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In this article we shall be dealing in more detail w ith the equation 
used for determ ining the longitude of the fundam ental point of the Capo
dim onte Astronom ic Observatory, Naples. W e shall analyse certain 
problem s well know n to specialists bu t w hich are no t easily found in  
geodetic astronom y literature. Several new developments never before used 
in determ inations of this kind and th a t we have deduced during the course 
of our observations will also be given.

1. — DETERMINATION OF ASTRONOMIC TIME

To determ ine the correction  for a clock regulated on sidereal time, it 
is only necessary to com pare time T indicated by the clock at the m eridian 
transit of a s ta r w ith  the right ascension a  of this star. If the clock is 
perfectly regulated the hour read a t the in stan t of the s ta r’s m eridian transit 
should be this s ta r’s righ t ascension value.

If the correction to be made to the clock regulated on sidereal tim e is 
designated by AQ« we have :

AQj =  a  -  T ( 1)

In order to be able to carry  out this com parison, the quartz  clock m ust 
be coupled to a special instrum ent tha t m akes it possible to find the exact 
instant of the s ta r’s tran s it a t the local m eridian. To th is end we decided 
to use the tran s it instrum ent.

But a transit instrum ent, however well prelim inarily  adjusted, can 
never be located perfectly in the m eridian. Even if a t the beginning of 
operations this was the case, some time la ter its setting would, for various 
reasons, lose its alleged perfection. Instead of having continually to correct



the instrum ent to elim inate erro rs  it is easier to determine the am ount of 
these erro rs at the time of the observation and then to com pute the ir effect 
on the final result. After the initial ad justm ent these errors w ill generally 
be so small tha t their square can be considered negligible. Thus it is 
possible to com pute s ep a ra te ly  the influence on the resu lt of each erro r and 
finally to total their effect.

In the case of a quickly reversible transit instrum ent fitted w ith an 
im personal m icrom eter, the errors having the greatest influence on the 
observation results are :

a) The error due to the inc lination  of the instrum ent’s secondary axis 
of ro tation — i.e. w hen this axis is not perfectly parallel to the horizon 
plane. It should be added tha t in a transit instrum ent the axis defined by 
the two centres 02 of the trunn ions is called the secondary axis of 
ro tation — or else sim ply the axis  of rotation.

b ) The a z im u th  e rro r of th is axis, i.e. its deviation in relation to the 
exact E-W  direction.

c) The collim ation  erro r, i.e. the deviation between the line of colli
m ation and the norm al position of the axis. In rapidly reversing in stru 
ments, this last error is elim inated, bu t we shall continue to take it into 
account because we shall include in this erro r the effects of both the half
w idth of the contact in the  im personal m icrom eter and of the delay due 
to the play of the screw.

It is obvious tha t these th ree errors will cause the telescope position 
to be out of the m eridian and consequently the star transit will be observed 
not at the true m eridian but in its near vicinity, i.e. either before or after 
the s ta r transit at the local m eridian. If we designate by P0 the tim e of 
a s ta r transit observed w ith an  instrum ent in  which the 3 erro rs m entioned 
above are present, it will be necessary to correct the observed tim e P 0 for 
the effects of the 3 errors in order to obtain the tim e T of the s ta r’s m eridian 
tran sit at the place of observation, nam ely :

T = P0 + Aco,. + Acoa + Aojc (2)

where Aw are the hour angles, taken  w ith their sign, of the s ta r at the time 
of its tran sit a t the central th read  of the instrum ent eyepiece.

The equation for the quartz  clock will then become :

AQj =  a  —  [P0 + Acj , + Awa + A ojc] (3)

Let us now determ ine one by one the Aio corrections to be made to P0 
to obtain time T  on the clock when the star culm inates at the m eridian.

A) Determination of Ao>{

W e saw in the first article of this series (IH R eview ,  Vol. XLIV, No. 2, 
1967) tha t the explicit form  for this correction is :

Aco( =  /' cos (ip — S) sec 6 = i (cos +  sin <p tg 5)



Let us assum e th a t the w estern end of the axis o f ro tation is higher 
in relation to the horizontal plane than  the eastern end. In th is case the 
zenith of the in strum en t will be to the east in  relation to the zenith of the 
place of observation, and  the star will be observed on the instrum ent before 
its m eridian transit. For this case the correction -)- Au* m ust be added 
to P 0.

F or the case of an  observation of a s ta r  culm inating between the zenith 
and the south of the observer’s horizon, we shall have :

6 <  ip cos (<p — 6) >  0

w hereas if the s ta r culm inates a t the upper m eridian its m eridian transit 
is between the observer’s zenith and the N orth Pole, and we shall have :

6 >  ip cos (<p — 6) < 0

If however in both cases the foregoing form ula is to supply directly 
the correction -f- to be made to P 0 then  i m ust be positive.

W hen the eastern  end of the axis o f ro tation in relation to the 
horizontal plane is higher than  the w estern end, the zenith of the instrum ent 
will be to the west in relation to the zenith  of the place of observation. In 
this case a s ta r at its m eridian transit (u.t.) will be observed w ith a delay,
i.e. afte r having passed the m eridian, an d  consequently the correction to 
be m ade to P 0 will be -— Aw4.

In the two cases of the upper m eridian transit we shall have :

6 ^  <p cos (ip — Ô) >  0

and if we w ish to obtain correction Aw* w ith  the negative sign then i m ust 
be negative.

Thus to obtain by means of the general form ula the value of the sign 
of the Au)i correction to  be made to P0 to reduce it to the tran sit tim e T, 
it is necessary to consider the value of inclination i as p o s i t iv e  w hen the 
in strum en t’s axis has its w estern end higher th an  the eastern end in  
relation to the horizontal plane and as n eg a tive  when the reverse is the case.

In order to be able to retain  this convention for the sign of i even for 
the lower m eridian transits  (l.t.) of circum polar stars, it will be sufficient 
to consider the Ao)< angles as negative (figure 1). In fact for the lower 
m eridian transits, it is the opposite to w hat takes place for the upper 
m eridian transits, i.e. a s ta r is observed la ter on w hen the w estern end is 
higher and earlier w hen it is the eastern end  which is the highest.

Thus for a s ta r A (fig. 1) we have :

AcJt — — i sin h sec S 
but ^  ^  ^

h =  AN =  PN -  PA =  y  (90° -  5) =  -  [90° -  (y> +  6)]

and consequently :

A u f- = i cos(<£ — 6) sec 5 =  i(cos <p + sin <p tan S)

and w ith  the sign convention adopted fo r i, we shall still have the



correction Aw, w ith the desired sign. The sam e is also true w hen the eastern  
end of the axis of rotation is the higher.

F i g . 1

W e can therefore conclude th a t the correction A<d< and its sign for the 
effect of the inclination of the in strum en t’s axis, to be made to P Uf is given 
by the following relation.

c- x +  upper transit 
Aoj, =  i (cos w ± sin \p tan 5) . (4)* v ^ r — lower transit

Since the inclination i is found by reading the striding level, let us 
see w hat sign m ust be given to these readings expressed in the level’s gra
duation, w ith  the s ign  e s ta b l ish e d  by  the a forem en tion ed  convention .

Let us take the case o f a level whose zero is at the end of the phial as 
is the case in a tran sit instrum ent.

As an exam ple let us take the instance w here the western end of 
the axis is higher in relation to the horizontal plane than  the eastern  end. 
The level can then take up  two opposite positions on the axis : the zero 
tow ards the west or the zero tow ards the east.

Let us first of all take the instance w here the zero is initially  to the 
w est (fig. 2a) ; after having reversed it on its axis (fig. 2b) we shall have 
Cw <  CE where Cw and CE are the readings at the centre of the bubble 
w ith  the zero (of the graduation) first to the west and then to the east.

To achieve the displacem ent of the bubble centre in such a way tha t 
the adopted sign for i is re ta ined  (in th is case, positive) it is necessary to 
adopt the  readings a t the ends of the bubble as positive when the zero is 
tow ards the east and the readings made w ith the zero towards the west as 
negative.
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If the level’s zero is first of all to the E ast (fig. 2c), after the level has 
been reversed on its supports (fig. 2d) the condition CE > Cw, identical to 
the one already found, will be obtained, and  thus in both cases in order 
to obtain th e  value of inclination i w ith the  positive sign it w ill only be 
necessary to reta in  the sign convention already adopted.

