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1. — INTRODUCTION

It is well known that Fourier’s expansion of a time function W(#) over
a limited period 0 < ¢ < T gives a representation of that function in terms
of a series of harmonics of a fundamental frequency F_,, = 1/T. Hence
such an expansion allows the determination of the amplitude H(F) for
discrete (step by step) values of F, as well as the phase of each harmonic
term. Since F = n-F,;, where n =0, 1, 2, .., the difference between two
consecutive values of F will be equal to F_;,. Now if we take a system of
orthogonal axes and we plot the step by step values of F on the abecissae
axis from each of these points we can draw segments parallel to the
ordinates’ axis and equal to the amplitude corresponding to each frequency.
This is the usual representation of the line spectrum of frequencies.

If we wish to represent ¥(t) for 0 < t < « then we do not fix the
upper limit of T which will also be considered as a variable. Thus, if T
tends to infinity F_;, = 1/T will become infinitesimal. In this case another
kind of expansion is necessary : the Fourier integral.

The Fourier integral permits us to express ¥(f) as a sum of an infinity
of harmonic terms with amplitudes H(F), so ithat H(F) is in this case a
continuous function of F and is the continuous spectrum of frequencies.

Now, we know from the sine water-wave theory that the wave energy
flux per period is given by E = 1/2 .gH?, where i is the water density,
g the acceleration of gravity, and H the amplitude of the sine wave. Hence
if we express E in units of g, then we can write E = 1/2 H? for the energy
of the wave with H em amplitude, and E will be expressed in cm?2 per
period.

If fig. 1A represents the continuous curve of 1/2 HXF) as a function
of F, the total energy between ordinates 1/2 HXF) and 1/2 HXF + dF) can
be taken as the area between these limits, and this is equal to

dE =§H2 (F) dF
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1
then dE/dF = - HE(F)

is the energy rate per unit of frequency variation, and 1/2 H%F) measures
this rate, named power spectral density, in cm2?/c.p.d. (cycles per day).
Thus power spectral analysis deals with the determination of the function
1/2 H¥(F).
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Fi1c. 1A. — Representation of the wave energy flux per period as a continuous function
of frequency.

Fic. 1B. --- An example of “aliasing” or “folding”.

Now, it is easy to understand that power spectral analysis is a mathe-
matical procedure to evaluate the quantitative importance in terms of
energy of every oscillation of any frequency contained in function T(?).

The amount of computation involved in this kind of analysis was too
laborious to be considered practicable until electronic computers became
readily available. But recently this mathematical tool has been successfully
applied to the study of sea waves and tsunamis and it is now used in tidal
work. Let us explain some of its interesting tidal applications.

If one of the conventional harmonic analyses of hourly tidal heights
is made, it is possible to predict the tidal curve. The differences between
the ordinates of the two curves are residuals which can be studied by
power spectral analysis. What can we conclude from the power spectral
analysis of residuals ? We can detect oscillations which are not considered
in conventional analysis, and can deduce the efficiency of the filtering. In
addition, if several methods of analysis are applied to the same set of tidal
data, it is possible to compare the accuracy of these methods [1].
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Another application of power spectral analysis is that of determining
the “noise” level of a tidal curve. The word “noise” has the same meaning
here as in the electronic vocabulary. It is well known that when a radio
receiver is syntonized to a transmitling station, we hear almost nothing
but “modulated” sound which is superimposed on the carrier wave.
However if we move the dial out of syntonization we hear a continuous
noise known as “white noise” as well as some sporadic noise bursts. The
former and a great part of the latter are filtered by syntonizing the oscillat-
ing circuit. The sporadic noise can be compared to “surges” which disturb
astronomical tides. A continuous noise exists in all geophysical phenomena.

We can say that it is the noise level which limits the minimum length
of tidal records for useful analysis. MUNK and HASSELMANN [2] give the
condition necessary to separate two oscillations of frequencies F, and F, :

Fy — F; =T [signal/noise level] /2

where T is the length of lime the series covers, and the signal/noise level
ratio is the ratio of the amplitude of tidal oscillation to that of noise
oscillation. This formula shows that, to separate two oscillations of close
frequencies, the noise level must be very low. Every hydrographer is well
acquainted with the fact that when short series of hourly heights are
analyzed, constituents of close speeds, as for example (S,, K, and Ty), are
treated as one single constituent. We can now understand why formerly it
was accepted empirically that one month of hourly observations was the
shortest span which could give good harmonic constants.

