CAMPAIGN FOR DETERMINING
THE LONGITUDE OF THE FUNDAMENTAL POINT
OF THE ASTRONOMIC OBSERVATORY IN NAPLES

III. THE EQUATION FOR LONGITUDE

by Professor E. FICHERA
Capodimonte Astronomic Observatory, Naples

In this article we shall be dealing in more detail with the equation
used for determining the longitude of the fundamental point of the Capo-
dimonte Astronomic Observatory, Naples. We shall analyse certain
problems well known to specialists but which are not easily found in
geodetic astronomy literature. Several new developments never before used
in determinations of this kind and that we have deduced during the course
of our observations will also be given.

1. — DETERMINATION OF ASTRONOMIC TIME

To determine the correction for a clock regulated on sidereal time, it
is only necessary to compare time T indicated by the clock at the meridian
transit of a star with the right ascension g of this star. If the clock is
perfectly regulated the hour read at the instant of the star’s meridian transit
should be this star’s right ascension value.

If the correction to be made to the clock regulated on sidereal time is
designated by AQ, we have :

AQ,=a—T (1)

In order to be able to carry out this comparison, the quartz clock must
be coupled to a special instrument that makes it possible to find the exact
instant of the star’s transit at the local meridian. To this end we decided
to use the transit instrument.

But a transit instrument, however well preliminarily adjusted, can
never be located perfectly in the meridian. Even if at the beginning of
operations this was the case, some time later its setting would, for various
reasons, lose its alleged perfection. Instead of having continually to correct
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the instrument to eliminate errors it is easier to determine the amount of
these errors at the time of the observation and then to compute their effect
on the final result. After the initial adjustment these errors will generally
be so small that their square can be considered negligible. Thus it is
possible to compute separalely the influence on the result of each error and
finally to total their effect.

In the case of a quickly reversible transit instrument fitted with an
impersonal micrometer, the errors having the greatest influence on the
observation results are :

a) The error due to the inclination of the instrument’s secondary axis
of rotation — i.e. when this axis is not perfectly parallel to the horizon
plane. It should be added that in a transit instrument the axis defined by
the two centres 0,0, of the trunnions is called the secondary axis of
rotation — or else simply the axis of rotation.

b) The azimuth error of this axis, i.e. its deviation in relation to the
exact E-W direction.

¢) The collimation error, i.e. the deviation between the line of colli-
mation and the normal position of the axis. In rapidly reversing instru-
ments, this last error is eliminated, but we shall continue to take it into
account because we shall include in this error the effects of both the half-
width of the contact in the impersonal micrometer and of the delay due
to the play of the screw.

It is obvious that these three errors will cause the telescope position
to be out of the meridian and consequently the star transit will be observed
not at the true meridian but in its near vicinity, i.e. either before or after
the star transit at the local meridian. If we designate by P, the time of
a star transit observed with an instrument in which the 3 errors mentioned
above are present, it will be necessary to correct the observed time P, for
the effects of the 3 errors in order to obtain the time T of the star’s meridian
transit at the place of observation, namely :

T =Py, + Aw, + Aw, + Aw, )

where Aw are the hour angles, taken with their sign, of the star at the time
of its transit at the central thread of the instrument eyepiece.

The equation for the quartz clock will then become :

AQ, = a— [Py + Aw, + Aw, + Aw,] 3)

Let us now determine one by one the Aw corrections to be made to P,
to obtain time T on the clock when the star culminates at the meridian.

A) Determination of Aw;

We saw in the first article of this series (IH Review, Vol. XLIV, No. 2,
1967) that the explicit form for this correction is :

Aw, =icos(p — 8)secd = i(cosy + sinptg §)
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Let us assume that the western end of the axis of rotation is higher
in relation to the horizontal plane than the eastern end. In this case the
zenith of the instrument will be to the east in relation to the zenith of the
place of observation, and the star will be observed on the instrument before
its meridian transit. For this case the correction + Aw, must be added
to P,.

For the case of an observation of a star culminating between the zenith
and the south of the observer’s horizon, we shall have :

<y cos(p—6) >0

whereas if the star culminates at the upper meridian its meridian transit
is between the observer's zenith and the North Pole, and we shall have :

6> cos(p —6) <O

If however in both cases the foregoing formula is to supply directly
the correction 4 Aw; to be made to P, then i must be positive.

When the eastern end of the axis of rotation in relation to the
horizontal plane is higher than the western end, the zenith of the instrument
will be to the west in relation to the zenith of the place of observation. In
this case a star at its meridian transit (u.t.) will be observed with a delay,
i.e. after having passed the meridian, and consequently the correction to
be made to P, will be — Aw,.

In the two cases of the upper meridian transit we shall have :

0So cos(p — 8)> 0

and if we wish to obtain correction Aw; with the negative sign then i must
be negative.

Thus to obtain by means of the general formula the value of the sign
of the Aw; correction to be made to P, to reduce it to the transit time T,
it is necessary to consider the value of inclination i as positive when the
instrument’s axis has its western end higher than the eastern end in
relation to the horizontal plane and as negative when the reverse is the case.

In order to be able to retain this convention for the sign of i even for
the lower meridian transits (1.t.) of circumpolar stars, it will be sufficient
to consider the Aw; angles as negative (figure 1). In fact for the lower
meridian transits, it is the opposite to what takes place for the upper
meridian transits, i.e. a star is observed later on when the western end is
higher and earlier when it is the eastern end which is the highest.

Thus for a star A (fig. 1) we have :

Aw, = — isinhsecd
but ~ o~ o~
h=AN=PN — PA = ¢ - (90° — &) = — [90° — (¢ + §)]

and consequently :
Aw; =i cos(p — §)sec § = i(cos ¢ + siny tan §)

and with the sign convention adopted for i, we shall still have the
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correction Aw; with the desired sign. The same is also true when the eastern
end of the axis of rotation is the higher.

Fia. 1

We can therefore conclude that the correction Aw; and its sign for the
effect of the inclination of the instrument’s axis, to be made to P, is given

by the following relation.
+ upper transit

4
- lower transit 4)

Aw; = i(cos @ * sinp tan §)

Since the inclination i is found by reading the striding level, let us

see what sign must be given to these readings expressed in the level’s gra-
duation, with the sign established by the aforementioned convention.

Let us take the case of a level whose zero is at the end of the phial as
is the case in a transit instrument.

As an example let us take the instance where the western end of
the axis is higher in relation to the horizontal plane than the eastern end.
The level can then take up two opposite positions on the axis : the zero
towards the west or the zero towards the east.

Let us first of all take the instance where the zero is initially to the
west (fig. 2a); after having reversed it on its axis (fig. 2b) we shall have
Cw < Cz where Cy and Cg are the readings at the centre of the bubble
with the zero (of the graduation) first to the west and then to the east.

To achieve the displacement of the bubble centre in such a way that
the adopted sign for i is retained (in this case, positive) it is necessary to
adopt the readings at the ends of the bubble as positive when the zero is
towards the east and the readings made with the zero towards the west as
negative,
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horizon horizon

a) b)

horizon horizon
C) d)

Fra., 2

If the level's zero is first of all to the East (fig. 2¢), after the level has
been reversed on its supports (fig. 2d) the condition Cgz > Cy, identical to
the one already found, will be obtained, and thus in both cases in order
to obtain the value of inclination i with the positive sign it will only be
necessary to retain the sign convention already adopted.

horizon horizon

Q) b)

CWBO

horizon horizon
c) d)

Fic. 3

For the case where the eastern end is the higher (i < 0) we shall have
the situation shown in figs. 3a, b, ¢ and d.