F i g . 3

For the case w here the eastern end is the h igher (i <  0) we shall have 
the situation shown in figs. 3a, b, c and d.

In th is case CE will be sm aller than  Cw. Then, following the sign 
convention, we shall have as we w ish the inclination i w ith a negative sign.



B) Determination of Atoa

Let us now consider the effect on the determ ination of the tim e T  of 
the s ta r’s tran s it of an  azim uth error in the instrum ent.

This erro r exists when the tran sit instrum ent is adjusted on station 
w ith  its secondary axis of ro tation not perfectly set in the E-W  direction. 
The instrum en t’s axis of collim ation will then describe a great circle passing 
th rough the zenith, i.e. a vertical.

Let us f irs t of all assume th a t the western end of the instrum ent axis 
of rotation is displaced to the south by a small angle a, called the instrum en
ta l azim uth (fig. 4a).

N

N
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A star A, having its upper tran s it to the South of the zenith (5 <  <p), 
will be observed before its m eridian transit.

Taking the spherical triangle ZPA, we have :

sin -  5)
Aco = a -------- -—  = a (sin -  cos (/) tan 6) ( 5 Ï

cos o

As cp >  S, sin (cp — 8) will be positive. However the correction Aü>„ to 
be made to the observed transit P0 in  order to reduce it to tim e T will have 
a positive sign because the s tar was observed beforehand. Thus the sign 
of a should be positive.

In the case of the star A' whose upper tran sit is to the N orth of the 
zenith, we have 5 > cp, and consequently sin (ç — §) <  0.



Considering tha t the star is observed w ith a delay, the correction Awa 
should have the negative sign, and  thus the value of a should be taken  w ith  
the positive sign.

For the case where the eastern  extrem ity of the instrum ent’s secondary 
axis of ro tation is displaced tow ards the south (fig. 4b) form ula (5) will 
still be valid. For when the s ta r culm inates south of the zenith (§ <  cp) 
th is star will be observed in relation to its m eridian transit w ith  a delay. 
The correction Ati)„ m ust therefore be negative, and thus a negative value 
of a m ust be taken.

If the s ta r culm inates (u.t.) to the North of the zenith (8 > <p) it will be 
observed in advance; thus the correction A«0 m ust be positive and the sign 
of a will still be negative.

It can therefore be concluded th a t in order to obtain the correction 
Ati)„ w ith the suitable sign, it is necessary to consider the value a of the 
in strum en t’s azim uth positive w hen the w estern extrem ity is displaced 
tow ards the south and negative w hen it is the eastern end which is displaced 
tow ards the south.

In  the case of observations of circum polar stars m aking a  lower 
m eridian transit (fig. 5a, b ) since z  — 180° —  (ç +  5) form ula (5) becomes:

sin (y? + b )
Aco„ = a -------- -----= a (sin «p + cos tan 6)

cos o
and  the sign convention for a rem ains the same.

The general form ula is therefore :

lower transit
Aco„ = a (sin y  + cos <p tan o) , (6)“ + upper transit

C) Determination of Ao)c

Let us finally consider the collim ation erro r c.
This error causes the displacem ent of the instrum ent’s collim ation line 

w hich instead of describing the m eridian on the celestial sphere will describe 
a small circle parallel to the m eridian.

Let us consider the fig. 6a in  w hich the sm all circle described by the 
axis of collim ation is to the east in relation to the zenith, i.e. the arc of the 
great circle W Z ' is greater than  90°.

In  this case the star will be observed before its m eridian transit, and 
by m eans of triangle P NA AL we obtain :

Acoc = c sec 6 (7)

Considering tha t the star is observed before its m eridian transit, the 
correction Ao)c m ust have the positive sign; therefore the collim ation should 
be taken as positive when the arc W Z '  is greater than  90°.

In the case where the arc W Z ' is sm aller than  90° (fig. 66), we shall 
still have form ula (7) w ith  collim ation c taking the negative sign.
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In lower transits, in order to reta in  the same sign convention for c 
so as to be able to find the correction Atoe w ith  its sign by m eans of the 
form ula (7) it is necessary — as we also did for the case of the inclination — 
to take — Ati)c instead of +A to0 (figure 7).

Therefore we finally have the general form ula :

_ (  +  p.s.
Acj„ =  ± c sec 6 i  (8)

I  ~  P - i .

In rap id ly  reversible instrum ents such  as our AP 100, th is  error is 
autom atically elim inated in the course o f the observation.

In collim ation c, however, we include the  effects produced by the delays 
due to the half w idth of the im personal m icrom eter’s contact and to the 
play of the screw.
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In our case form ula (8) then becomes :

= c sec 6 (9)

w here the  positive sign applies both to upper transit and lower transit.
F inally, taking form ulae (4), (6) and (9) into account, form ula (2) m ay 

be w ritten  :

T = P0 + / (cos \p ± sin <p tan 6 ) + a (sin ip + cos >p tan 6) + c sec 5 j 

and  by m aking :
m =  i cos + a sin >p n = i sin <p ~  a cos ip 

as Bessel did, we obtain the B esse l  equation  :

u.t.T = P0 + m + n tan 5 + c sec ô } ^

By pu tting  : 

we finally have :

2  = m ± n tan 8 + c sec Ô

T = P0 + 2

( 10)

Equation (1) fo r the determ ination of astronom ic time can  therefore 
be w ritten

AQ, = a  -  (P0 + 2 ) ( 1 1 )
in  w hich all the quantities are expressed in sidereal time.



2. — COMPUTATION OF RIGHT ASCENSIONS 
AND THE STAR CATALOGUES

W e m ust first of all concern ourselves w ith  the determ ination of the 
observed s ta r ’s right ascension. This is done w ith the help of s ta r catalogues 
w hich in tu rn  are based on particu lar system s of reference.

A) Fundamental catalogues

Since the equatorial coordinates of the stars vary on account of the 
phenom enon of annual precession, in o rder to relate the star positions to 
a m ean epoch w hich is not th a t of the catalogue it is necessary to know the 
effect of the precession on each particu lar star.

If we exam ine the form ulae expressing the phenom enon we see th a t 
the annual precession in right ascension is dependent both on th is right 
ascension and on the s ta r’s declination and  th a t the precession is always 
positive, except for stars of great declination having a righ t ascension 
greater than  12 h r s.

B ut the  annual precession varies slowly w ith time. This is the reason 
th a t precession values for each particu lar s ta r m ust be also related to a set 
common epoch w hich is generally the m ean epoch of the catalogue.

Consequently, if the epoch to w hich we wish to reduce the positions 
of s tars  shown in a catalogue differs greatly  from  the catalogue’s mean 
epoch, it will also be necessary to take in to  account the variation in  the 
annual precession values in the interval of time. For th is reason, m odern 
catalogues show opposite each star position, both for right ascension as well 
as for declination, the variation of the annual precession for a 100 years, 
and th is is called the secular varia tion.  Sometimes, however, w hen it is a 
question of very accurate positions, and consequently of fundam ental cata
logues, the variation in the secular variation is even given, and this is 
called the th ird  term  of the precession .

This is not all. By reducing a p articu la r s ta r’s positions taken  from 
several catalogues to the same mean epoch, we shall obtain a series of 
values w hich will generally include fairly  large differences, and  w hich 
show a progressive trend  depending only on the epoch of observations.

These differences are due in part to accidental observational errors 
and to other system atic causes peculiar to a particu lar catalogue; bu t they 
are due in large part to each s ta r’s own proper motion. The annual 
difference, either positive or negative, and  arising in either of the coor
dinates of the s ta r’s real movements, is called the annual p ro p er  m otion .  
This is deduced from the accurate com parison of the s tar positions obtained 
from the various catalogues reduced to a common epoch. I t is easy to 
understand  how im portant the knowledge of the annual proper m otion



of each sta r of know n position is w hen drawing up a catalogue. Un
fortunately  we are far from  being able to obtain this result, although for 
m any stars — and in particu lar all the fundam ental stars — the proper 
m otion is already well determ ined. In m any cases we even know the 
proper motion variation w ith time.

This is the reason w hy in very m odern catalogues we also find prin ted  
beside the righ t ascension and declination of the stars, the proper m otion 
and  the mean observational epoch, in addition to the reduction factors 
already m entioned, — annual precession, secular variation and in certain  
cases the th ird  term  of the precession.