In order to emphasize the efficiency of power spectral analysis we may
observe that for the port of Anchorage (Alaska) where shallow water plays
an important part, ZETLER and CumMINGs [3] detected by power spectral
analysis large contributions from oscillations with frequencies not usually
considered in classical harmonic analysis. Then they sought compound
constituents with frequencies they had found and effected a harmonic
analysis by considering 114 constituents, including fifth-diurnals. Their
conclusion was that “Anchorage predictions using the additional consti-
tuents matched the observations better in range, shape of curve, and luni-
tidal intervals”. The same kind of research was carried out independently
and almost simultaneously by LENNON and RossiTER [4] for the Thames
Estuary and a similar result was found.

We will give now a summary of several terms and definitions usually
employed in connection with power spectral analysis.

Sometimes it is interesting to express frequencies in another unit. In
fact if we have to analyze a curve y = ¥(f) and we select ordinates at
intervals Af, it may be convenient to express frequencies in terms of the

1

unit frequency ———, known as the Nyquist unit. Let us imagine that
2 At

we have a diurnal oscillation which means that its frequency is 1 c.p.d.
If we take the ordinates at 1 hour intervals we have At = 1/24 of the basic
interval (one day) and the Nyquist unit of frequency will correspond to
12 c.p.d.. Hence the diurnal tide will have a frequency of 1/12 = 0.167
Nyquist unit.
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Let us now explain the most important phenomenon called aliasing
or folding. Fig. 1B shows an oscillation whose frequency is four cycles per
period T. If such an oscillation is superimposed on others and we analyze
the whole curve by sampling at a fixed interval greater than T/8, then the
four cycles-per-period oscillation would be completely masked by a non-
existent oscillation of lower frequency (fig. 1B). Such a drawback can be
avoided by sampling at intervals inferior to one half the period of the
highest frequency oscillation to be detected. If, for instance, we are
interested in detecting oscillations having 12 c.p.d., sampling at one hour
intervals, i.e. half the period of the oscillation, will be the limit. We should
remember that 12 c.p.d. is equivalent to 1 Nyquist unit when sampling at
1 hour intervals. Thus we see that it is the connection between the Nyquist
unit of frequency and the sampling interval thai avoids aliasing. When the
aliasing is kniown beforehand ii is possibie to use it as a means of reducing
computations. Mvyazakr's method of harmonic analysis is one example of
such use. In point of fact he succeeded in analyzing one year of tidal
observations by sampling at 35.5 hour intervals.

Finally, we define the term “resolution” met very often in power
spectral analysis and whose meaning is easy to grasp. We can say that if
our analysis permits the separation of oscillations with neighbouring
frequencies F, and F,, the difference AF measures the “resolution” of our
analysis.

2. — ANALYSIS THROUGH AUTOCORRELATION

Let us take an oscillation with two harmonic terms :
y(t) = Hcos (gt —r) + H' cos (q't —-r')

where ¢ and ¢’ are the angular frequencies equal to 2 & multiplied respect-
ively by F and F’ which are multiples of the fundamenial frequency. For
time (f — @), where @ is a time lag counted from ¢, we have :

y(t —~0)=H[cosq (t —0) —r]+ H [cosq' (¢t — 6) — 1]
The product of these two expressions gives :
yt) y(t — 0) = H? cos (gt — r) cos [g(t — 8) — r]
+ H'Z cos (¢'t — r’) cos [q' (t — 6) —r']
+ HH’ cos (gt — r) cos [¢" (¢t — 6) — ']
+ HH' cos ('t — r') cos [q (t — 6) — 1]

since

1
cosa cos b = 2 [cos (@ + b) + cos (¢ — b)]
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one can write

1 1
yt) yt — 0) = 5 H? cos g¢ + 3 H'2 cos ¢'6

+ ZC cos (¢t — )
where

C = H%/2,H'?/2 ,HH'/2

«=29,29',q+4q,q-¢ (2a)
and {3 is formed by a combination of g, ¢’, 6, r and r'.