In this case Cg will be smaller than Cy. Then, following the sign
convention, we shall have as we wish the inclination i with a negative sign.
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B) Determination of Aw,

Let us now consider the effect on the determination of the time T of
the star’s transit of an azimuth error in the instrument.

This error exists when the transit instrument is adjusted on station
with its secondary axis of rotation not perfectly set in the E-W direction.
The instrument’s axis of collimation will then describe a great circle passing
through the zenith, i.e. a vertical.

Let us first of all assume that the western end of the instrument axis
of rotation is displaced to the south by a small angle q, called the instrumen-
tal azimuth (fig. 4a).

a)

b)
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Fic. 5

A star A, having its upper transit to the South of the zenith (& < ¢),
will be observed before its meridian transit.

Taking the spherical triangle ZPA, we have :

Awa=aw=a(sin¢—— cos ¢ tan §) (5)
cos &

As ¢ > &, sin (p — &) will be positive. However the correction Aw, to
be made to the observed transit P, in order to reduce it to time T will have
a positive sign because the star was observed beforehand. Thus the sign
of a should be positive.

In the case of the star A’ whose upper transit is to the North of the
zenith, we have & > ¢, and consequently sin (p —&) < 0.
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Considering that the star is observed with a delay, the correction Aw,
should have the negative sign, and thus the value of a should be taken with
the positive sign.

For the case where the eastern extremity of the instrument’s secondary
axis of rotation is displaced towards the south (fig. 4b) formula (5) will
still be valid. For when the star culminates south of the zenith (§ < %)
this star will be observed in relation to its meridian transit with a delay.
The correction Aw, must therefore be negative, and thus a negative value
of a must be taken.

If the star culminates (u.t.) to the North of the zenith (& > ¢) it will be
observed in advance; thus the correction Aw, must be positive and the sign
of a will still be negative.

It can therefore be concluded that in order to obtain the correction
Aw, with the suitable sign, it is necessary to consider the value a of the
instrument’s azimuth positive when the western extremity is displaced
towards the south and negative when it is the eastern end which is displaced
towards the south.

In the case of observations of circumpolar stars making a lower
meridian transit (fig. 5a, b) since z = 180° — (¢ 4 &) formula (5) becomes:
Aw, = a m = a(siny + cos ¢ tan §)

e cos &
and the sign convention for a remains the same.

The general formula is therefore :

lower transit

+ upper transit (6)

Aw, = a(sing ¥ cosytand)

C) Determination of Aw,

Let us finally consider the collimation error c.

This error causes the displacement of the instrument’s collimation line
which instead of describing the meridian on the celestial sphere will describe
a small circle parallel to the meridian.

Let us consider the fig. 6a in which the small circle described by the
axis of collimation is to the east in relation to the zenith, i.e. the arc of the
great circle WZ’ is greater than 90°.

In this case the star will be observed before its meridian transit, and
by means of triangle PyA A; we obtain :

Aw, =csecd (7)

Considering that the star is observed before its meridian transit, the
correction Aw, must have the positive sign; therefore the collimation should
be taken as positive when the arc WZ’ is greater than 90°.

In the case where the arc WZ’ is smaller than 90° (fig. 6b), we shall
still have formula (7) with collimation ¢ taking the negative sign.
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In lower transits, in order to retain the same sign convention for c
so as to be able to find the correction Aw, with its sign by means of the
formula (7) it is necessary — as we also did for the case of the inclination —
to take —Aw, instead of +Aw, (figure 7).

Therefore we finally have the general formula :

+ p.s.

Aw, =t csecd g ) (8)
— p.i.
In rapidly reversible instruments such as our AP 100, this error is

automatically eliminated in the course of the observation.

In collimation ¢, however, we include the effects produced by the delays
due to the half width of the impersonal micrometer’s contact and to the
play of the screw.
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In our case formula (8) then becomes :
Aw, = ¢ sec § &)

where the positive sign applies both to upper transit and lower transit.

Finally, taking formulae (4), (6) and (9) into account, formula (2) may
be written :

. .t
T=PO+i(cos¢isingptané)+a(sm¢¢cos«ptan6)+csecﬁ g;lt
and by making :

m=icosptasing n=ising—-acosy

as Bessel did, we obtain the Bessel equation :

T=P,+m+ntand + csecd g}ltt
By putting :
=mztntand + csecd grtt (10)
we finally have :
T=P,+Z

Equation (1) for the determination of astronomic time can therefore
be written

AQ,=a — (P, + X) (11)

in which all the quantities are expressed in sidereal time.
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2. — COMPUTATION OF RIGHT ASCENSIONS
AND THE STAR CATALOGUES

We must first of all concern ourselves with the determination of the
observed star’s right ascension. This is done with the help of star catalogues
which in turn are based on particular systems of reference.

A) Fundamental catalogues

Since the equatorial coordinates of the stars vary on account of the
phenomenon of annual precession, in order to relate the star positions to
a mean epoch which is not that of the catalogue it is necessary to know the
effect of the precession on each particular star.

If we examine the formulae expressing the phenomenon we see that
the annual precession in right ascension is dependent both on this right
ascension and on the star’s declination and that the precession is always
positive, except for stars of great declination having a right ascension
greater than 12 hrs.

But the annual precession varies slowly with time. This is the reason
that precession values for each particular star must be also related to a set
common epoch which is generally the mean epoch of the catalogue.

Consequently, if the epoch to which we wish to reduce the positions
of stars shown in a catalogue differs greatly from the catalogue’s mean
epoch, it will also be necessary to take into account the variation in the
annual precession values in the interval of time. For this reason, modern
catalogues show opposite each star position, both for right ascension as well
as for declination, the variation of the annual precession for a 100 years,
and this is called the secular variation. Sometimes, however, when it is a
question of very accurate positions, and consequently of fundamental cata-
logues, the variation in the secular variation is even given, and this is
called the third term of the precession.

This is not all. By reducing a particular star’s positions taken from
several catalogues to the same mean epoch, we shall obtain a series of
values which will generally include fairly large differences, and which
show a progressive trend depending only on the epoch of observations.

These differences are due in part to accidental observational errors
and to other systematic causes peculiar to a particular catalogue; but they
are due in large part to each star’s own proper motion. The annual
difference, either positive or negative, and arising in either of the coor-
dinates of the star’s real movements, is called the annual proper motion.
This is deduced from the accurate comparison of the star positions obtained
from the various catalogues reduced to a common epoch. It is easy to
understand how important the knowledge of the annual proper motion
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of each star of known position is when drawing up a catalogue. Un-
fortunately we are far from being able to obtain this result, although for
many stars — and in particular all the fundamental stars — the proper
motion is already well determined. In many cases we even know the
proper motion variation with time.

This is the reason why in very modern catalogues we also find printed
beside the right ascension and declination of the stars, the proper motion
and the mean observational epoch, in addition to the reduction factors
already mentioned, — annual precession, secular variation and in certain
cases the third term of the precession.