However th is is not sufficient. If we m ake a com parison between the 
positions supplied by two of the catalogues we have mentioned, both reduced 
to the same epoch, we shall see th a t the positions still differ not only 
because of unavoidable accidental errors, bu t also as a  resu lt of system atic 
erro rs w hich originate in the considerable differences always present in the 
in strum en ts  and in the m ethods used for the observation. This is in 
addition to the personal equation for each observer. Modern techniques 
have done m uch to reduce these errors but, for the order of accuracy today 
required  in astro-geodetic m easurem ents, they exist still. W e can therefore 
conclude th a t for each sta r there is a slightly different position according 
to w hich catalogue is used.

It is to the Heidelberg Astronom ic Association tha t we owe the idea 
of establishing a n o rm a l  s y s te m  (giving this term  the m eaning it has in the 
G aussian theory of errors) for star positions supplied by the various 
catalogues, in order th a t the fairly  im portant system atic differences existing 
between these catalogues m ay be reduced to the m inim um .

Thus the A u w e r s  fu n d a m e n ta l  s y s te m  was born. As the base of th is 
system  are to be found the excellent system atic m eridian observations in 
Pulkova, Greenwich, Leipzig, Cambridge and  Leyden. These observations 
au thorita tively  discussed and coordinated into a simple catalogue have 
supplied a first homogeneous nucleus of 539 fundam ental stars. In 1889 
thanks to A u w e rs  him self 303 other stars were added, constituting a second 
fundam ental catalogue. This catalogue, [2] for w hich the symbol FC is 
used, adopts as reference system  the position system of the F irs t  Catalogue  
o f  the A s tro n o m isch e  G ese llschaft (AGK 1) and uses the Struve constant 
for the precession.

This first fundam ental system  of A u w e r s  was subsequently (1907) 
revised and perfected by J. P e t e r s  and this w ork gave rise to a second 
catalogue in the NFK series, containing the positions of 925 stars in the 
two hem ispheres, and for m any years this catalogue was the basis of the 
B erliner Astronom isches Jah rbuch  (B.A.J.).

This last catalogue [3] is the resu lt of the extension of the FC to the 
southern  hem isphere. The system and the individual values of each star 
position and of the proper motion are based on the observations carried 
out from  1745 —  1900 and on the Newcomb precession.

In 1934, K o p ff ,  D irector of the Rechen Institu t in Berlin, revised 
th is basic catalogue of Auwers and published new positions for 1535 stars 
referred  to 1925 and to 1950. Since 1941, by decision of the International



Astronomic Union, th is catalogue [4], (known as FK3 for it is the th ird  
of the series) has been the basis for all almanacs.

The quality  of the observations on w hich this system was based from 
the tim e of its first edition led almost all the astronom ers contem porary 
w ith A u w e r s  to relate their catalogue to this system. A u w e r s  himself, 
in an im portan t study (5), gave a resume of all the research he had carried 
out in order to bring the results of num berless observations into this 
system.

Side by side w ith A u w e r s ’ grandiose system  are others concerned w ith 
still higher standards of accuracy and homogeneity as their aim, among 
them the works of the American N e w c o m b  (1898) and later Boss (1903, 
1909). In 1938-39 Newcomb’s fundam ental system was again worked out 
by E ic h e l b e r g e r . These catalogues are know n as G.C. and N . 30. There 
is a difference, although a small one, between the two systems, bu t the 
system F.K. 3 is recognized as the most accurate and homogeneous.

In the meanwhile, observations had accum ulated. 72 modern catalogues 
had already been published when Kopff, a t the request of the In ternational 
Astronomic Union started to revise F.K. 3 to take account of both new 
observations and the so-called equation of magnitude.

Thus we come to the F.K. 3 R [6] system which was draw n up first, 
and finally to the present F.K. 4 [7], today considered as being the most 
accurate and homogeneous system.

For the system for right ascensions (w ith which we are dealing) from 
the 4th fundam ental catalogue, the com pilation sources are the following :

a) as and ola (a s /a a catalogues) have been deduced from at least 25 
catalogues, to name them  :

9 from  the Capetown Observatory (Reversible T ransit Circle);
1 from  Cordoba (Meridian Circle);
4 from Greenwich (Airy =  T ransit Circle; Cooke =  Rev. T ransit 

Circle) ;
3 from Pulkovo (Transit Instrum ent);
6 from  W ashington (4 are six-inch  and 2 nine-inch ).

b) a.6 (as catalogues) from 7 catalogues;
3 from  Konigsberg (two by m eridian circle, 1 by T ransit 

Instrum ent) ;
1 from  Munich (T ransit Instrum ent);
2 from Ottawa (Reversible T ransit Circle);
1 from Potsdam (Transit Instrum ent).

c) eta (oa catalogues) from two catalogues, one the Bergerdorf (Transit 
Instrum ent) and the other the Greenwich (Airy = Transit Circle).

d)  The [j, system from 11 catalogues :
3 from Capetown (Rev. T ransit Circle) ;
2 from  Greenwich (Airy =  T ransit Circle) ;
3 from Pulkovo (T ransit Instrum ent);
1 from W ashington (Six-inch ) ;
1 from  W ashington (Nine-inch ).



This am ounts to a total of 45 catalogues. For fu rther particulars about 
th is system, the reader should refer to the study carried by G l ie s e  [ 8 ] ,

The F.K. 4 is therefore the m ost accurate catalogue at our disposal 
today and if there are system atic differences [9] between this catalogue 
and  the G.C. and  the N. 30 we are inclined to attribu te  them, at least in 
great part, to the erro rs tha t these last two catalogues contain.

Following a decision of the In ternational Astronom ic Union (Dublin, 
1955) the A stro n o m isch en  R ech en -In s t i tu t  of Heidelberg publishes yearly 
the m ean and apparen t places of the 1535 stars of the F.K. 4 A pparent 
Places of Fundam ental Stars (A P  F S) and this is the annual catalogue 
used for highly accurate geodetic-astronom ic determ inations like ours.

The r igh t ascension  va lue  a. ded u ced  f ro m  the A  P  F  S rep re sen ts  the

B) The computation of the right ascension value from the A P F S

In  the A PFS the  apparent places of fundam ental stars are tabulated 
at 10-day intervals.

The preface to this volume recom m ends the use of the second 
differences when in terpolating for the com putation of right ascension.

W e shall now study the question thoroughly to see exactly w hat order 
of accuracy is achieved by considering the second differences in  the in ter
polation but neglecting those of the th ird  order.

Let x _ 2, x _ j, x 0, x lt x 2, ... be a certain num ber of equally spaced 
tabulated  values of the independent variable and y _ 2> ÿ—1> i/o» ÿu  Ü2 — the 
corresponding values of the dependent variable. To illustrate  the notations, 
we give the following table.



We shall call the difference w ith subscripts 0 and 1 the central difference 
for x, nam ely :

A1 = y  i -  y 0

A o = -  2y0 +  y _ ,

A "  = y 2 -  2y t + y 0

The basic interpolation form ula w hich is valid for any distribution of 
the values of x  is the Lagrange form ula :
„   ̂ ( x  X , )  0 c -  x 2 ) . .  . ( x  X  )  (x  -  x 0 ) ( x  -  x 2) . . . ( x  X  )
/  (x) = y 0 --------------------------------------------- 1- y  j ------------------------------------------  +

( x 0 -  x t ) ( x 0 -  x 2 ) . . . ( x 0 x p ) ( x ,  x 0 )  ( x ,  - x 2 ) . . . ( X j  ~  x p )

where f p(x) is the p-degree polynomial whose num erical value coincides 
w ith the y-value for known values of x0, r , ,  ... x 9 .

However, the tabular interval in the ordinary  tables is usually chosen 
so tha t a  polynom ial interpolation may always be possible and legitimate. 
In this case, the problem is solved w ith the Lagrange form ula.

We shall ignore the case in which the function to be interpolated is 
not a polynom ial because in practice th is occurs very rarely, and never  
in the astro-geodetic table interpolations.

The problem  we have to solve is to determ ine in the interval (x0, a^) 
a value of x such tha t x = x 0 -j- n h, where h  is the tabu lar interval (constant 
in our tables) and  n an  auxiliary variation between 0 and  1.