The mean value of y(¢)y(t — @) over the interval — T/2 to T/2 is called
the autfocorrelation function and is expressed by

1 2 1 2 '
<y(t)y(t—0)>=EH cos qfl +5H cos q 0

T
+z%f_%_r cos (ot — B) dt (2b)

but

e b

S

and according to (2a) we have

T cos(at—ﬁ)dt=%cosﬁsin (a’;) (2¢)

o = 27sky

s being a whole number, and F, the fundamental frequency equal to 1/T.
Thus, since

a = 2ns/T

expression (2¢) vanishes. Therefore we can write (2b) as:
1 1
AB) = <y(t) y(t — 6)> = 2 H? cos q6 + 3 H'? cos ¢'0 2d)

This expression, which can be generalized for any number of harmonic
terms, is also a satisfactory approximation when finding the mean of
discrete values of y(f) y(--0) when T is large. The generalized form of
2d is

A@) =

N |~

2 H?(q) cos 6 (2e)
q

This formula was found by writing the oscillations in the usual tidal
form, that is to say, by taking t in hours and g as the hourly speed. This
form of representation is very convenient for sampling observations at
hourly intervals. However it may be preferable in power spectral analysis
to sample at shorter intervals, and a more general definition of g is therefore
necessary.

Let us put as usual:

q = 27F (2f)
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Then, if F, is the fundamental frequency we have F = nF,, (n =0, 1, 2, ...)
and we can write

q = 2mnF,
but Fy = 1/T and T = (N—1)A?, where At is the sampling interval and N
the number of such intervals. Therefore

q = 27an/(N — 1) At

is the phase variation per unit interval. In this expression n is the fre-
quency in units of the fundamental frequency.

Now according to the needs of the analysis a series of lags is used in
such a way that 9, —0,_, = At. If we designate the total number of lags
by (m+1) and

6=7At (r=0,1,2,...m)

we obtain from (2e)

™o |~

A(T) = 2 Hz(n) cos 21"11'/(N -1) (28)

or, if a factor k is introduced such that
n=k(N—-1)/2m (2h)

we have as a result

A7) = % §k_‘, H2 (k) cos (k7w7/m) (2i)

Since we have (m + 1) values of A(g) a further analysis of these values is
possible in order to separate the values of 1/2 H2(k). In fact, as m is a
parameter established beforehand, if k is laken as a series of integers up
to m, then 1/m is a constant playing exactly the same role as a frequency
whose value is twice the fundamental frequency F, in the Fourier expan-
sion, Moreover, if we have (m+1) lags we can obtain 1/2 H2(k) for each
value of k in the same way as we find the coefficients of cosines in a Fourier
series. However 1/2 H2(k) is a density which can only be found if A(¢)
is a continuous function of t. Thus the Fourier analysis of discrete values
of A(t) gives only an estimate X(k) of the spectral density 1/2 H2(k).
Hence a Fourier analysis of (2i) gives

1. _

Elfkp—-o or m
8y
m+1

| ]

A(7) cos (k,mr/m) ;  §, = ¥))

X(ky) =
0 1 for any other value of k&,

-«
)}

For such whole values of k the corresponding values of n will not be
integers, and vice-versa.

For the ideal separation of energy centered at k from energies cor-
responding to k—1 and k+1, k should correspond to the total energy
between k — 1/2 and &k + 1/2. But it will be shown later that the usual
filtering only allows the separation of frequency bands that correspond
to the interval between the limits k—2 and k+-2.
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3. — ANALYSIS THROUGH AMPLITUDES

Let us now study the residual interference of an oscillation whose
frequency is proportional to k on an oscillation whose frequency is pro-
portional to k, by considering A(z) reduced to two terms only. Thus the
energy centered at k, which is affected by energies from oscillations of
neighbouring frequencies, is obtained from (2i) and (2j):

