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IV. - TH E  O PTIM U M  C O ND IT IO N S 

FO R  SO LVING  TH E  E Q U A T IO N  FOR LO N G ITU D E

b y  E. F i c h e r a

1. THE BARYCENTRIC EQUATION

In order to sim plify the exposition we shall consider only the case o f 
stars observed at their upper meridian transit. The equation for solving 
our problem —  that is the determination o f AX —  can be written :

A R C — [P0 +  2 j +  +  S 3 +  S 4 +  2 S +  i  (cos i/? +  simp tan Ô) +  c sec 6]

=  AX +  a (cos ip tan 6 — sin <p )

Denoting the left member o f this equation by Nr (since for each star 
observed this contains only known quantities), and the number o f stars 
observed by n, we shall obtain the fo llow ing system o f condition equations :

AX +  a cos >p (tan 6r — tan <p) =  Nf 

r =  l , 2 , 3 , . . . , n

The system supplies an immediate solution fo r the unknown in the 
fo llow ing two cases :

a =  0 tan 5r — tan <p =£ 0

tan 5r =  tan ys a ¥= 0

The first is a purely theoretical solution since the azimuth o f a 
transit instrument is never zero, that is the horizontal axis w ill never 
coincide exactly with the East-West direction.

O il the other hand, the second solution allows us to state an important 
property o f system (1) : namely, assuming the other instrumental errors 
to have been perfectly corrected, and that there remains only the azimuthal



error, we may determ ine the value fo r  AX independently of the azimuth 
solely by means o f solving the fo llow ing system :

Geometrically speaking, the first equation defines a straight line o f 
angular coefficient a' =  a cos cp, whereas the second one defines a straight 
line parallel to the y-axis and whose equation is x  =  tan cp .

Logically, there is only one solution to the system (2) : this is the point 
where these two straight lines intersect. The ordinate o f this point directly 
supplies the value o f the unknown AX •

These considerations suggest that the simplest way to solve the 
system (2 ) is tlie graphic method ! i.e. to plot tlie observed stars "witii tan 
§r as abscissae, and as ordinates the observational values corrected in the 
way indicated, i.e. the Nr values : then to jo in  these points to form  a straight 
line, and to read the ordinate o f the point on this line which has the value 
o f tan cp as abscissae.

This is the simplest method, but from  the analytical viewpoint it is 
open to many valid  criticisms.

The first o f these —  and the most serious —  is the one arising from 
the fact that the N r quantities are essentially dependent on experimentally 
derived data, i.e. from  the observation of stars at their meridian transit. 
The points w ith  coordinates tan 8r, Nr do not in reality make up a well 
defined straight line, and it is not at all easy to link them all up. This 
being so, in order to obtain a result accurate to the thousandth o f a second, 
it would be necessary to employ the successive approximation method of 
computation, that is to determine a first value for the azimuth by means 
of a graph, then to substitute this value in the fo llow ing relations :

which w ill supply a new set o f values fo r m  and n. Then we have to apply 
to P 0 the entire and re-computed correction 2, and thus we finally obtain 
new values fo r N r . This operation has to be repeated until we find a nil 
value for the angular coefficient of the straight line defined by the points 
w ith coordinates tan Sr. Nr> and find AX from  the mean o f these Nr values 
supplied by the last approximation.

By proceeding in this way we see that there is then no benefit in 
employing this graphical method which instead o f reducing computation 
complicates it considerably. It is therefore necessary to find another means 
o f retaining the graphical method, which is always preferable because it 
gives an instant and complete picture o f the way in which the observation 
has been carried out, i.e. o f the observer’s accurateness.

The reasoning which we shall now make has two advantages. It is 
o f elementary simplicity, and it adheres strictly to both the logic and the 
necessities o f mathematics.