However this is not sufficient. If we make a comparison between the
positions supplied by two of the catalogues we have mentioned, both reduced
to the same epoch, we shall see that the positions still differ not only
because of unavoidable accidental errors, but aiso as a result of systematic
errors which originate in the considerable differences always present in the
instruments and in the methods used for the observation. This is in
addition to the personal equation for each observer. Modern techniques
have done much to reduce these errors but, for the order of accuracy today
required in astro-geodetic measurements, they exist still. We can therefore
conclude that for each star there is a slightly different position according
to which catalogue is used.

It is to the Heidelberg Astronomic Association that we owe the idea
of establishing a normal system (giving this term the meaning it has in the
Gaussian theory of errors) for star positions supplied by the various
catalogues, in order that the fairly important systematic differences existing
between these catalogues may be reduced to the minimum.

Thus the Auwers fundamental system was born. As the base of this
system are to be found the excellent systematic meridian observations in
Pulkova, Greenwich, Leipzig, Cambridge and Leyden. These observations
authoritatively discussed and coordinated into a simple catalogue have
supplied a first homogeneous nucleus of 539 fundamental stars. In 1889
thanks to AUwWERs himself 303 other stars were added, constituting a second
fundamental catalogue. This catalogue, [2] for which the symbol FC is
used, adopts as reference system the position system of the First Catalogue
of the Astronomische Gesellschaft (AGK 1) and uses the Struve constant
for the precession.

This first fundamental system of AUuwERs was subsequently (1907)
revised and perfected by J. PETERs and this work gave rise to a second
catalogue in the NFK series, containing the positions of 925 stars in the
two hemispheres, and for many years this catalogue was the basis of the
Berliner Astronomisches Jahrbuch (B.A.J.).

This last catalogue [3] is the result of the extension of the FC to the
southern hemisphere. The system and the individual values of each star
position and of the proper motion are based on the observations carried
out from 1745 — 1900 and on the Newcomb precession.

In 1934, KoprrFr, Director of the Rechen Institut in Berlin, revised
this basic catalogue of Auwers and published new positions for 1535 stars
referred to 1925 and to 1950. Since 1941, by decision of the International
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Astronomic Union, this catalogue [4], (known as FK3 for it is the third
of the series) has been the basis for all almanacs.

The quality of the observations on which this system was based from
the time of its first edition led almost all the astronomers contemporary
with AUWERs to relate their catalogue to this system. AUwERs himself,
in an important study (5), gave a resume of all the research he had carried
out in order to bring the results of numberless observations into this
system.

Side by side with AUWERS’ grandiose system are others concerned with
still higher standards of accuracy and homogeneity as their aim, among
them the works of the American NEwcomMB (1898) and later Boss (1903,
1909). In 1938-39 Newcomb’s fundamental system was again worked out
by EicHELBERGER. These catalogues are known as G.C. and N. 30. There
is a difference, although a small one, between the two systems, but the
system F.K. 3 is recognized as the most accurate and homogeneous.

In the meanwhile, observations had accumulated. 72 modern catalogues
had already been published when Kopff, at the request of the International
Astronomic Union started to revise F.K.3 to take account of both new
observations and the so-called equation of magnitude.

Thus we come to the F.K.3 R [6] system which was drawn up first,
and finally to the present F.K. 4 [7], today considered as being the most
accurate and homogeneous system.

For the system for right ascensions (with which we are dealing) from
the 4th fundamental catalogue, the compilation sources are the following :

a) as and a. (xs/a« catalogues) have been deduced from at least 25
catalogues, to name them :
9 from the Capetown Observatory (Reversible Transit Circle);
1 from Cordoba (Meridian Circle);
4 from Greenwich (Airy = Transit Circle; Cooke = Rev. Transit
Circle);
3 from Pulkovo (Transit Instrument);
6 from Washington (4 are six-inch and 2 nine-inch).
b) as (s catalogues) from 7 catalogues;

3 from Konigsherg (iwo by meridian circle, 1 by Transit
Instrument);

1 from Munich (Transit Instrument);

2 from Ottawa (Reversible Transit Circle);

1 from Potsdam (Transit Instrument).
¢) aa (aa catalogues) from two catalogues, one the Bergerdorf (Transit

Instrument) and the other the Greenwich (Airy = Transit Circle).

d) The p system from 11 catalogues :

3 from Capetown (Rev. Transit Circle);

2 from Greenwich (Airy = Transit Circle);

3 from Pulkovo (Transit Instrument);

1 from Washington (Six-inch);

1 from Washington (Nine-inch).
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This amounts to a total of 45 catalogues. For further particulars about
this system, the reader should refer to the study carried by Griese [8].

The F.K.4 is therefore the most accurate catalogue at our disposal
today and if there are systematic differences [9] between this catalogue
and the G.C. and the N.30 we are inclined to attribute them, at least in
great part, to the errors that these last two catalogues contain.

Following a decision of the International Astronomic Union (Dublin,
1955) the Astronomischen Rechen-Institut of Heidelberg publishes yearly
the mean and apparent places of the 1535 stars of the F.K.4 Apparent
Places of Fundamental Stars (A PF S) and this is the annual catalogue
used for highly accurate geodetic-astronomic determinations like ours.

The rlght ascension value ¢ deduced from the A P F S represents the

Artr slabhln ~t mrscant
QaQia auauaoic azc prescend.

B) The computation of the right ascension value from the APFS

In the APFS the apparent places of fundamental stars are tabulated
at 10-day intervals.

The preface to this volume recommends the use of the second
differences when interpolating for the computation of right ascension.

We shall now study the question thoroughly to see exactly what order
of accuracy is achieved by considering the second differences in the inter-
polation but neglecting those of the third order.

Let x 5, x4, Ty, T;, T3 ... be a certain number of equally spaced
tabulated values of the independent variable and y_,, ¥ 4, Yo ¥, Yo ... the
corresponding values of the dependent variable. To illustrate the notations,
we give the following table.

X_»
A,
X_4 A’
A'_ . AI,V,I
%, A Ay’
A,l Allu
X, Ay
A
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We shall call the difference with subscripts 0 and 1 the central difference
for x, namely : ,
A, =y =X
Ag =y, — 2ty
Ay =y, ~ 2, +y,
The basic interpolation formula which is valid for any distribution of
the values of x is the Lagrange formula :
x - x))x—x,).. . (x o Xxp) N (x —xg)(x —x3) ... (x  Xx,)

(xg — X1) (xg — %) - (xg %) !

(x; ~xg){xy — xp) ... (x; — Xp)

where f,(x) is the p-degree polynomial whose numerical value coincides
with the y-value for known values of xy r;, ... T,.

However, the tabular interval in the ordinary tables is usually chosen
so that a polynomial interpolation may always be possible and legitimate.

In this case, the problem is solved with the Lagrange formula.
We shall ignore the case in which the function to be interpolated is

not a polynomial because in practice this occurs very rarely, and never
in the astro-geodetic table interpolations.

The problem we have to solve is to determine in the interval (x,, x,)
a value of z such that x = x, + n h, where h is the tabular interval (constant
in our tables) and n an auxiliary variation between 0 and 1.