X(kp) = m _’:_ i S_"jo I:-;H2 (k,) cos (k, mr/m) cos (k, w7/m)
+ % H2 (k) cos (k7 1/m) cos (kpn‘r/m) ] (3a)

In the above expression the interference is represented by the k terms.
Thus we may write:

AX(k) =%H2(k) 1 5 go [ cos (k, + k) nr/m + % cos (k, — k) m’/m]

If m is made as large as possible, then the fundamental ratio 1/m is small
enough to allow the replacement of the averages of discrete values over
the interval =0 to t=m by integrals of the form

1 m 1
P d —_— — 1
average = — j; cos (ar) dr = &in (am)

where ¢ is any of the coefficients of ¢ in the previous expression. Thus we
have

(3b)

AX(k) =82—"H2(k) [ sin 7 (k, — k) + sinw (k, + k) ]

2n (k, — k) 2 (k, + k)

Now if we examine a table of values of sin nu/wu we see that this
function of u has zero values for u=1,2,3,.. and that there will be
consecutive maxima and minima for u = 0, 1.45, 2.46, etc. Again we see
that these maxima and minima have decreasing absolute values and that
the maximum corresponding to u = 2.46 is only 13% of the maximum
at u = 0. However the absolute values of the maxima and minima that
follow the maximum at u = 2.46 do not die away very quickly. Thus the
term with {(k,+k) in (3b) cannot be omitled, for (k,+k) < 4. But when m
is large only a few low harmonics corresponding to small values of k,
will be affected by this term. Hence if we put

sin @ (k, — k) _ _ 3
Sl &, — B ok, — k) (3c)
we obtain from (3b)
AX(k) =% H2(k) ok, — k) (3d)

The dashed line of Fig. 3A shows the function ¢ (k,—k) given by (3c¢).
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Wings ——————>\\/

Fic. 3A. — Response Functions.

It is possible to reduce the side wings of the dashed line in Fig. 3A
by filtering A(z). In fact, if we use A(z) (1+cos wt/m) instead of A(7)
then the fading function (1 + cos n7/m), devised by TukEyY, will be a new
factor in (3a). A similar development of the expression resulting from
introducing that new factor into (3a) will give

AX(k) =% B2 () Wk, — B) (3¢)
where

sin 7 (k, — k)

Wy = 8 = e, By (1 — (&, — b)) @D

The solid line of Fig. 3A represents the function ¢ (k,—k) as given by (3f).
We see that ¢=0 for | k,—k| = 2, and that ¢=0 for | k,—k| > 2. Since ¢
and ¢ define the “response” A(q¢) to filtering they are named “response
functions”.

Now, if we compare the first term of (3a) with the second we see that
through a development of the first term which is similar to that of the
second, a formula analogous to (3d) will be found. The coefficient H(k)
will then be H(k,) and function ¢ will be found by making k=k, in (3¢).
Hence (3a) can be replaced by the general expression

1 2
X (k,) = SAX = §, ’Eo S, — k) (3g)
or, if the Tukey filter is used,
m
1
X(ky) = 8 2 5 H? (k) ¥ (k, — k) (3h)
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If we consider @ or ¢ as weight functions, then we see that (3g) and (3h)
are weighted sums of the values of 1/2 H2(k) from k=0 to k=m.
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Fic. 3B. — Graphical Representation of X(n,).

We are now in a position to draw a most important conclusion: the
energy centered at k, can be found by the weighted sum of the values
of 1/2 H2(k), the weights being the corresponding values of q;(kp——k) or
¢(k,—k), as the case may be. Consequently, if we compute the amplitudes
of a series of harmonic terms through a Fourier’s analysis, then we do not
need to pass through autocorrelation to compute the energy. However the
Fourier’s analysis gives the amplitudes H(n) for n = 0,1,2,...(N=-1)/2.
Thus it will be necessary to modify expressions (3g) and (3h) in order to
use H(n) instead of H(k). Since ¢ and ¢ are computed for the difference
(k,—k), k, may correspond to any central frequency. Thus all we need
in order to use these functions in connection with frequencies n is to
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change the scale of the axis of abscissae in Fig. 3A taking (n,—n) instead
of (k,—k). We derive from (2h)