Let us firs tly  point out that the straight line joining the points with

Nr =  AX +  a cos (tan 8r — tan <p) 

tan 8r =  tan
(2)

m =  i cos ip +  a sin ip

n =  i sin ç  — a cos ip



coordinates tan 5r> Nr must necessarily pass through the barycentre B o f 
these points, whose coordinates are

2, tan 5 2 N
-----------  and -------  (r = 1 , 2 , . . . , n)

n n

where n is the number of stars observed. The only uncertainty that the 
graphical method involves lies exclusively in the accurate determination 
o f the angular coefficient o f the straight line, inasmuch as this straight line 
can pivot, on account o f the scattering o f the points, by small angles that 
vary according to the scattering, the pivot point being the barycentre B of 
the observations.

Hence by taking into account the barycentre B we elim inate with 
certitude the errors due to the translations o f this straight line.

Ordinarily this scattering makes it difficult to distinguish accurately 
small variations in the true value of the angular coefficient which, as we 
remember, allows us to determine the value o f the instrument’s azimuth.

It is easy to see that the further the barycentre B of the observations 
is from  the straight line x  =  tan cp the greater w ill be the influence o f the 
uncertainties in the determination o f the angular coefficient o f the straight 
line on the value o f AX • In the ideal case where this barycentre is situated 
on the straight line x  =  tan cp the uncertainly in the determination of the 
angular coefficient no longer affects the determination o f AX • On the 
contrary, in this case it would no longer be necessary to plot a graph because 
AX would be supplied by the ordinate o f the barycentre

2 N ,
a x , J b =

and consequently entirely independent o f the instrument’s azimuth value.

Before being able to adopt this principle we must, however, first 
demonstrate rigorously the mathematical validity of what we have just 
deduced intuitively. Furthermore, while developing our reasoning we have 
tacitly assumed that the azimuth value remains constant during the observa
tion. W e  must accordingly study this last question from  the technical 
point o f view  so as to ascertain that during the observation the instrument’s 
azimuth undergoes no variation, or at least that any variation is so minute 
that it is smaller than the observational errors.

2. THE REDUCED EQUATIONS METHOD

a) The most generally used method for computing the unknowns in 
a system o f equations resulting from  observations is the Gauss method 
based on the least squares principle. Th is method makes it possible to 
pass from  one system of given equations to another system capable o f 
supplying the most probable values for the unknowns, together with their 
respective weights. Indeed the greatest mathematical probability o f the 
values o f unknowns is always relative to a given system o f condition



equations and to the results o f observations. For this reason these values 
are dependent on two factors which can be mathematically expressed, 
and whose determination w ill give us an idea o f the accuracy o f the values 
obtained.

These factors are :
a ) The weights : these directly affect the equations inasmuch as these 

weighted equations give better values fo r  the unknowns. The 
weight therefore arises from the coefficients linking the un
knowns to the observations.

(3) The mean error per unit : this affects only the observations and is 
inherent in these observations.

However, it can be seen that we cannot consider the unknowns as 
completely determined unless their weights are known.

The solution o f a system o f condition equations by the Oauss method 
is numerically somewhat laborious, and often ad hoc methods for the 
determination o f the unknowns are preferred. However, w ith such simpli
fications the results obtained cannot often be considered as the most 
probable values for the unknowns.

Frequently in practical astronomy the condition equations contain a 
certain unknown whose coefficient is 1 in all the equations. In such cases 
instead o f w riting the normal equations directly we can previously elim inate 
the unknowns with coefficient 1 by subtracting from  all the condition 
equations their mean equation, and then computing the normal equations 
from  the set o f equations thus obtained. These last we call reduced 
equations.

This method permits a substantial reduction in the numerical work 
o f solving the condition equations, and allows the mathematical determina
tion o f the physical conditions essential to the actual determination in order 
to obtain the best possible results.