Let us w rite the Lagrange polynom ials that coincide w ith y  first for 
x0 and x lt then  for x0, Xj and x2, and so on, increasing each time by one 
unit the num ber of coincidences (the firs t will obviously arise when
x  =  : ^ r  y  y 0 1 + „ A ,

n (n  -  1) (n 2 ) f  y Q 2 y t y 0 1
2 2! |_.n - 2 " n - 1 n J

By expressing the differences fP — fp_ i  w ith  the help of suitable differences 
we obtain : n{n __ X) „ ( «■- ] )  „

— Y\---- ~ y ‘ + y °} = — 2!----------- Al

,  _ n ( n  l ) ( / i  - 2) ^  , 2)
/ 3 / 2  j !  O' 3 2 + 3 y l y 0) ^  A 2

The polynomial sought, whose degree can be lim ited at will, therefore
is :

m  -  *  + ■■ a; A'; + .,. + a£L-- ■> - 2t + ’> +.. .
which is the N ew ton  in terpola tion  form u la .

Lim ited to its first two term s the f  function reduces to a linear 
expression whose value coincides with the value of y  for n =  0 and n =  1. 
The linear interpolation is consequently justified  when the first differences



are constant as in  the case of trigonom etrical tables, but for our case linear 
in terpolation is not sufficient.

For the APFS interpolation com putations, however, the Bessel form ula 
is most suitable and we shall la ter see the reason.

The use of this form ula has many more advantages th an  N ewton’s 
form ula.

Let us go back to the expressions given by the central differences, and 
let us introduce into the Lagrange form ula successively the y  values 
contained in  these differences. W e shall then obtain the following poly
nom ials : r  -j

_ ( « + ! ) « ( «  1 )(n  -  2) i y 2 s y , | i y 0 _  y j
2 3! L ” ~ 2 « — 1 n n — 1 J

whence :
f  ,  _ n(n 1 ) 

1 2 (2 !)
[ a ;  + a ’; + AV-1

Thus, the B esse l fo rm u la  takes the form  :

, . ,  . « ( « - ' O , . »  , . ~ PC2" -  D . n r  , f ( n ) = y 0 + n A , + ----- ------ (A0 + A 1) +  — + ..  .

W e see straight away the advantages th a t the Bessel form ula has over 
the Newton form ula in respect of ease of com putation.

The Bessel form ula uses sym m etrically d istributed values of the 
function and  furtherm ore only uses the central differences. W e also note 
th a t even num ber coefficients w hich cancel out for n =  0 and n =  1 are 
m axim al in absolute value for n  =  0.5 . Moreover, the odd num ber coeffi
cients cancel out for n — 0.5. Let us now compute the m axim um  value 
of the coefficient of the th ird  order difference. By development and deriva
tion, we have the following equation : 6 n2 — 6 n —  1 =  0 w hich allows

V3
both solutions n' =  1/ 2 ± ------ .

6
Consequently, for these n values, the following coefficient becomes 

m axim um  :
„ V -  D ( 2 „ ' -  i) = ,  v i , ,  000802

12 216

T hus if the th ird  difference AT is not higher than  B2 in absolute value, 
by ignoring this difference we only make an error smaller than  half a 
un it in the last significant figure.

Computing the same quan tity  w ith the Newton form ula, we find 
nMI =  0.42265, and the upper lim it m entioned above for the th ird  difference 
m ust not exceed 7, otherwise we have a t least a one unit erro r over the 
last figure expressed.

As can be seen, this m axim um  lim it for the th ird  difference of the 
Bessel form ula is 9 times greater than  in the Newton form ula.



In our APFS tables the th ird  difference for the right ascensions reaches 
a m axim um  of 8 and sometimes even 9. Consequently, if we compute the 
interpolation using the Newton form ula we m ust sometimes take into 
account the th ird  differences, w hereas by  e m p lo y in g  the B essel fo rm u la  we  
m a y  a lw a ys  s to p  a t  the second  differences.

Finally one last point regarding the suitability  of com putation w ith 
the Bessel form ula should be pointed out. Let us consider the following 
differences :

A2 =  *2 -  y  1 A'0' = y l -  2 y 0 + >>_!

a ' _ !  = y 0 -  y  i K  = y 2 -  2y  1 +  y 0
th a t is :

A" + A'/ = A'2 -  A' ,

Bessel’s form ula can thus be w ritten  as :

, n (1 -■ n) , , 
f i n )  - ^ 0  + « A , -------- -------(A 2 -  A .j)

All the first differences being shown in the APFS, we can then carry  
out the interpolation w ithout the need to com pute the second differences. 

Since the interval for x  in the APFS is 10 days, and knowing th a t :
X NAPLES =  0h57m =  — 0.04 d  

n (1 —n)
the values o f ----------------as a function of d  w ere computed in table 1,

4
d being the difference between the day w hen the observation was m ade 
and the day given in the table.

T a bl e  1

d WN A

n( 1 — n) 
4

1 0.096 -  0.022
2 196 39
3 296 52
4 396 60
5 496 62
6 596 60
7 696 53
8 796 40
9 896 23

10 0.996 -  0.001

C) Computation of the Aa correction for diurnal aberration

Obviously the local effect of d iurnal aberration is not included in the 
right ascension values of the stars of the APFS.

As is well known of course, there is a difference between the observed



s ta r ’s direction and the initial direction of the light ray, and this is because 
the  speed of celestial bodies in general is not entirely  negligible in relation 
to the velocity of light.

The law of aberration (from the la tin  aberra tio  — delusion, error) can 
be sim ply stated thus : the a p p a ren t  d irection  in w h ich  a celestial b o d y  is 
see n , as a re su l t  o f  the effec t  of l ig h t  aberration, lies in the plane d e te rm in ed  
b y  the true d irection  a n d  the s p e e d  vec tor  o f  the observer  (the direction of 
the  a p ex  of the observer’s movement). This a p p a ren t  direction  is d isp la ced  
in re la tion  to the true  d irec tion  to w a rd s  the sp ee d  vector.

Designating by x  and x ' the angles form ed by respectively the true  and 
the  apparent directions w ith  the direction of the observer’s speed (positive 
in  the direction of the apex) the x —xf angle of aberration will be given by :

, v ■ ix  x  — — sin x  = k  sin x
c "

w here v  is the observer’s speed, c  the velocity of light and k  the aberration 
constant.

In the case of d iu rnal aberration  the observer’s speed v will be due to 
the ro ta ry  m otion of the Earth. T aking into acount the fact tha t the earth  
has the form of a  revolving ellipsoid (w ith H ayford data) a point O on its 
surface, having geocentric la titude y '  and a vector rad ius p, as a resu lt of 
ea rth ’s rotation will describe during  a sidereal day a sm all circle of rad ius 
r  =  p cos cp'  in  86164 mean solar tim e seconds.

Assuming p =  a =  6 378 km , we shall obtain :

2 7T p .
v =  cos = 0.464 cos $  km/sec

86 164

from  which the following value for the d iurnal aberration constant can be 
taken  :

k =  206265 -  = 0,32 " cos /  =  0.0213s cos <p' 
c

The angle of d iurnal aberration  expressed in  seconds of time is then 
given by 0.0213s cos sin x, x  being (as we know) the angle form ed by 
the  true  direction of the celestial body and the speed vector of the observer, 
th a t is to say for this case the direction of the apex  of ea r th ’s d iu rn a l  
m o v e m e n t .  Now it is clear tha t th is apex is the E a s t  point.

Knowing the position of the apex on the celestial sphere, the problem  
of defining the influence of d iu rna l aberration on a s ta r’s equatorial co
ordinates consists therefore of solving the following elem entary problem  of 
spherical astronom y. Assuming th a t a s ta r’s position on the celestial sphere 
undergoes a displacem ent from S to S' such th a t SS' can be expressed by 
SS' =  k  sin x, k  being a very sm all constant and x  the am plitude of the 
great circle arc passing through S and S', and  falling between S and its 
intersection w ith  a fundam ental great circle (in our case the celestial 
equator), determ ine the variations of the corresponding spherical orthogonal 
coordinates for S <*>.

(*) We m ust rem em ber, when solving the above-m entioned problem  as it applies to 
o u r  case, th a t the E ast po in t is separated  from  the zen ith  by 90°.



For the variation of a s ta r’s righ t ascension due to d iurnal aberration 
we then have : Aa =  0.021s cos <p' sec $ cos t.