Ak = k/n = 2m/(N — 1) (3i)

which is the variation of & per unit of n. Hence, since Ak is a parameter
depending on m and N, we can write

¢k, — k) = ¢l(n, — n) Ak]
and 3j)
vk, — k) = ¥l(n, — n) Ak]

The limits of the summation over k& must now be replaced by those
corresponding to the summation over n. We saw that ¢=0 for | k,—k | =2
and ¢=0 for |[k,—k| > 2 when the Tukey filter is used. Thus we can
reduce the above-mentioned limits to

(n, —n)Ak =1%2
hence

n, —n =% 2/Ak

expression (3h) can therefore be written as follows:
n’
1
Xy = 8 T 5 H @) ¥, — n) Ak @0
n=n'
where

n' n, — 2/Ak
and (62))
n'' = n, + 2/Ak

Since the limits of summation are narrower when ¢ is used, we shall
always adopt this function.

The interval of summation being reduced to 4/Ak, this ratio is equal
to the number of harmonics covered by lhe weighted sum; that is

s = 4/Ak
or, according to (31)

s = 2N — 1)/m (3m)

Since m is the largest lag used when the energy is found through auto-
correlation it is easy to grasp that m = (N—1)/2 is also the largest lag
which can be used in computations. Thus the least possible value of s
will be 4. In addition, since any value less than (N—1)/2 can be assigned
to m, the value of s can be fixed at will.

Some words on the choice of s remain to be said. Since F = n/T =
n/(N—1) At, if the sampling interval is 1 hour and we desire to express F
in cycles per day, we must express At as a fraction of one day, i.e., At=1/24.
Thus,

F =24n/(N - 1) c.p.d. (3n)
and
AF = 24 An/(N - 1) 3o)

Now, by examining a table of angular frequencies of the usual tidal consti-
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tuents we see that the highest frequency corresponding to one species is
equal to the lowest angular frequency of the higher species less about 11
degrees per hour. Thus, in order to have a filter width that never mixes
with neighbouring species, we must have AF,, = 11°/15° = 0.013 c.p.d.
Hence we obtain from (30)

An =0.003(N—-1)=s—-1 (3p)

In order to effect the weighted sum so that lhe central ordinate of the
curve ¢(u) is centered on the whole value n, it will be necessary to make
an approximation. By so doing s will always be an odd number. Hence it
is possible to write (3p) as follows:

(s —1)/2 =0.0015 (N — 1) = L (3q)

where an integer value of I. will be found by truncation. Consequently we
may write

n,—n=I1-1L Id=0,1,23,....2L)

which is a convenient formula for programming electronic computation.

It has been shown that the least possible value of s is 4. But, since s
must be an odd number, we have s,;,, = 5. By replacing this value in (3q)
we obtain N = 1334 which is the least number of points to be analysed in
order to obtain accurate results.

If we desire to know the value of m corresponding to the approximation
employed, we obtain from (3m) and (3q)

m=2(N — 1)/(2L + 1) (31)

We close this section with a graphical interpretation of the weighted
sum. Fig. 3B is in three parts: the upper part is the functin ¢[(n,—n)Ak]:
the central part is the function 1/2 H%(n) between the limits of n,—2/Ak
and n,+2/Ak. The ordinates of the lower curve are equal to the products
of the corresponding ordinates of the upper and central curves. The area
of the lower curve is equal to X(n,). Thus, X(n,) is not a function of n,
but expresses the area centered at n,. It is called functional of 1/2 - H3(n,).

It is obvious that the area which gives X(n,) must be determined by
adding the small strips of areas having heights 1/2 H*(n) ¢ [(n,—n)Ak].
Hence the distance between two consecutive ordinates used in computations
depends on the accuracy with which it is desired to obtain X(n,). In fact,
in many cases we do not need to use all the harmonics.

