)
and let us replace yn, yn, y9 and yp in (5g )  and (5/i) by their equivalents 
from  the group (5/). Taking the Euler formula

exp (ix ) =  cos x +  / sin x (5 i )

into account we then have the formulae

=  R„exp[ in(r£ -  /?„)]

?p =  R « e xP[*P(f£  -  Pp>]
whose product is

fn ?P =  R « RP e x P +  p ) t  -  nP„ -  PI3p] (5 /)

I f  we now take the conjugate ç j o f (5/i) and also that of (5i) which is 
equal to exp(— ix) we find :

S J Ï  =  R« Rp expi[(n -  p )  t -  np„ +  pi3p] (5k)

According to (5i), from  (5j )  we then obtain

W p =  R„Rp{cos[(« +  p )t  -  n$n -  pPp]
(5/)

+  i s in [ ( «  + p ) t  -  n@„ -  p@p]}
and from  (5k )

W P* =  RnRp{cos[(n -  p )t  -  r$n + p0 1
(5m)

+  i sin [ (n  -  p )t  -  n(}n +  pPp ]}

However according to (5c) we have R„ given by the square root o f the sum 
o f the squares o f these formula, whereas tan $n is equal to the ratio between



the two formula. Consequently R and are functions o f B and 0 whose 
variation is slow. Thus the phase angles to be seen in (5/) and (5m )  
increase almost proportionally to (n -(- p )  and (n  —  p )  and these define 
two new species o f oscillation that are also proportional to the product of 
the semi-ranges R„ and Rp. Since this last statement agrees with the theory 
o f tidal propagation in shallow water we can assume that the oscillations 
actually observed, which have frequencies (n +  P ) and (n —  p ),  w ill be 
respectively proportional to the real terms o f (5 I) and (5m ).  Examining 
these two formulae we see that from the ( bf )  group and from expressions 
(5g ) and (hh) we obtain the real parts o f (5/) and (5m )  which are equal 
to yn±p whereas their imaginary parts give us gn± f.

W e shall now show that in the convolution (2j )  it is possible to replace 
an±P by yn±v, and bn±p by yn* p. In fact i f  in (2h )  and (20 we replace tGw 
by tGw —  6, after several transformations and also taking (2d) into account 
we find

Comparing an(t )  and bn(t )  with the real and the imaginary parts of 
expressions (5/) and (5m) we can see that there is a perfect analogy, and 
this justifies the above-mentioned substitution.

The procedure just described can be repeated in sequence. Thus we 
are able to introduce into the computations three oscillations belonging to 
the species m, n, and p, in order to obtain the following species :

If, for example, m =  n = p —'2 then the first product represents a sixth- 
diurnal constituent and the third a semi-diurnal one. On the other hand if  
m = n = 2  and p =  1 these same products w ill represent respectively a fifth- 
diurnal and a third-diurnal constituent.

and
a„ (t )  = R^cos n (t%w -  Q  

b n ( V  =  K  S in  " ( * G W  -

where

R), cos n (3’n = +  eÇ c o s  nQ 

R; sin n ITn =

n

m +  (n +  p )  

m — (n + p )

m +  (n — p )  

m — (n — p )

W e need only write the new constituents in the complex form

'Hi \ iVm

and then to carry out the following multiplications :

(5 «)

m +  n + p

m — n — p

m +  n — p 

m -  n + pC ( f  (■*)*m jp



From what we have just said it suffices to remember the following rule. 
In order to obtain the values of a(t) and b (t ) the constituents must be 
written in their complex form as in (5g),  (5h )  and (5n ); the necessary 
multiplications must be carried out and the real parts are adopted as values 
o f a(t ) and the imaginary part as values o f b(t ).

In order to be sure o f taking into account all the oscillations o f about 
4 cycles per day, C a r t w r ig h t  [ 2 ]  had to consider three quarter-diurnal 
constituents. First of all he took a combination exactly the same as the 
one already mentioned, i.e. the product of ç2 ?2- Next he considered it 
necessary also to make the following products :

çt-At

He then added the indications (0 ,0 ), (0 ,1 ; and (1 ,1 ) to these constituents.
W e must now point out that in the method with which we are here 

dealing the shallow water constituents are considered as a whole. Thus 
Ca r t w r ig h t  assumes [2 ] that even for a tide where the distortion due to 
shallow water is fa irly large the number of shallow-water terms w ill always 
be smaller in the present method than the number which have to be 
introduced into the harmonic method in order to obtain a satisfactory 
prediction. In fact the recent research o f Z e t l e r  and Cu m m in g s  [3 ]  has 
shown that 114 harmonic constants need to be used in order to represent 
the tide at Anchorage (Alaska) really satisfactorily. It should be added that 
it is a remarkable fact that nearly the same number (1 1 3 ) of constituents 
was quite independently found by L e n n o n  and R o s s it e r  to be necessary 
for obtaining a good representation o f the River Thames tide [ 4 ] .

6 . —  ANALYSIS

In the above section we saw that the shallow water corrections are 
introduced after the prediction o f the basic part. This is why the analysis 
must be carried out in two stages. In the first stage the authors analyse a 
curve resulting from a filtering that leaves only the long period, diurnal, 
semi-diurnal and third diurnal oscillations. The filter used is given in 
reference [2 ], The values of u and v  for the above-mentioned frequencies 
are computed by the least squares method in which we must have

[u a (t ) + v b ( t ) — y t]2 = minimum 

where y t is the height of the filtered curve at time t.

However, since in the filtered curve there are contributions from the 
semi-diurnal constituents ç2 Ç2 Ç2*> an(i the third diurnal constituents 
Ça Ç2 Ç* and since the knowledge o f a(t ) and b (t )  for these constituents 
depends on knowing y, and y-2, the values of u and v  for the diurnal and 
semi-diurnal constituents of astronomic origin must be determined by a



prelim inary analysis in order to obtain the values o f and y 2. Once 
these values are known the weights u and v in their entirety can be 
recomputed by the analysis o f the difference [y  —  (y i +  Jte)]-

7. —  CONCLUSION

W e think that we have given a fairly complete picture o f the method 
just described. W e consider in point o f fact that Ca r t w r i g h t ’s results 
for six British ports are fairly encouraging and that they merit a more 
extensive study of their application. W e hope that in the near future those 
who have the means necessary for using this method w ill let us know the 
results of their research.

W e advise those interested to consult the paper [2 ] at the end o f 
which are given some particulars which are very useful from the practical 
point o f view.
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