Let us write the Lagrange polynomials that coincide with y first for

x, and x;, then for x, r, and x; and so on, increasing each time by one
unit the number of coincidences (the first will obviously arise when

T=1xy : )
f, =nn- 1)[ Y Q]=yo+nA’,

n—-1 n

:n(n - D(n -2) Yo 2}’1 Yo
2 2! n—-2 n-1 n

......................................

By expressing the differences f, — f,, » with the help of suitable differences
we obtain : nin — 1)

nn -1y
fa — fl 21 Wy =2y, tyo) = —_2! Al
(n- Dn- 2 —1 -2
fa_fzznn n )(y3-3y2+3y1~y0)=n(n )(n )

The polynomial sought, whose degree can be limited at will, therefore
is :
nn — I)A,l, + +n(n - D...n—-2k+1)
2! (2k)! k
which is the Newton interpolation formula.
Limited to its first two terms the f function reduces to a linear

expression whose value coincides with the value of y for n =0 and n = 1.
The linear interpolation is consequently justified when the first differences

f(n) =y, +n A} +

+ .
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are constant as in the case of trigonometrical tables, but for our case linear
interpolation is not sufficient.

For the APFS interpolation computations, however, the Bessel formula
is most suitable and we shall later see the reason.

The use of this formula has many more advantages than Newton’s
formula.

Let us go back to the expressions given by the central differences, and
let us introduce into the Lagrange formula successively the y values
contained in these differences. We shall then obtain the following poly-

nomials : y y
fi=nn - 1)[ ! —o]=y0+nA'l

n—1 n
_+thnn - y@=f ¥ 3y NN 1
2 3! n—-2 n-1 n n-—1
whenee : ( 1 5 |
_ :nn_" ” " n ’
f—fi 0D [Ao AT A;,]

Thus, the Bessel formula takes the form :
nin- 1) nn—-1)2n-1)

12

fm) =y, +na\ + (Ay + AY) + AT+

We see straight away the advantages that the Bessel formula has over
the Newton formula in respect of ease of computation.

The Bessel formula uses symmetrically distributed values of the
function and furthermore only uses the central differences. We also note
that even number coefficients which cancel out for n =0 and n =1 are
maximal in absolute value for n = 0.5. Moreover, the odd number coeffi-
cients cancel out for n = 0.5. Let us now compute the maximum value
of the coefficient of the third order difference. By development and deriva-
tion, we have the following equation : 6 n?—6n—1 =0 which allows

V3
both solutions r’ =1/, &+ ——6—— .

Consequently, for these n values, the following coefficient becomes
maximum :

A —neEd -1
12 -

Thus if the third difference A7’ is not higher than 82 in absolute value,
by ignoring this difference we only make an error smaller than half a
unit in the last significant figure.

Computing the same quantity with the Newton formula, we find
Rg,. = 0.42265, and the upper limit mentioned above for the third difference
must not exceed 7, otherwise we have at least a one unit error over the
last figure expressed.

As can be seen, this maximum limit for the third difference of the
Bessel formula is 9 times greater than in the Newton formula.

3
zl/_— = ¥ 0.00802
216
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In our APFS tables the third difference for the right ascensions reaches
a maximum of 8 and sometimes even 9. Consequently, if we compute the
interpolation using the Newton formula we must sometimes take into
account the third differences, whereas by employing the Bessel formula we
may always stop at the second differences.

Finally one last point regarding the suitability of computation with
the Bessel formula should be pointed out. Let us consider the following
differences :

A, =y Ay =y — o + ¥
A'_1=yo‘yh| Alllzyz_zyl +yn
that is :
Ay +AY =4, — A",
Bessel’s formula can thus be writien as :

n(l — n)
—
All the first differences being shown in the APFS, we can then carry
out the interpolation without the need to compute the second differences.
Since the interval for x in the APFS is 10 days, and knowing that :
ANAPLES = 0h57m = —0.04 d

n(l—n)
the values of — —;—— as a function of d were computed in table 1,

f(n) =yo+nA|— ah,—A')

d being the difference between the day when the observation was made
and the day given in the table.

TaBLE 1
n{l — n)

d Nya 2

1 0.096 — 0.022
2 196 39
3 296 52
4 396 60
5 496 62
6 596 60
7 696 53
8 796 40
9 896 23
10 0.996 — 0.001

C) Computation of the Aa correction for diurnal aberration

Obviously the local effect of diurnal aberration is not included in the
right ascension values of the stars of the APFS,

As is well known of course, there is a difference between the observed
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star’s direction and the initial direction of the light ray, and this is because
the speed of celestial bodies in general is not entirely negligible in relation
to the velocity of light.

The law of aberration (from the latin aberratio = delusion, error) can
be simply stated thus : the apparent direction in which a celestial body is
seen, as a result of the effect of light aberration, lies in the plane determined
by the true direction and the speed vector of the observer (the direction of
the apex of the observer’s movement). This apparent direction is displaced
in relation to the true direction towards the speed vector.

Designating by « and &’ the angles formed by respectively the true and
the apparent directions with the direction of the observer’s speed (positive
in the direction of the apex) the x—x’ angle of aberration will be given by :

x x'= i sinx = ksinx

c
where » is the observer’s speed, ¢ the velocity of light and k the aberration
constant.

In the case of diurnal aberration the observer’s speed v will be due to
the rotary motion of the Earth. Taking into acount the fact that the earth
has the form of a revolving ellipsoid (with Hayford data) a point O on its
surface, having geocentric latitude ¢’ and a vector radius p, as a result of
earth’s rotation will describe during a sidereal day a small circle of radius
r =p cos ¢’ in 86164 mean solar time seconds.

Assuming p = a = 6 378 km, we shall obtain :

_ 2mp
¥ T 86164

cos ¢ = 0.464 cos ¢ km/sec

from which the following value for the diurnal aberration constant can be
taken :

k = 206265 — = 0,32" cos ¢’ = 0.0213° cos ¢'
C

The angle of diurnal aberration expressed in seconds of time is then
given by 0.0213¢ cos ¢’ sin z, = being (as we know) the angle formed by
the true direction of the celestial body and the speed vector of the observer,
that is to say for this case the direction of the apex of earth’s diurnal
movement. Now it is clear that this apex is the East point.

Knowing the position of the apex on the celestial sphere, the problem
of defining the influence of diurnal aberration on a star’s equatorial co-
ordinates consists therefore of solving the following elementary problem of
spherical astronomy. Assuming that a star’s position on the celestial sphere
undergoes a displacement from S to §’ such that S§’ can be expressed by
SS’ = k sin x, k being a very small constant and x the amplitude of the
great circle arc passing through S and S, and falling between S and its
intersection with a fundamental great circle (in our case the celestial
equator), determine the variations of the corresponding spherical orthogonal
coordinates for S (%,

(*) We must remember, when solving the above-mentioned problem as it applies to
our case, that the East point is separated from the zenith by 90°.
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For the variation of a star’s right ascension due to diurnal aberration
we then have : Aa = 0.021°* cos ¢’ sec & cos &.

When the star’s declination $ is not too large (and consequently when

sec § is not large) we may replace the geocentric latitude ¢’ by the ¢
astronomic latitude value.