Indeed, i f  the condition equations contain m  unknowns the number o f 
coefficients and of known terms to be computed in order to w rite the normal 
equations w ill amount to :

m (m  +- 3)
N = 2

whereas the number o f coefficients and known terms for the normal 
equations from  the set o f  reduced equations w ill be :

= (m ~  \ ) (m  +  2) 
m-1 2

In this way we may elim inate the computation of

N — N_ , = m + 1
/ « I .  . ,  m  m  — i

coefficients.
For example, for the (m =  2) system o f condition equations

ar Xj +- br x 2 = l r (r =  1 , 2 , 3 , . . . , n) 

the coefficients and the known terms o f the normal equations w ill be :

[a a ], [ab] , [ai] , [ bb ] , [b l]



m (m + 3)
" .  =  - V = s

If we can eliminate an unknown by the reduced equations method we 
shall have to compute only =  2 coefficients, and thus we shall eliminate 
the computation of

N2 — N j = m  + 1 = 3
coefficients.

We shall demonstrate that by using the “reduced" method for the 
particular case of equations each having a coefficient o f 1 for one and the 
same unknown the same conclusions may be reached and with the same 
mathematic rigour as by the Gauss method.

Finally we shall show how to deduce the rules to be followed when 
choosing the stars to be observed, in order to obtain the best possible 
system of condition equations.

b) G. Z a p p a  <*> has shown that the following theorem is general. “ In 
condition equations when there is a linear combination of the coefficients 
of the unknowns that has a constant value for all the equations then the 
mean equation can be subtracted from each condition equation” .

In his article Z a p p a  does not speak of weights. This, however, is 
justified, since in the particular application with which he is dealing —  the 
reduction of photographic plates — the computation of weights is of minor 
importance.

Let us now consider the system of n condition equations with m 
unknowns (n > m) :

x a + arx 1 + brx 2 + • • • + prxm_ 1 = l r (r = 1 , 2 , . . . , n) (3) 
the mean equation will be :

+ 'r r * 1 + ^ r * 2 + + ‘v * m- i = T '  (4)n it n ti

Subtracting this mean equation from each of the equations (3), and 
putting :

[a]
a — ------ =  cl

n

[p]
1 , 2 , 3 , . . . , «  (5)

pr ~ —  = *r

[ I ]ir - i i  = A, 
ft

we obtain the following reduced equations :

a , * !  +  Pr X2 +  • • ■ +  7Tr Xm _ !  =  Xr ( 6 )

(*) G. Z a p p a  : II calcolo delle costanti delle lastre fotografiche. Memorie Spettr. 
Italiani XL, page 129, Catania 1911.



The normal equations of the (3) and the (6) condition equations will 
respectively be :

n x0 +  [a] Xj + [£>] x 2 + • • • + [p] xm_ 1 =  [i]

[a] x 0 + [aa] x 1 + [afe] x2 + • • • + [ap]xm_ 1 = [aZ]
(7)

[p] *0 + [«Pi*! + [bp]x2 + ' ' ' + [pp]xm_! = [pi]
and

[aa] atj + [a/3] x 2 4- • • • + [ajr] = [aX]

(8)

[air] x t + [0:r] r 2 + • • • + [ra] = [ttX] J

Designating by D the determinant of system (7), by Dr that obtained 
by replacing in D the coefficients of xr by the known terms, and by A and 
Axr the same algorithms for system (8) we have :

= ' x' = i r  (r = i >2 , . . . , _ l)  (9)

We have to show that these two expressions are identical. Indeed from 
the relations in (5) we have :

[a] [a]
[aa ] =  [aa] +

n

[ab] = [a/3] + ■—  }  (10)
n

Before going further, we shall show that the first of the equalities 
in (10) holds good.

The first relation in (5) gives us :

[aa]

and by developing

we obtain m expressions of the following type :



Summing these equations column by column, we shall have :

r , 0 [a] [a] , [a] [a][aa] — 2 ---------+ n ---------
n nn

and consequently the first relation in (10).
Substituting the relation (10) into the determinant D, we have

D = n

0 +

[a] [aa] +

[a]
n

[a] [a]

0 +

[aw] +

M
n

M  [P }

[p] [a^l +
[a] [p] [7T7T] + [p] [p ]

a determinant which can be expanded into 2m_1 determinants of the same 
order, (2m_1 —  1) of these last determinants being zero because the 
corresponding elements in two columns at least are proportional. The 
only one that will differ from zero will be

1 0 0

[a] [aa] [a7r]

IP] [air] [tttt]

which is equal to A. Consequently we shall have :

D = nA
We can likewise show that

and
D*r = n A xr 

A „  = n AV

( H )

(12)

(13)

where Ars and A ', are the minors complementary to the principal elements 
of the determinants D and A .