W hen the s ta r’s declination 8 is not too large (and consequently when 
sec S is not large) we may replace the geocentric latitude <p' by the cp 
astronom ic latitude value.

If we consider the effect of d iurnal aberration at the time of a s ta r’s 
transit at the m eridian, the fundam ental astronom ic relation being given 
by Aa =  —  At, in which t is the s ta r’s hour angle, we now observe tha t at 
the upper transit (u.t.) we have t =  0°, and a t the lower tran sit (l.t.) t  — 180°, 
whence designating the sta r’s apparent hour angle by t' we obtain :

It follows th a t the diurnal aberration does not alter the s ta r’s 
declination at the tim e of its m eridian tran sit and, because t' is sm aller 
than  0 a t the u.t. and larger than  0 a t the l.t., the m eridian tran sit is delayed 
at the u.t. and in advance at the l.t., which is to say tha t the right ascension 
appears to be increased a t the u.t. and decreased a t the l.t.

Thus, if we wish to m ake this correction to the right ascension 
com puted from  the APFS we m ust use the following form ula :

If, however, we wish to m ake this correction to the observed tim e P 0, we 
obtain :

Now, for a given observatory, the factor k  =  0.0213® cos cp' being 
constant, we m ay write the effect of d iurnal aberration thus :

which compares with a collimation error.

D) The A'a correction for short period terms of nutation

W hen, in addition to precession, nutation is also taken into account 
we say tha t the positions of the equator, the ecliptic and the equinox are 
true  or instan taneous,  and that the s ta rs’ heliocen tr ic  coordinates re ferred  
to these pos i t ion s  are true. Thus in order to determ ine the true coordinates 
of a s tar at a given tim e we m ust take into account the nutation effect 
(in longitude and obliquity) on the a  and § coordinates.

Let us examine the question more closely under the more general 
problem of precession and nutation.

u.t. r ' = 0.0213s cos < /sec 5

l.t. t ’ = 180° + 0.0213s cos t f f  sec Ô
8 '  =  6

Aa = ± 0.0213s cos ip' sec 6



The movement of the vernal point on the ecliptic under the effect of 
th e  Sun’s and the Moon’s a ttraction  (the effect caused by the Moon being 
predom inant) on the bulge of the terrestria l E quator is not uniform , as is 
easy to understand. In fact, we m ust first of all take into consideration 
th e  fact tha t the orbits of the Sun (apparent) and the Moon in relation to 
th e  E arth  are not circu lar bu t elliptic, and consequently the distances to 
th e  Sun and the Moon from  the E arth  vary periodically. Also, the Moon 
moves not in  the plane of the ecliptic bu t in a plane at an angle of about 
5 ”9' to this plane. To the periodic variation of the distances of the Sun 
and  the Moon there will obviously correspond a variation in the lunisolar 
d istu rb ing  action for which, in the movement of the vernal point, we note 
th e  existence of two movements. One is progress ive  (secu lar) and can be 
expressed by a series of the powers of time t :

at + b i2 + ct l + . . . ( Î2)

th e  other is p eriod ic ,  and m ay be expressed by m eans of periodic functions 
of the Sun’s longitude © and the Moon’s longitude Ln :

I sin 2 0  +  m  sin 2Ln + . . . ( 13)

The progressive movement of the equinox on the fixed ecliptic is called 
in  fact “ lunisolar precession in longitude ”. The periodic term s constitute 
th e  lunisolar nutation  in longitude.

Furtherm ore, from  celestial m echanics we know  th a t pole L of the 
lu n a r orbit has a  periodic m otion about the pole of the ecliptic w hich is 
com pleted in  18 2/3 years. This phenom enon introduces two new facts. 
F irstly , the obliquity e of the ecliptic cannot rem ain constant. Secondly, 
to the periodic term s expressed by the aforem entioned relations we m ust 
add  other periodic term s w hich are  functions of longitude £2 of the lunar 
o rb it’s ascending node because a periodic motion on the ecliptic (with the 
sam e period of 18 2 /3  years) of the Moon’s ascending node is correlated 
to the motion of L in relation to the pole of the ecliptic.

These periodic term s, of the form

u sin S2 + v sin 2£Z ( 14)

constitu te the n uta tion  of the lu n a r  nodes  in longitude.  The to ta l n u ta t io n  
in long itude  AW will thus be obtained from the nutation of the Moon’s 
nodes and from  the lunisolar nu ta tion  given respectively by form ulas (13) 
and (14).

Hence, substituting num erical values for the constant coefficients in 
both  expressions we obtain :

A\}/ = — (17.234" + 0.017" T) sin SI + 0.209" sin 2Î2 -  1.272" sin 2©m (15)

0.204" sin 2Ln . . .
w here the coefficient of sin Q varies slightly w ith tim e T (expressed in 
centuries from  epoch 1900.0 in the form ula we have given) and w here &m 
is the m ean longitude of the Sun.

As regards the obliquity e of the ecliptic, its variation Ae is also of a 
periodic nature, and its analytic expression is entirely  sim ilar to tha t for



AW, except th a t the sines m ust be replaced by cosines and the num erical 
coefficients by other num erical values :

A e =  (9.210" + 0.001" T) cos -  0.090" cos 2fi +  0.551" cos 2 0 m (16) 

+ 0.088" cos 2Ln . . .

Ae is called nutation  in ob liqu ity .  The principal term  is the term  in 
cos Q, and its coefficient 9.210" is called the constan t of nuta tion .

Let us now retu rn  to the com putation of the true or instantaneous 
coordinates of the star.

Starting from the coordinates ao» So of a s ta r for epoch 1900.0, let us 
determ ine the true coordinates for any date 1900 -(- / -j- x, where t, 
expressed in whole tropic years, is the difference between the year in 
question and 1900, x being the fraction of the year corresponding to the 
date. Let a»,, §m be the m ean coordinates and a», 6* the true coordinates 
for the sta r a t respectively the epochs 1900 -f- t (beginning of the year) and 
1900 +  t +  t. We already have the identities :

“ v -  “ o = ( « »  - <*o) + ”  a m)

«v ~ 60 = (5m ~ «G) + ~  5m)
which m ake the determ ination of the true coordinates a t the date 
1900 -f- t +  x depend on the knowledge of the mean coordinates a 0, S0 at 
epoch 1900.0, through the com putation of differences. (We shall henceforth 
consider only the right ascensions).

(<*m -a o) (17)

(18)

The difference (17) between the m ean coordinate at the beginning of 
1900 +  t and at the beginning of 1900 is com puted by the process described 
when we spoke of star catalogues, that is w ith

/ dot\ 1 / d 2cc\ ,  1 / d 3cc\ ,

“ • -  “ •  ’ ( i r l  ' + 5  ( s f ) „  ' + 6 ( * u  ' +  ■ • ■= ptecess,on “™ ue11'

+ variation séculaire + troisième terme + . . .

and furtherm ore taking the proper motion of the star into account.
The (18) differences, on the contrary, depend on :
a ) the effect of precession during tim e t ;
b) the effect on a  of the nutation in longitude AW given by (15);
c) the effect on a  of the nutation in obliquity Ae given by (16);
d) the effect on a  of true motion during  tim e x;

that is :
av -  “rn = Pt + d o t ( ÿ ) A ÿ  + d a {£) Ae + na r  ( 1 9 )

The firs t and the fourth  term s are deduced from  catalogue data. 
We m ust, however, dwell on the term s :

dot(4i) A ÿ  + d a (c )  A e



L e t  us firstly  try  to put the expression d a  (¢0 in explicit form. Let us 
therefore solve the following problem. Given tha t the longitude X of a star 
undergoes a variation AX. determ ine the corresponding variations d a  and 
rf§ of its equatorial coordinates a  and 6.