If we consider the effect of diurnal aberration at the time of a star’s
transit at the meridian, the fundamental astronomic relation being given
by Ax = — At, in which t is the star’s hour angle, we now observe that at
the upper transit (u.t.) we have ¢t = 0°, and at the lower transit (1.t.) { = 180°,
whence designating the star’s apparent hour angle by ¢ we obtain :

ut. ¢ =0.0213%cos¢ secd ,
8
Lt. ¢ = 180° + 0.0213% cos ¢’ sec &

It follows that the diurnal aberration does not alter the star’s
declination at the time of its meridian transit and, because t’ is smaller
than 0 at the u.t. and larger than 0 at the l.t., the meridian transit is delayed
at the u.t. and in advance at the Lt., which is to say that the right ascension
appears to be increased at the u.t. and decreased at the L.t.

Thus, if we wish to make this correction to the right ascension
computed from the APFS we must use the following formula :

Aa =+ 0.0213% cos ¢ sec § g ;ltt

If, however, we wish to make this correction to the ohserved time P, we
obtain :

At = + 0.0213% cos ¢’ sec & 3 :ltt
Now, for a given observatory, the factor k = 0.0213* cos ¢’ being
constant, we may write the effect of diurnal aberration thus :

u.t.

At = F ksecd %
Lt.

which compares with a collimation error.

D) The A’q correction for short period terms of nutation

When, in addition to precession, nutation is also taken into account
we say that the positions of the equator, the ecliptic and the equinox are
true or instantaneous, and that the stars’ heliocentric coordinates referred
to these positions are true. Thus in order to determine the true coordinates
of a star at a given time we must take into account the nutation effect
(in longitude and obliquity) on the « and & coordinates.

Let us examine the question more closely under the more general
problem of precession and nutation.
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The movement of the vernal point on the ecliptic under the effect of
the Sun’s and the Moon’s attraction (the effect caused by the Moon being
predominant) on the bulge of the terrestrial Equator is not uniform, as is
easy to understand. In fact, we must first of all take into consideration
the fact that the orbits of the Sun (apparent) and the Moon in relation to
the Earth are not circular but elliptic, and consequently the distances to
the Sun and the Moon from the Earth vary periodically. Also, the Moon
moves not in the plane of the ecliptic but in a plane at an angle of about
5°9” to this plane. To the periodic variation of the distances of the Sun
and the Moon there will obviously correspond a variation in the lunisolar
disturbing action for which, in the movement of the vernal point, we note
the existence of two movements. One is progressive (secular) and can be
expressed by a series of the powers of time ¢ :

at + bt* +ct’ + ... (12}
the other is periodic, and may be expressed by means of periodic functions
of the Sun’s longitude ® and the Moon’s longitude Ln :

Isin 20 + msin 2Ln + . .. (13)

The progressive movement of the equinox on the fixed ecliptic is called
in fact “ lunisolar precession in longitude ". The periodic terms constitute
the lunisolar nutation in longitude.

Furthermore, from celestial mechanics we know that pole L of the
lunar orbit has a periodic motion about the pole of the ecliptic which is
completed in 18 2/3 years. This phenomenon introduces two new facts.
Firstly, the obliquity ¢ of the ecliptic cannot remain constant. Secondly,
to the periodic terms expressed by the aforementioned relations we must
add other periodic terms which are functions of longitude Q of the lunar
orbit’s ascending node because a periodic motion on the ecliptic (with the
same period of 18 2/3 years) of the Moon’s ascending node is correlated
to the motion of L in relation to the pole of the ecliptic.

These periodic terms, of the form
u sin £ + v sin 2Q (14)

constitute the nutation of the lunar nodes in longitude. The total nutation
in longitude AW will thus be obtained from the nutation of the Moon’s
nodes and from the lunisolar nutation given respectively by formulas (13)
and (14).

Hence, substituting numerical values for the constant coefficients in
both expressions we obtain :

Ay = — (17.234" + 0.017" T) sin  + 0.209" sin 28 — 1.272"5in20,,  (15)

--0.204" sin 2Ln.. ..
where the coefficient of sin Q varies slightly with time T (expressed in
centuries from epoch 1900.0 in the formula we have given) and where ®,,
ts the mean longitude of the Sun.
As regards the obliquity ¢ of the ecliptic, its variation Ae¢ is also of a
periodic nature, and its analytic expression is entirely similar to that for
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AU, except that the sines must be replaced by cosines and the numerical
coefficients by other numerical values :

Ae=(9.210" + 0.001" T) cos & — 0.090” cos 2§2 + 0.551" cos 20, (16)
+ 0.088" cos 2Ln . ..

Ae is called nutation in obliquity. The principal term is the term in
cos Q, and its coefficient 9.210” is called the constant of nutation.

Let us now return to the computation of the true or instantaneous
coordinates of the star.

Starting from the coordinates ¢, &, of a star for epoch 1900.0, let us
determine the true coordinates for any date 1900 4t 4 t, where ¢{,
expressed in whole tropic years, is the difference between the year in
question and 1900, 1 being the fraction of the year corresponding to the
date. Let ¢, 5, be the mean coordinates and o, &, the true coordinates
for the star at respectively the epochs 1900 - t (beginning of the year) and
1900 + t 4 1. We already have the identities :

a, — o, = (a, - a) + (o, - a,)

14

8, ~ 8y = (8, — B8o) + (5, — 8,)

which make the determination of the true coordinates at the date
1900 4 ¢ 4 ¢ depend on the knowledge of the mean coordinates ¢, 5, at
epoch 1900.0, through the computation of differences. (We shall henceforth
consider only the right ascensions).

(o, — @) an

(@, —a,) (18)

The difference (17) between the mean coordinate at the beginning of
1900 4 t and at the beginning of 1900 is computed by the process deseribed
when we spoke of star catalogues, that is with

do 1 d¥ay , |
—ag=(—) t+ (=) t*+—
= %o dt)o 2 \ar? /; 6(

+ variation séculaire + troisiéme terme + ...

oy .
3 ) t” + ... = précession annuelle
dat” /,

and furthermore taking the proper motion of the star into account.
The (18) differences, on the contrary, depend on :

a) the effect of precession during time 1;

b) the effect on g of the nutation in longitude AY¥ given by (15);
c) the effect on ¢ of the nutation in obliquity A¢ given by (16);
d) the effect on g of true motion during time «;

that is :
a —a, =p, +da(P)AY + da(e) AE + pu, 7 a9

The first and the fourth terms are deduced from catalogue data.
We must, however, dwell on the terms :

do(Y) Ay + da(e) Ae
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Let us firstly try to put the expression dg (¥) in explicit form. Let us
therefore solve the following problem. Given that the longitude ) of a star
undergoes a variation A}, determine the corresponding variations dg and
d§ of its equatorial coordinates o and ¢&.