Thus the relations (11) and (12) demonstrate that :

Dx, Aar„
x r =  ~ ^ ~  =  ( r = l , 2 , 3 , . . . , m - l )

Finally, as the weight of the unknowns is defined as the quotient of



determinant D and of the minor complementary to one of its principal 
elements <*>, for relations (11) and (13) we have

D A
Pxr =

( - l ) r+sAr ( - 1 ) '
that is

Qr, = Q'„ [ — 1 , 2 , 3 , . . . , m — 1 (14)

and this is what was to be proved.
The value of the unknown xn which is eliminated by the subtraction 

is obtained from the mean equation by the values of (m —  1) other 
unknowns. It will therefore have the same value as if it had been deduced 
from the system in (7).

To determine the weighi of x0 we write :

r , , [a] [a] , , [a] [6][aa] + ----------- [a|j] +  _L L J

D
[a0] + [ î l M  [j5p] +

Expanding this determinant and introducing the quantities Qu, Q12, ..., 
we finally have :

Qoo = ----h“ { [<*]2 Qn + [ ]̂2 Q22 + ‘ ' + 2 [a] [6] Q12 + 2 [a] [c] Q13 + ■ •}n n
(15)

a relation which establishes the truth of our statement, since the bracketed 
polynomial is solely a function of the coefficients of the mean equation and 
of the Qrs =  Qr' values. [Relation (14)].

c) In the case of a system of the type

*0  +  ar x  1 =  K
the solution is very easy.

The mean equation will be

(r = 1 , 2 , . . . , n) (16)

[il

and by subtraction we obtain the reduced equations

a r X1 -  \  (r  =  1 , 2 , .  . . , n )
whence the only normal equation

[a a ] x l = [a X]

(*) An elegant demonstration o f  this mathematic proposition has been given by 
V a l e n t i n e r  : Handworterbuch der Astronomie, dritter Band, erste Abteilung, Breslau 
1899, page 51.



which directly gives

‘ ■ “ [ L t 1 p*.  = ! “ «]

The mean equation gives us the unknown x0

_  [I] [a]
x o --------------- * 1n n

and for this case, by putting

Qn = 7 “[aoc]

we shall have for relation (13) :
_  _L_ I [a]2 1 [a]2 

^ 00 Px0 n n2 [aa] n n2 Pxt

The expression
[«I2

n Pjtj
is a positive quantity and if we designate this by K2 we shall have

n
Pxft = -------- T

0 1 + K2
whence :

The mean errors in the values of the two unknowns will therefore be

P*0 <  n

/(1 + K2) M  ^ = +  /  [w]
n ( n -  2) ’ V  (n -  2) [aa]

where vr are residuals such that they satisfy the condition that the sum [vv] 
of their squares is minimum

d) In the case where

*0 = AX
Xj = a = instrument azimuth

the relations

Pa = [aa] ; K2 = i -L -  ; PAX = "__ ’ Aa n I if2npa 1 + K
(n =  the number of stars observed) will allow us to deduce that :

a) the azimuth will be fully determined when the coefficients ar of

(*) W e must take careful note that
[ee] >  [w]

where e4 are the true observational errors. See fo r  instance F.R. H e l m e r t , Die Ausglei- 
chungsrechnung nach der Methode der kleinsten Quadrate, zweite Auflage, 1907, p. 99.



the equations in (16) have values differing widely one with the other, so 
that the differences

[«]ar = ar ~-  
n

will themselves have a high numerical value.
It should be carefully noted that we say ar values differing widely. 

It will not then be necessary when determining AX to observe stars that 
are very close to the pole, for these lack accuracy. It will suffice —  for 
our latitudes — if we observe stars whose declination is between —  5° and 
+  70°. This is what we have adopted for the observational programme for 
the determination of the longitude of the Astronomical Observatory in 
Naples.