Let us recall tha t the set of form ulas allowing the equatorial 
coordinates a  and 8 to be transform ed into ecliptic coordinates X and ^ 
is the following :

sin 8 =  sin /3 cos e + cos /3 sin e sin X 

cos 6 cos a  = cos (S cos X (20)

cos p sin X = sin 6 sin e + cos 8 cos e sin a

Considering £ (the obliquity of the ecliptic) and (3 (the ecliptic latitude) 
as constants, by differentiating the first relation of the form ulas (20) we 
obtain :

cos 5 d8 = cos /3 sin e cos X dX
that is  :

cos /3 cos X
dô = dX sin e -------- -—  = dX sine cos a

cos 5

Then, differentiating the second of the form ulas in (20) we obtain : 

sin 6 cos a  dd + cos 8 sin ot da — cos p sin X dX 

and taking into account the expression ju s t found for dd : 

cos 6 sin a  da  = dX(cos /3 sin X — sin 5 sine cos2a)

By substitu ting in this expression the value of cos |3 sin X given by the 
th ird  expression of (20) we shall obtain :

cos 6 sin a d a  = dX (sin 8 sin e sin2 a  + cos 8 cos e sin a)

w hence :
dot = <2X(cos £ + sin e sin a  tan 6)

To re tu rn  to our own case, the variation dX arises from the nutation 
in longitude Aîf, and consequently we m ay conclude :

d a (^ )  =  cos e + sin e sin a  tan 8 (21)

In order to make the expression d a  (e) explicit, let us solve the follow
ing problem. Given th a t the obliquity of the ecliptic £ increases by de, find 
the corresponding d a  and d8 variations for the equatorial coordinates a  
and 8-

D ifferentiating the first expression in (20), and this time considering 
X and  (3 as constants, we have :

cos 6 db =  — sin |3 sine de + cos (3 cose sin X de

Bearing in m ind that, by form ulas for transform ation of coordinates, 
we also have :

cos 8 sin a — — sin 0 sin e + cos /3 cos e sin X 

w e sh a ll im m ediately  obtain : dS — dz  sin  a ■



Differentiating the second expression of (20), and substitu ting therein  
the value for db ju st found, we finally have : da, =  — rfe cos a  tan  §, which 
for our case becomes :

d a (e )  = — cos a  tan S (22)

Thus, we m ay conclude that the to tal am ount of right ascension 
nutation  is : A'a — d a  (W) AW +  (e) Ae.

However a part of this quantity  has already been taken into account 
in the places computed in the A P F  S, b u t the short period term s given by 
the small term s in the series (15) and (16) cannot be taken into account in 
A lmanacs giving places for every ten days, the reason being th a t as they 
are very sm all num erically they would not be supplied by the interpolation.

For highly accurate observations such as ours we cannot however 
neglect these short period term s in the righ t ascension com putation : they 
m ust accordingly be taken into account.

The A P F S in fact supplies the values for d a  (W) and d a  (e) expressed 
in seconds of time for each star — tha t is by dividing the expressions (21) 
and (22) by 15, whereas a special table —  Table I, Short-period term s of 
nutation —  supplies the values of rfW and d$, i.e. that p art of the AW and 
As term s which cannot be included in the  com putation of the A pparent 
places of 10 day stars.

The correction to be made is thus :

A'a = da{\jj) d ÿ  + d a (e )  de

It is not at all easy to interpolate these m agnitudes. The value of A'a  
for two consecutive days (to include the day of observation) m ust be 
computed, then the interpolation between these values m ust be made for 
the time of the transit observed, and th is can be estim ated (in fractions 
of a day) w ith the help of the expression : a  — s iderea l  t im e  a t  0 hours  
that can be immediately deduced from the U.T. column of the A P F  S in 
view of the values of Italian longitudes.

In th is we have com puted (or ra th e r have ascertained the way in 
which we m ust compute) the Mayer form ula term : a  +  Aa +  A'a expressed 
in sidereal time.

However, since the observation is m ade with a quartz clock regulated 
on mean time, a  -(- Aa +  A'a m ust also be expressed in the sam e unit. 
Obviously, for transform ing sidereal tim e into local mean time, the value 
of the longitude of the place of observation m ust be precisely known, and 
it is this value which we have set ourselves to determine.

Let us assume then that we know the approxim ate value for the 
longitude of the place of observation, w hich value we shall call the 
conventional longitude \ c. The exact longitude Xv will be given by : 
X„ =  X c ± AX- Designating the sidereal tim e a t Greenwich for a given day 
at 0 hours T.U. by T0hG, and the correction to be made for transform ing 
an interval of sidereal time into a mean tim e interval by A0 we shall have :



w here ARC is the s ta r’s com puted right ascension, corrected for the influence 
of short-period term s of nutation  and diurnal aberration, expressed in 
m ean tim e referred to the conventional m eridian Xc.

As we have seen, it is easy to interpolate w ith the A P F  S and to 
com pute ARC, but on account of the am ount of work which a longitude 
determ ination involves we have preferred to carry  out the ARC com putation 
for each day of the years 1967-1968 by an electronic computer. The 
program m e adopted was the EUDOSSO, developed by Professor Aldo 
K r a n ic  of Aquila University.

The following are the essential data.
1) A card giving the initial day (IGI), the initial m onth (IMI), the 

initial year (IAI), the final day (IGF), the final m onth (IMF) and the final 
year (IAF). Then the conventional longitude of the observatory,, expressed 
in hours, m inutes and seconds (I0L 0N , IML0N, SECL0N), the latitude 
expressed in degrees, m inutes and seconds of arc  (IGLAT, IPLAT, SECLAT) 
and the observatory’s nam e — over a m axim um  of 16 columns in all.

2) A card giving the s tar data (EUCLID program m e).
EUDOSSO then supplies the following final values :
1st column : The date;
2nd column : The corresponding day (DJ) ;
3rd column : ARC (at transit) for the conventional longitude Xc;
4th column : The declination.

Data D.J. Passaggio Declinazione

1 1 1967 39492.139 15H20M59?576 42° 8' 59̂ 75
2 1 1967 39493.137 15 17 3.645 42 8 59.58
3 1 1967 39494.134 15 13 7.716 42 8 59.40
4 1 1967 39495.131 15 9 11.789 42 8 59.23
5 1 1967 39496.128 15 5 15.862 42 8 59.08
6 1 1967 39497.125 15 1 19.936 42 8 58.95
7 1 1967 39498.123 14 57 24.010 42 8 58.83
8 1 1967 39499.120 14 53 28.082 42 8 58.71
9 1 1967 39500.118 14 49 32.154 42 8 58.59

10 1 1967 39501.115 14 45 36.224 42 8 58.45
11 1 1967 39502.112 14 41 40.295 42 8 58.30
12 1 1967 39503.109 14 37 44.365 42 8 58.13
13 1 1967 39504.106 14 33 48.436 42 8 57.93
14 1 1967 39505.104 14 29 52.507 42 8 57.72
15 1 1967 39506.101 14 25 56.580 42 8 57.50
16 1 1967 39507.098 14 22 0.655 42 8 57.27
17 1 1967 39508.096 14 18 4.730 42 8 57.04
18 1 1967 39509.093 14 14 8.807 42 8 56.82
19 1 1967 39510.090 14 10 12.884 42 8 56.62
20 1 1967 39511.087 14 6 16.962 42 8 56.42
21 1 1967 39512.085 14 2 21.041 42 8 56.24
22 1 1967 39513.082 13 58 25.119 42 8 56.07
23 1 1967 39514.079 13 54 29.196 42 8 55.91
24 1 1967 39515.077 13 50 33.272 42 8 55.74
25 1 1967 39516.074 13 46 37.348 42 8 55.57



Data D.J. Passaggio Declinazione

26 1 1967 39517.071 13 42 41.423 42 8 55.37
27 1 1967 39518.068 13 38 45.498 42 8 55.15
28 1 1967 39519.065 13 34 49.574 42 8 54.91
29 1 1967 39520.063 13 30 53.652 42 8 54.65
30 1 1967 39521.060 13 26 57.732 42 8 54.39
31 1 1967 39522.058 13 23 1.813 42 8 54.14

1 2 1967 39523.055 13 19 5.896 42 8 53.91
2 2 1967 39524.052 13 15 9.980 42 8 53.69
3 2 1967 39525.049 13 11 14.064 42 8 53.49
4 2 1967 39526.046 13 7 18.147 42 8 53.30
5 2 1967 39527.044 13 3 22.229 42 8 53.11
6 2 1967 39528.041 12 59 26.311 42 8 52.91
7 2 1967 39529.038 12 55 30.393 42 8 52.70
8 2 1967 39530.036 12 51 34.474 42 8 52.47
9 2 1967 39531.033 12 47 38.556 42 8 52.22

10 2 1967 39532.030 12 43 42.639 42 8 51.96
11 2 1967 39533.027 12 39 46.723 42 8 51.68
12 2 1967 39534.024 12 35 50.808 42 8 51.40
13 2 1967 39535.022 12 31 54.895 42 8 51.13
14 2 1967 39536.019 12 27 58.984 42 8 50.85
15 2 1967 39537.017 12 24 3.074 42 8 50.59
16 2 1967 39538.014 12 20 7.164 42 8 50.35
17 2 1967 39539.011 12 16 11.255 42 8 50.12
18 2 1967 39540.008 12 12 15.346 42 8 49.90
19 2 1967 39541.005 12 8 19.437 42 8 49 70

The com putation example given relates to s ta r No. 869 in F k  4.
Computation of a s ta r’s tran sit for every day of the year takes 10 

seconds.
F u rth er details m ay be obtained from  Bulletins Nos. 1 and 5 of the 

Ufficio Program m i e dati de 1’Aquila.