Let us recall that the set of formulas allowing the equatorial
coordinates & and § to be transformed into ecliptic coordinates X and
is the following :

sind = sinfBcos € + cos Bsine sin A

cos & cos a = cos fcos A (20)
sin § sine + cos & cose sin«

cos B sin A

Considering ¢ (the obliquity of the ecliptic) and 3 (the ecliptic latitude)
as constants, by differentiating the first relation of the formulas (20) we
obtain :

cos 8§ db = cosBsine cos A dA
that is :
cos B cos A

dd = dAsinge ————— = d\ sin€ cosa
cos &

Then, differentiating the second of the formulas in (20) we obtain :
sin § cosadd + cos 8 sin ado = cos f sin A dA

and taking into account the expression just found for dg :

cos § sin a dae = dA{(cos B sin A — sin & sine cos?a)
By substituting in this expression the value of cos § sin ) given by the
third expression of (20) we shall obtain :
cos & sin & doe = dA (sin 8 sin € sin? & + ¢cos 6 cos€ sin a)
whence :

do = dA(cos € + sin € sin a tan J)

To return to our own case, the variation d), arises from the nutation
in longitude AW, and consequently we may conclude :

do(Y) = cos € + sin € sin a tan & 2n

In order to make the expression du (¢) explicit, let us solve the follow-
ing problem. Given that the obliquity of the ecliptic ¢ increases by de, find
the corresponding do and d® variations for the equatorial coordinates o
and &.

Differentiating the first expression in (20), and this time considering
X and 3 as constants, we have :

cos 8§ d& = — sin Bsine de + cos f cos€ sin A de

Bearing in mind that, by formulas for transformation of coordinates,
we also have :
cos & sina = — sin Bsine + cos B cos € sin A

we shall immediately obtain : d& = dz sin «.
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Differentiating the second expression of (20), and substituting therein
the value for d? just found, we finally have : dg = — dg cos ¢ tan &, which
for our case becomes :

da(e) = — cosa tan d 22)

Thus, we may conclude that the total amount of right ascension
nutation is : A’a = do (¥) AT + dg () Ac.

However a part of this quantity has already been taken into account
in the places computed in the A PF S, but the short period terms given by
the small terms in the series (15) and (16) cannot be taken into account in
Almanacs giving places for every ten days, the reason being that as they
are very small numerically they would not be supplied by the interpolation.

For highly accurate observations such as ours we cannot however
neglect these short period terms in the right ascension computation : they
must accordingly be taken into account.

The A PF S in fact supplies the values for do (¥) and dg (¢) expressed
in seconds of time for each star — that is by dividing the expressions (21)
and (22) by 15, whereas a special table — Table I, Short-pericd terms of
nutation — supplies the values of d¥ and de, i.e. that part of the AU and
Ae terms which cannot be included in the computation of the Apparent
places of 10 day stars.

The correction to be made is thus :

Ala = da(y) dy + da(e) de

It is not at all easy to interpolate these magnitudes. The value of A’
for two consecutive days (to include the day of observation) must be
computed, then the interpolation between these values must be made for
the time of the transit observed, and this can be estimated (in fractions
of a day) with the help of the expression : o — sidereal time at 0 hours
that can be immediately deduced from the U.T. column of the APFS in
view of the values of Italian longitudes.

In this we have computed (or rather have ascertained the way in
which we must compute) the Mayer formula term: o + Aa + A’e expressed
in sidereal time.

However, since the observation is made with a quartz clock regulated
on mean time, a 4+ Ax | A’« must also be expressed in the same unit.
Obviously, for transforming sidereal time into local mean time, the value
of the longitude of the place of observation must be precisely known, and
it is this value which we have set ourselves to determine.

Let us assume then that we know the approximate value for the
longitude of the place of observation, which value we shall call the
conventional longitude ). The exact longitude ), will be given by :
Ao = Ac = AX. Designating the sidereal time at Greenwich for a given day
at 0 hours T.U. by Tghg, and the correction to be made for transforming
an interval of sidereal time into a mean time interval by Ag we shall have :

AR, =a + Ao+ A'a + N\, — Tghg — A0
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where AR, is the star’s computed right ascension, corrected for the influence
of short-period terms of nutation and diurnal aberration, expressed in
mean time referred to the conventional meridian A..

As we have seen, it is easy to interpolate with the APF S and to
compute AR, but on account of the amount of work which a longitude
determination involves we have preferred to carry out the AR, computation
for each day of the years 1967-1968 by an electronic computer. The
programme adopted was the EUDOSSO, developed by Professor Aldo
Kranic of Aquila University.

The following are the essential data.

1) A card giving the initial day (IGI), the initial month (IMI), the
initial year (IAI), the final day (IGF), the final month (IMF) and the final
year (IAF), Then the conventional longitnde of the observatory, expressed
in hours, minutes and seconds (IQLON, IMLON, SECLO®N), the latitude
expressed in degrees, minutes and seconds of arc (IGLAT, IPLAT, SECLAT)

and the observatory’s name — over a maximum of 16 columns in all.
2) A card giving the star data (EUCLID programme).
EUDOSSO then supplies the following final values :

Ist column : The date;

2nd column : The corresponding day (DJ);

3rd column : AR, (at transit) for the conventional longitude A.;
4th column : The declination.

Data D.J. Passaggio Declinazione
1 11967 39492.139 15"20M59%576 42°8' 59775
2 11967 39493.137 15 17 3.645 42 8 59.58
3 11967 39494.134 15 13 7.716 42 8 59.40
4 11967 39495.131 15 9 11,789 42 8 59.23
5 11967 39496.128 15 5 15.862 42 8 59.08
6 11967 39497.125 15 1 19936 42 8 58.95
7 11967 39498.123 14 57 24.010 42 8 58.83
8 11967 39499.120 14 53 28.082 42 8 58.71
9 11967 39500.118 14 49 32.154 42 8 58.59
10 11967 39501.115 14 45 36.224 42 8 58.45
11 11967 39502.112 14 41 40.295 42 8 58.30
12 1 1967 39503.109 14 37 44.365 42 8 58.13
13 1 1967 39504.106 14 33 48.436 42 8 57.93
14 1 1967 39505.104 14 29 52507 42 8 57.72
15 1 1967 39506.101 14 25 56.580 42 8 57.50
16 1 1967 39507.098 14 22 0.655 42 8 57.27
17 1 1967 39508.096 14 18 4.730 42 8 57.04
18 1 1967 39509.093 14 14 8.807 42 8 56.82
19 1 1967 39510.090 14 10 12.884 42 8 56.62
20 1 1967 39511.087 14 6 16.962 42 8 56.42
21 11967 39512.085 14 2 21.041 42 8 56.24
22 11967 39513.082 13 58 25.119 42 8 56.07
23 11967 39514.079 13 54 29.196 42 8 55.91
24 11967 39515077 13 50 33.272 42 8 55.74
25 1 1967 39516.074 13 46 37.348 42 8 55.57
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Data D.J. Passaggio Declinazione
26 1 1967 39517.071 13 42 41423 42 8 55.37
27 11967 39518068 13 38 45498 42 8 55.15
28 1 1967 39519.065 13 34 49.574 42 8 54.91
29 1 1967 39520.063 13 30 53.652 42 8 54.65
30 1 1967 39521.060 13 26 57.732 42 8 54.39
31 11967 39522058 13 23 1813 42 8 54.14

1 21967 39523055 13 19 5896 42 B 53.91
2 2 1967 39524.052 13 15 9.980 42 8 53.69
3 21967 39525.049 13 11 14064 42 8 53.49
4 2 1967 39526.046 13 7 18.147 42 8 53.30
5 2 1967 39527.044 13 3 22229 42 8 53.11
6 2 1967 39528.041 12 59 26.311 42 8 52.91
7 21967 39529.038 12 55 30.393 42 8 52.70
8 21967 39530.036 12 51 34474 42 8 52.47
9 2 1967 39531.033 12 47 38556 42 8 52.22
10 2 1967 39532030 12 43 42639 42 8 51.96
11 2 1967 39533.027 12 39 46.723 42 8 51.68
12 2 1967 39534.024 12 35 50.808 42 8 51.40
13 2 1967 39535.022 12 31 54.895 42 8 51.13
14 2 1967 39536.019 12 27 58984 42 8 50.85
15 2 1967 39537.017 12 24 3.074 42 8 50.59
16 2 1967 39538.014 12 20 7.164 42 8 50.35
17 2 1967 39539.011 12 16 11.255 42 8 50.12
18 2 1967 39540.008 12 12 15346 42 8 49.90
19 2 1967 39541.005 12 8 19437 42 8 4970

The computation example given relates to star No. 869 in Fh 4.