3) The best determination of AA is for the case where
PAA = n ; K 2 =  0 (17)

that is to say for :
[a] =  0 (18 )

In another publication <*> we have demonstrated this proposition for 
the case of the Mayer and the Dôllen methods which have been adopted 
by the International Latitude Service (ILS). W e shall now show the 
optimum condition for the Bessel method.

The Bessel equation can be written as follows
AX +  (cos tan §r — sin <p) a = Nr

where cp is the latitude of the observatory, and Nr are the known expressions. 
In this case

a, =  (cos y  tan 8r — sin <p)

whence the optimum condition
[a] =  [cos ifi tan 8r — sin <̂ ] =  0 ( r = l , 2 , 3 , . . . , n )

that is to say :
2  tan 6„

tan 5 =  -----------  =  tan $

3. THE SUPPORTING PILLAR AND ITS STABILITY

The technical principles governing the installation of a transit instru
ment and its sighting marks are more or less the same as for all highly 
accurate meridian instruments.

The most suitable proportions and shapes for the supporting pillars 
are established following the general rules of construction, and in function

(*) E. F i c h e r a .  : Sulla determinazione di Tempo con osservazioni di passaggi i n  
meridiano. Memorie S.A.I., XXVIII-I, 1957, page 19.



of the materials used, the nature of the ground on which the pillar rests, 
and the pillar’s height.

The detailed study of this aspect of the installation is an engineering 
matter necessitating a knowledge of the basic principles of both flexion and 
torsion, and of the stability factor.

By way of explanation we shall give some general indications on the 
computation method in which three numerical quantities a, b, and c are 
used, a and b are in fact complex functions of all the factors concerned 
in the actual construction —  such as the weight the stand has to support 
(this factor also takes into account the weight of the pillar itself, as this 
will be used in the computation of the foundation), the nature of the 
ground, the material used, etc., whereas c, called the coefficient of stability, 
is a factor relating to the whole installation.

This coefficient makes it possible to establish the ratio between the 
area of the pillar’s supporting base in the ground and the area of the 
instrument stand.

It is easy to see that to obtain maximum stability, from the astronomic 
point of view, it is necessary that this support should be built in the 
ground itself, and that an existing construction should not be used.

At the present time the preferred shape for the pillar is the frustum 
of a square based pyramid, preferably of cemented construction.

On account of this, and in view of the weight of a transit instrument 
(including a safety factor) the coefficient of stability is of the order of 
c =  0.38, accurate allowance being made for the effects of torsion and 
flexion which can arise on the layers of building material of which the 
pillar is made, and for both perpendicular and horizontal pressures.

The other two numerical data depend principally on the geometric 
shape o f the stand and, once determined, serve for working out the ratios 
between the different dimensions o f the pillar.

We shall now give a method of approximate computation which is in 
actual practice sufficient for our particular case.

We take the rounded-off integer values adopted for a and b. Knowing 
from the theory of construction that the functions expressing these two 
quantities are such that a will always be greater than b, we establish the 
following equations :

x = a2 — b2
y  = ‘la b  a >  b (integers)
z = a2 + b2

so that :
X2 + y 2 =  z 2

x  being the base’s apothem (half the side), 
y, the pyramid’s height 
z, the pyramid’s apothem.

The computation is made in centimetres.
Thus we are first of all able to compute a pyramid having the same 

base as the frustum of the desired pyramid. The coefficient of stability



makes it possible to find the last missing element for the frustum construc
tion with the help of the following relation :

minor base apothem
— --- ------ -------  = 0.19major base apothem

Thus we have all the elements for constructing the pillar.
In our case the 5-metre high frustum of the square pyramid is buried 

in such a way that the major base, 2.30 m square, is supported by the 
ground and the minor base, 0.65 m square, is at ground level. The 1-metre 
high parallelepiped support on which the transit instrument rests is 
constructed on this minor base.

The pillar is independent of both the floor and the observation cupola.