3. —  THE EQUATION FOR LONGITUDE

We m ust first of all point ou t th a t in a highly accurate longitude 
determ ination the set of direct observation instrum ents m ust always be 
coupled to a radio receiver set in order to pick up the in ternational tim e 
signals. This reception operation, repeated several times a day, will allow 
us to determ ine independently of the observation the AQ value of the quartz  
clock correction a t the tim e a  given star is observed, if we m ake exception 
of sm all corrections in reception w hich can be m ade la te r on. The 
correction can therefore be made directly to the observed value P 0 and 
we shall then be able to consider th a t this AQ value has already been 
corrected, although for purposes of sim plicity we shall continue to denote 
it by P0.



The tran sit instrum ent observation will therefore supply us with the 
following equation :

AX = ARC -  (P0 + 2 ) (23)

We should point out tha t the values for the small term s of the 
variation in E arth ’s ro tation  and for polar displacem ent are still included 
in the AX value. These corrections will not be m ade until later on.

The com putation could be term inated a t this stage, i.e. the observed 
tim e P 0 has been corrected for the £ quantity . However, proceeding in this 
way, the  accuracy obtained for the final resu lt of AX is of the order of 
±  0.025s, and therefore insufficient for highly accurate determ inations.

Let us therefore see how the successive corrections are determined.

A) Determination of ^

It is usual, for a first reduction of the observations, to take the value 
of the m ean inclination im of the n ight’s observations as the value for the 
inclination of the in strum en t’s axis of rotation.

Every T value for each star in the program m e will therefore be 
com puted, introducing an error i — im, w here i is the inclination expressed 
in seconds of time for each star observed.

Let us seek the correction to be made to this error :

T =  P0 + O'm + Ai) (cos — sin ip tan 5) + a (sin ç  + cos y  tan  6) + c sec S 

=  P0 +  2  +  Ai (cos ip + sin tp tan 5 )

Consequently the correcting term

=  Ai (cos ip ± sin tan  6)

i.e.

=  Ai sin ^ (c o ta n  ^  ± tan  S) 

for each observed star m ust be added to the equation AX =  ARC— (Pu -)- E).

B) Determination of S2

F u rth er, to obtain the value of i expressed in seconds of time we m ust 
first know  the value of the level’s sensitivity a  w ith i* — ip a s, where ip is the 
value of the inclination of the instrum en t’s axis of rotation expressed in 
graduations of the level.

However, as we saw in the first of this series of articles, the value of a 
is a function of tem perature t°. Consequently if, during reduction of an 
observation carried out at a certain tem perature t, we take a fixed value 
of Of we then introduce the error at — of into the result.



To take this influence into account a new correction, £ 2> m ust be made.
Denoting the r-th  s ta r’s inclination value, expressed in  graduations of 

the level, by , the correction to be m ade will be :

£ 2 = ipr A S  sin $ (c  otan ± tan <5r )

C) Determination of £ 3

As w ith the sensitivity of the level, the  value of the m icrom eter’s ra te  
varies in function of tem perature t. T his variation can be expressed for 
our purposes by simplifying the general form ula adopted by the In terna
tional Latitude Service for reduction of observations, i.e. Rt =  R0 a  (t  — 10) 
w here R„ is the value of the m icrom eter’s rate a t the initial tem perature f0.

This variation has an influence on the value of the collim ation c 
w hich in the case of a quick reversing instrum ent includes the half-w idth 
s  of the im personal m icrom eter’s contacts and the effect due to the delay 
caused by the play p  of the m icrom eter screw.

Obviously, the correction is given by AR =  Rt — R/ where R, is the 
value fixed at the time of the first reduction. As this variation influences 
only the collim ation value, then denoting the collim ation expressed in 
graduations of the im personal m icrom eter drum  by cp =  s -)- p,  we 
obtain :

c p (R^- + AR) sec 6 =  c p R^ sec S +  c p AR sec S =  c sec 5 + c p AR sec S

The correction to be made is therefore :

S 3 = c p AR sec 6

D) Determination of 2*

The other correction to be made is called the res idu a l  co l l im ation  
correction. Included in the error are all the effects caused by the lateral 
flexions of the instrum ent (in function of the observed s ta r’s zenithal 
distance) which make the collim ation vary by a quantity  Ac when we 
alter the position of the axis of ro tation during the course of the observation 
from  position 1 to the opposite position 2. This collim ation Ac is com puted 
by determ ining the means P x and  P2 for the pulses given in the two 
positions of the eyepiece. The collim ation of the middle observing th read  
respecting the r-th  star in  the program m e will be given by :

( P 2 -  P | ) r  _

2 sec 6, r

The m ean cm of these cr values for each star in the observed 
program m e will give us the mean collim ation for a n ight’s program m e. 
The deviations Ac — cr — cm will represen t the corrections to be made to



each observed transit P0. In other words, for each star we shall have the 
correction =  Ac sec $.

E) Determination of £ 5

Finally, the last correction to be made concerns the error produced 
by the observer’s personal equation.

In the observations carried out w ith the Bamberg type transit 
instrum ent the personal equation arises chiefly as a result of motion. That 
is, the observer when following the star tends to keep the impersonal 
m icrom eter thread continually either before or behind the centre of the 
s tar imaffe.

This distance d  depends principally on the observer and the instrum ent 
used. Denoting this distance, expressed in seconds of time, by e, and 
relating to an equatorial star observation, for a s tar whose declination 8 is 
not zero we shall have : d  =  ±  e sec 8, adopting the apparent motion of 
the star in the ocular field as the positive direction. This will be +  e sec S 
if the observer tends to put the thread before the star image, and — e sec 8 
if he pu ts it after.

To find this correction we shall proceed as follows. Let us write the 
longitude equation thus :

ARC -  P0 - • c sec 6 — 2j -  S 2 -- 2 3 — Z4 — AX — m = « tan Ô+ e sec 8 
The quan tity

is a know n term , w hereas the quan tity  —  AX — m =  K is constant for a 
series of determ inations made during one night.

Thus the preceding expression may be w ritten

Let us now consider separately the equations of expression (24) which 
concern observations of h  stars non-circum polar a t the place of observation 
and of s tars circum polar at both the upper and  the lower transit :

Combining the firs t equation with respectively the second and then 
the th ird  expression we obtain :

ARe P0 -  c sec 5 2 ,  Z2 -  2 4 = H

H + K = e sec 8 ± n tan 8 <, "
? Lt. (24)

Hh +  K = e sec + n tan 5h 

+ K = e sec 8ut + n tan 8ut

H „ + K  = e sec 8lt n tan 8lt

sec 8ut — sec 8h
n = ---------------------  — e ----------------------

tan 8ut — tan 8h tan 8ut — tan 8h

. 1 1  rt+ e ---------------------
tan 8lt + tan 8h

sec 8lt — sec 8h
tan 8lt -  tan 8h



where n at and n, t are n values determ ined by stars circum polar a t both 
the upper and the lower transits.

The values of S and I for the Naples program m e com bined w ith  pairs 
of upper and lower transits  for circum polar stars taken from  the FK 4 
Catalogue are the following : S =  0.89 and  I =  0.73, therefore :

nut +  n lt S -  I
n = ------ ---------------- -—  e = n — 0.08 e

2 2

n ut ~  -  e (S  + I) =  1.62 e (25)

W e can see from  these expressions tha t the personal equation 
influences the determ ination of n by a m axim um  of some hund red th s of 
a second of time, w hereas there is a system atic difference between the 
values of n (an d  co n seq u en tly  a lso  o f  the in s tru m en t’s  a z im u th s ) th a t are 
respectively determ ined by the observation of circum polar stars a t their
u.t. and their l.t.