Computation of a star’s transit for every day of the year takes 10
seconds. '

Further details may be obtained from Bulletins Nos. 1 and 5 of the
Ufficio Programmi e dati de I'Aquila.

3. — THE EQUATION FOR LONGITUDE

We must first of all point out that in a highly accurate longitude
determination the set of direct observation instruments must always be
coupled to a radio receiver set in order to pick up the international time
signals. This reception operation, repeated several times a day, will allow
us to determine independently of the observation the AQ value of the quartz
clock correction at the time a given star is observed, if we make exception
of small corrections in reception which can be made later on. The
correction can therefore be made directly to the observed value P, and
we shall then be able to consider that this AQ value has already been
corrected, although for purposes of simplicity we shall continue to denote
it by P,.
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The transit instrument observation will therefore supply us with the
following equation :
A= AR_ - (P, + Z) (23)

We should point out that the values for the small terms of the
variation in Earth’s rotation and for polar displacement are still included
in the A) value. These corrections will not be made until later on.

The computation could be terminated at this stage, i.e. the observed
time P, has been corrected for the ¥ quantity. However, proceeding in this
way, the accuracy obtained for the final result of AX is of the order of
+ 0.025s, and therefore insufficient for highly accurate determinations.

Let us therefore see how the successive corrections are determined.

A) Determination of I,

It is usual, for a first reduction of the observations, to take the value
of the mean inclination i,, of the night’s observations as the value for the
inclination of the instrument’s axis of rotation.

Every T value for each star in the programme will therefore be
computed, introducing an error i — i,, where i is the inclination expressed
in seconds of time for each star observed.

Let us seek the correction to be made to this error :
T=P, + (i, + A)(cosp £ sinyptand) + a(sing cosptand) + csecd
=P, + Z + Ai(cosy t+ sinp tan §)

Consequently the correcting term

T, = Ai(cosy t sinyptan §) ;lt ’
i.e.

u.t.
Lt.

%, = Aising(cotany * tan §)

for each observed star must be added to the equation AX = AR, — (P, + Z).

B) Determination of %,

Further, to obtain the value of i expressed in seconds of time we must
first know the value of the level’s sensitivity g with i* = i? g*, where i* is the
value of the inclination of the instrument’s axis of rotation expressed in
graduations of the level.

However, as we saw in the first of this series of articles, the value of ¢
is a function of temperature t°. Consequently if, during reduction of an
observation carried out at a certain temperature f, we take a fixed value
of g, we then introduce the error g, — g, into the result.
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To take this influence into account a new correction, %,, must be made.

Denoting the r-th star’s inclination value, expressed in graduations of
the level, by i?, the correction to be made will be :

u.t.

Z, =& Adsing(cotany * tan$, ) Lt

C) Determination of I,

As with the sensitivity of the level, the value of the micrometer’s rate
varies in function of temperature . This variation can be expressed for
our purposes by simplifying the general formula adopted by the Interna-
tional Latitude Service for reduction of observations, i.e. R, = Ry o (t — #;)
where R, is the value of the micrometer’s rate at the initial temperature f{,.

This variation has an influence on the value of the collimation ¢
which in the case of a quick reversing instrument includes the half-width
s of the impersonal micrometer’s contacts and the effect due to the delay
caused by the play p of the micrometer screw.

Obviously, the correction is given by AR = R,— R, where R, is the
value fixed at the time of the first reduction. As this variation influences
only the collimation value, then denoting the collimation expressed in
graduations of the impersonal micrometer drum by c¢? =5+ p, we
obtain :

c¥(R,+ AR) sec 8§ =c?P Rfseca + c?PARsecd =csecd + ¢? AR sec §

The correction to be made is therefore :

Z,=cPARsecd

D) Determination of ¥,

The other correction to be made is called the residual collimation
correction. Included in the error are all the effects caused by the lateral
flexions of the instrument (in function of the observed star’s zenithal
distance) which make the collimation vary by a quantity Ac when we
alter the position of the axis of rotation during the course of the observation
from position 1 to the opposite position 2. This collimation Ac is computed
by determining the means P, and P, for the pulses given in the two
positions of the eyepiece. The collimation of the middle observing thread
respecting the r-th star in the programme will be given by :

(P, — Py,
D e ———— c
2sec d, r
The mean c, of these ¢, values for each star in the observed

programme will give us the mean collimation for a night’s programme.
The deviations Ac = ¢,— c,, will represent the corrections to be made to
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each observed transit P,. In other words, for each star we shall have the
correction 3, = Ac sec §.

E) Determination of };

Finally, the last correction to be made concerns the error produced
by the observer’s personal equation.

In the observations carried out with the Bamberg type transit
instrument the personal equation arises chiefly as a result of motion. That
is, the observer when following the star tends to keep the impersonal
micrometer thread continually either before or behind the centre of the
star image.

This distance d depends principally on the observer and the instrument
used. Denoting this distance, expressed in seconds of time, by e, and
relating to an equatorial star observation, for a star whose declination g is
not zero we shall have : d = + e sec &, adopting the apparent motion of
the star in the ocular field as the positive direction. This will be + e sec §
if the observer tends to put the thread before the star image, and — e sec &
if he puts it after,

To find this correction we shall proceed as follows. Let us write the
longitude equation thus :

AR, — Py --csecd —Z, - Z, -Z,-Z, - AN—m =ntan b+ esecd
The quantity
AR, — Py, —csecb X2, -X,-Z;,-Z,=H
is a known term, whereas the quantity — AX — m = K is constant for a
series of determinations made during one night.
Thus the preceding expression may be written

u.t.

Lt. (24)

H+K=esecdtntand 3

Let us now consider separately the equations of expression (24) which
concern observations of h stars non-circumpolar at the place of observation
and of stars circumpolar at both the upper and the lower transit :

H, + K = esecd, + ntani,
H,+K=esecd, + ntan,
H,+K=esec, - ntan§,

Combining the first equation with respectively the second and then
the third expression we obtain :

H,, H, sec §,, - sec §,
= —e =n,. -- eS8
tané,, — tan§, tan 8, — tan §, -
H, -- H, sec 8,, — sec §,,
= n, tel

n = =
tan§, — tan§, tan §,, + tan §,
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where n,, and n,; are n values determined by stars circumpolar at both
the upper and the lower transits.