From  (25) we take the value of e :

e =-
S + I 1.62 

for the Naples Astronomic Observatory.
The correction for the e rro r in the observed time P 0 produced by the 

personal equation is therefore :

n ut ~

S + I

In  practice th is correction can be made to the final AX, using the 
form ula : ____

2 , = e sec 5

where sec 8 is the mean value of the sec 8r of the r  stars in  the observed 
program m e.

The rigorous expression for the I 5 correction is the following :

S -  I / 2  tan5.-------- a  —  1 / z . i a n  o „  \

Zs = e sec Ô -------— —------ - -4anipj<

w here the subscript r  refers to stars in  the observed program m e. (See 
N. S toyko : Sur la m esu re  d u  te m p s  et les p ro b lèm es  qu i s ’y  ra t ta ch en t,  
1931).

W e have in no w ay neglected the second term , for in our program m e 
we have proceeded in such a w ay th a t :

2 _ tan 5 ,
— --------- - tan<£ = 0

r
as we shall see.

In  conclusion, the  equation for determ ining a place’s longitude w ith 
a transit instrum ent is finally the following :

AX + S 5 = ARC -  (P0 + S + + Z2 + S 3 + S 4)



w ith  v  , . «- , r C U.t2j = m  ± n tan o, + c sec ô P
Sj = Air sin tp (cotan $  ± tan Sr) j J1̂  ‘

S 2 = /P A a sin <p (cotan ± tan Sr) j ^

S 3 = cp AR sec 6r

Z4 = Ac sec 8r

Z5 = e sec 5

If, before slariiiig  ilie cam paign, we have iiiauc an  accurate prelim inary  
study of the in strum en t we already know the equations for the level’s 
sensitivity and  the play of the im personal m icrom eter in function of the 
tem perature, as well as the expression for residual collim ation in function 
of zenithal distance. The first reduction can therefore be made taking the 
E, Si, £* corrections into account, w hilst the correction m ust be
determ ined during  the course of the longitude campaign.

4. - COMPUTATION OF P0, THE TIME OF THE OBSERVED TRANSIT

As we have seen, the whole longitude determ ination is fundam entally  
based on the value of P0, w hich is the only value experim entally obtained.

The P9 value for the observed transit time is deduced from observations 
w ith an im personal m icrom eter linked to a clock, w hich is in tu rn  quartz- 
controlled.

The observer follows the star w ith the movable thread, holding the 
th read  continually  on the star over th a t part of the eyepiece field situated 
before (in the direction of the s ta r’s relative m otion in the eyepiece field) 
the central fixed thread  of the eyepiece cross-wires, and he then reverses 
the eyepiece on its  supports, and continues to take a sight on the star (which 
at tha t particu lar tim e will have a reverse relative motion) on the same 
eyepiece track  as the one used for the first part of the observation.

Let us now see w hat erro rs can be com m itted during this basic 
m easuring operation.

W e know th a t the nearer the star is to the pole the greater is the error 
in the estim ation of the tran sit tim e P 0. From  the analytic point of view, 
since this error depends on countless others, it has not yet been possible to 
lay down a rigorous law for the phenom enon but, afte r studying a large 
num ber of series of star tran s it observations we have realized tha t this 
phenom enon depends on the ra te  at which the star crosses the eyepiece 
field. Consequently, its best representation is given by the following



expression : jjl =  e sec S, where e is the e rro r in the estim ate of an  equatorial 
s ta r’s transit (6 =  0°).

There is m uch literatu re  on the subject, and for the bibliography the 
reader is referred to the present au tho r’s article published in 1963 [10].

In an unpublished w ork I have assem bled the e values deduced from  
about a  hundred articles on the subject, and from  the m ost m odern and 
fullest sets of observations (more than  1 000 transits). I have com puted 
the weighted mean, and have obtained the value of : e =  ±  0.03s which is 
already fairly well known, and slightly different from  the value determ ined 
by observations carried out w ith  older instrum ents (e =  ±  0.025s), and 
furtherm ore confirm ed by com putations of the observations of the last 
W orld Longitude Campaign during  the I.G.Y. (1957-58) conducted w ith  
ultra-m odern m eans and techniques.

Table 2 gives the values of =  f(B)

T a b l e  2

5 M 5 5 At

0° ± 0 .0 2 5 s 65° ± 0 .0 5 9 s 82° + 0 .1 8 0 s
10 25 70 73 83 205
20 27 72 81 84 239
30 29 74 91 85 287
40 33 76 103 86 358
50 39 78 120 87 478
55 44 8 0 144 88 0 .7 1 6 s
60 ± 0 .0 5 0 s 81 ± 0 .1 6 0 s 89 ± 1 .432s

As can be seen, from  75° in declination the jj, value increases to the point 
th a t it concerns a second of time. F rom  this we im m ediately deduce th a t 
for the U.T. observation it is generally necessary to exclude stars of large 
declination [11].

However we m ust note th a t it is here a question of averaged sum s 
based on a very large num ber of values. The individual e rro r can som etim es 
reach m uch larger values, even w ith very experienced observers. (See, for 
example, the lengthy series of m erid ian  observations a t Greenwich or at 
Paris).

D eterm ination of P0 is consequently the m ost delicate operation of 
the whole observation, and the greatest error in determ ining longitude 
belongs exclusively to this particu la r determ ination.

However, this is m ost generally forgotten, and o ther erro rs -— such 
as those of the Catalogues — are attentively studied. In the in troduction 
to F  K 4 [7] it is the mean erro r of the system w hich is in fact given. 
W e wish to m ention here, by w ay of com parison, the error relating to righ t 
ascensions (m a =  the deviation erro r arising from the catalogues used and 
from  the instrum ent systems ; =  the probable erro r in proper motion) 
in o rder to give an idea of its m agnitude, and also to be able m ake an easy 
com parison with the observational e rro r given in table 2.



T a b l e  3

Ô &a cos 8 cos S

>  + 80° 
70 
50 
20 
0

-  20

+ 0.001s
2
3
2
1
2

+ 0.010s 
8 

10 
8 
6 

12

As we can see, we m ust therefore pay the greatest attention to the P0 
determ ination, w hich m ust be made according to the recom m endations 
contained in our article on the study of an im personal micrometer.

W hen m aking our s tar observations we m ust take the m athem atic and 
statistical principles governing the law of probabilities into account (as 
well as the considerations of the above m entioned article as regards the 
num ber of signals for each m icrom eter drum  ro tation) — i.e. take car
efully into account the Bernouilli theorem on repeated experim ents — 
and we should observe the s ta r by following it for at least six revolutions 
of the m icrom eter drum  a t the tim e of the first p a rt of the m easurem ent, 
and  during the same num ber of revolutions after reversing the in strum en t’s 
axis.

For the case of our m icrom eter, each P 0 value for a star is deduced 
in this way from  156 individual signals from w hich are deduced 78 values 
for the s ta r’s transit at the thread  w ithout collimation.

Before proceeding to the final com putation we have to analyse these 
78 signals, hence to determ ine their mean error, and to see if this value 
is higher than  the one given in  table 2 for the declination of the observed 
star. If th is value is higher the observation of th is s ta r has not been 
satisfactorily  carried out, and  the introduction of this higher value into the 
final com putation would be a great blunder. The error m ust therefore be 
im m ediately eliminated. If, on the contrary, the value is either equal or 
less we m ust com pute the m a rg in  of tolerance  for the error w hich is, as 
we know, three tim es the absolute value of the m ean error. All the individual 
signals (in th is case there will be few if any) having deviations from this 
m ean value w hich are higher, in absolute value, than  this m argin of 
tolerance, w ill be eliminated.

After th is analysis the m ean is re-computed, and we shall thus obtain 
a more reliable observed value of P 0.

We should then note th a t th is  error in P0 will be dealt w ith and reduced 
as an accidental erro r in the  final com putation for the entire observation, 
bu t only provided th a t the series of stars observed is a long one. In practice,
10 stars w ith declinations uniform ly distributed over each observational 
hour will be sufficient. They will later be reduced in  the aggregate. Any 
pairing of two or m ore stars observed during an  hour’s session in order 
to deduce the final AX is con trary  to all the principles of the theory of 
errors.
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