The values of S and I for the Naples programme combined with pairs
of upper and lower transits for circumpolar stars taken from the FK 4
Catalogue are the following : S = 0.89 and I = 0.73, therefore :

nw+n,t_S—I
2 2
n,—n,=e(S+1I)

e=n—0.08¢

n:

1.62¢ (25)

We can see from these expressions that the personal equation
influences the determination of n by a maximum of some hundredths of
a second of time, whereas there is a systematic difference between the
values of n (and consequently also of the instrument’s azimuths) that are
respectively determined by the observation of circumpolar stars at their
u.t. and their Lt

From (25) we take the value of e :

e = Ry — Ny - Ry — Ay
S+1 1.62

for the Naples Astronomic Observatory.

The correction for the error in the observed time P, produced by the
personal equation is therefore :

n,—n
s =H sec &
In practice this correction can be made to the final A), using the
formula :
X, =esecd

where sec § is the mean value of the sec &, of the r stars in the observed
programine.

The rigorous expression for the X; correction is the following :

5. = 5 S —1,Z tang,
s Tesecd - — r

—-tan gp)e

where the subscript r refers to stars in the observed programme. (See

N. SToYx0 : Sur la mesure du temps et les problémes qui s’y rattachent,
1931).

We have in no way neglected the second term, for in our programme
we have proceeded in such a way that:
Z,tand,
r

~tanp =0
as we shall see.

In conclusion, the equation for determining a place’s longitude with
a transit instrument is finally the following :

AN+ Z,=AR, ~ (Pp +Z+Z,+Z,+Z,+Z,)
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with X =mtntand, + csec)d, g?tt
. u.t.
2, = A, sing(cotany £ tan §,) g Lt
R . u.t.
Z, =if Ao sin g(cotan ¢ * tan,) g Lt

Xy =cP AR secd,

Z, = Acsec b,

Z;=esecd

if, before starting the campaign, we have inade an accurate preliminary
study of the instrument we already know the equations for the level’s
sensitivity and the play of the impersonal micrometer in function of the
temperature, as well as the expression for residual collimation in function
of zenithal distance. The first reduction can therefore be made taking the
2, 21 Za Ls, T4 corrections into account, whilst the ¥, correction must be
determined during the course of the longitude campaign.

4, — COMPUTATION OF P,, THE TIME OF THE OBSERVED TRANSIT

As we have seen, the whole longitude determination is fundamentally
based on the value of P,, which is the only value experimentally obtained.

The P, value for the observed transit time is deduced from observations
with an impersonal micrometer linked to a clock, which is in turn quartz-
controlled.

The observer follows the star with the movable thread, holding the
thread continually on the star over that part of the eyepiece field situated
before (in the direction of the star’s relative motion in the eyepiece field)
the central fixed thread of the eyepiece cross-wires, and he then reverses
the eyepiece on its supports, and continues to take a sight on the star (which
at that particular time will have a reverse relative motion) on the same
eyepiece track as the one used for the first part of the observation.

Let us now see what errors can be committed during this basic
measuring operation.

We know that the nearer the star is to the pole the greater is the error
in the estimation of the transit time P,. From the analytic point of view,
since this error depends on countless others, it has not yet been possible to
lay down a rigorous law for the phenomenon but, after studying a large
number of series of star transit observations we have realized that this
phenomenon depends on the rate at which the star crosses the eyepiece
field. Consequently, its best representation is given by the following
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expression : p, = ¢ sec 3, where ¢ is the error in the estimate of an equatorial
star’s transit (5 = 0°).

There is much literature on the subject, and for the bibliography the
reader is referred to the present author’s article published in 1963 [10].

In an unpublished work I have assembled the ¢ values deduced from
about a hundred articles on the subject, and from the most modern and
fullest sets of observations (more than 1000 transits). I have computed
the weighted mean, and have obtained the value of : ¢ = + 0.03s which is
already fairly well known, and slightly different from the value determined
by observations carried out with older instruments (¢ = + 0.025s), and
furthermore confirmed by computations of the observations of the last
World Longitude Campaign during the LG.Y. (1957-58) conducted with
ultra-modern means and techniques.

Table 2 gives the values of ;. = f(8)

TABLE 2

5 u L) M L) 1]

0° 1+ 0.025s 65° 1 0.059s 82° + 0.180s
10 25 70 73 83 205
20 27 72 81 84 239
30 29 74 91 85 287
40 33 76 103 86 358
50 39 78 120 87 478
55 44 80 144 88 0.716s
60 * 0.050s 81 *+ 0.160s 89 t 1.432s

As can be seen, from 75° in declination the y value increases to the point
that it concerns a second of time. From this we immediately deduce that

for the U.T. observation it is generally necessary to exclude stars of large
declination [11].

However we must note that it is here a question of averaged sums
based on a very large number of values. The individual error can sometimes
reach much larger values, even with very experienced observers. (See, for

example, the lengthy series of meridian observations at Greenwich or at
Paris).

Determination of P, is consequently the most delicate operation of
the whole observation, and the greatest error in determining longitude
belongs exclusively to this particular determination.

However, this is most generally forgotten, and other errors - such
as those of the Catalogues — are attentively studied. In the introduction
to FK4 [7] it is the mean error of the system which is in fact given.
We wish to mention here, by way of comparison, the error relating to right
ascensions (in, = the deviation error arising from the catalogues used and
from the instrument systems; m, = the probable error in proper motion)
in order to give an idea of its magnitude, and also to be able make an easy
comparison with the observational error given in table 2.
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TABLE 3
5 €, €08 & €, CO8 8
> + 80° + 0.001s + 0.010s
70 2 8
50 3 10
20 2 8
0 1 6
- 20 2 12

As we can see, we must therefore pay the greatest attention to the P,
determination, which must be made according to the recommendations
contained in our article on the study of an impersonal micrometer.

When making our star observations we must take the mathematic and
statistical principles governing the law of probabilities into account (as
well as the considerations of the above mentioned article as regards the
number of signals for each micrometer drum rotation) — i.e. take car-
efully into account the Bernouilli theorem on repeated experiments —
and we should observe the star by following it for at least six revolutions
of the micrometer drum at the time of the first part of the measurement,
and during the same number of revolutions after reversing the instrument’s
axis.

For the case of our micrometer, each P, value for a star is deduced
in this way from 156 individual signals from which are deduced 78 values
for the star’s transit at the thread without collimation.

Before proceeding to the final computation we have to analyse these
78 signals, hence to determine their mean error, and to see if this value
is higher than the one given in table 2 for the declination of the observed
star. If this value is higher the observation of this star has not been
satisfactorily carried out, and the introduction of this higher value into the
final computation would be a great blunder. The error must therefore be
immediately eliminated. If, on the contrary, the value is either equal or
less we must compute the margin of tolerance for the error which is, as
we know, three times the absolute value of the mean error. All the individual
signals (in this case there will be few if any) having deviations from this
mean value which are higher, in absolute value, than this margin of
tolerance, will be eliminated.

After this analysis the mean is re-computed, and we shall thus obtain
a more reliable observed value of P,.

We should then note that this error in P, will be dealt with and reduced
as an accidental error in the final computation for the entire observation,
but only provided that the series of stars observed is a long one. In practice,
10 stars with declinations uniformly distributed over each observational
hour will be sufficient. They will later be reduced in the aggregate. Any
pairing of two or more stars observed during an hour’s session in order
to deduce the final A) is contrary to all the principles of the theory of
errors,
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