4. — THE COOLEY-TUKEY ALGORITHM

Spectral analysis effected according to (3k) is not so convenient as
the excellent algorithm devised by CooLEY and Tukey [10]. This algorithm,
called “Fast Fourier Transform” allows us to reduce the computation of
a Fourier analysis down to 100 times when N = 21, In fact, such an
economy is based on always using N as a power of 2.
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In order to explain the algorithm let us start with the expressions for
determining the coefficients of a Fourier analysis when a series of discrete
observations is given:

2 N-1
==Y
a(n) N = y(t) cos 2nnt/N
2 N-1
b(n) =N 2‘6 y(t) sin 2nt/N
By putting
_N "
c(n) = 2 [a(n) — ib(n)] (4a)
where { = V —1. it follows from the preceding formulas that
N-1
c(n) = 2 y(t) e’ziﬂ’nt/N (4b)
=0
If we now put
e~ 2N = w (4c)
we can change (4b) into
N-1
c(n) =3 y@t)w™
t=0

It is well known that the maximum value of n with physical meaning
in a Fourier analysis is N/2. However, in order to simplify further calcula-
tions the upper limit of n can be extended to N—1. By so doing N/2
fictitious values of ¢(n) will appear, and a square matrix can be constructed
with the values of Wnt. We can then write the last expression under the
following matrix form:

{e@m)} = IW™ 1{y ()}

Let us now write this expression for N=38:

c(0) 1 1 1 1 1 1 1 1 ¥(0)
c(1) 1 wow:owowt W W w? y(1)

c(2) 1 w2 w woé wd wio wiz2 wis ¥(2)

c(3) 1 wowt w w2 wh gl w2 ¥(3)

c@f |1 W wi® w2 wit w20 w24 w2 y(4) (4d)
e(5) 1 W Owlt wis w20 w2 @30 w3 ¥(5)

c(6) 1 we w2 owit w2 w3 wi6 w2 ¥(6)

c(7) 1 W7 WM w2l w28 Wi Wiz W4 ¥(7)

But from (4c) we can take:
wht = e—i21mth

where
nt/N = a + B/N
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« being the integer quotient of the division and 3 the remainder. Thus
Wt = ¢—i2na g —i2nB/N

Therefore, since & is an integer,

W = wh
and we may transform (4d) into:
c(0) 11 1 1 1 1 1 i ¥(0)
c(1) 1 wrowr W oWt W owt W y(1)
c(2) 1 ow2ow oWt W owr owt W ¥(2)
e |l W owow oW W oW W y(3)
ewf] 1 oWt oW owt oW Wt oW W vy 49
¢(5) 1 wowww W W W ¥(5)
c(6) 1 o wtoowt owr ow Wt oWt w? ¥(6)
(7 1 woowt owowr W owEow! ¥(7)

It is interesting to note that if we ignore Lhe first row in the above square
matrix, then the values of W# symmetrical with respect to the row
corresponding to n=N/2 are tied by the relation W& =W>-£, But expression
(4c) shows that W~N=1, Hence, since W#=W % W& and W# are complex
conjugates. Consequently it will be the same with values of c(n) symmetrical
with respect to c(N/2).

Now if we interchange the rows of the square matrix in order to
obtain c¢(n) with n corresponding to flipping the bits which represent
n=20,1,2,3,..7, then the column vector of the first member can be
rearranged as follows:

(0) 000 000 (0) (4) 100 001 (1)

@ oo1{  Vioo (& & 101l Vi1 (5
fl

@ o10{ ™) o10 (2) ©® 110{ ") 01 3

(3) OL1 110 (6) 7 111 111 (7)

and (4e) can be changed into:

c(0) 111 1 (1 1 1 1 ¥(0)
c(4) 1w W WA W owt owe oWt y(1)
c(2) 1 W2 iwh W we owEowt we ¥(2)
eon= (O - 12 WL WW W W W)y af)
e(1) 1 w‘iw2 wwt owowt W y(4)
c(5) 1w w wwtow owe WP ¥(5)
¢(3) 1w w wwt owow W || [y
e(7) 1 wiwt whlwt owdow? oW ¥(7)
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c Ww°C
b_--@----- woa
D ;w*‘D
E §W2E
----®----{ W'B
G WG
Fic. 4A. — Parts of the whole matrix.

Examining the square malrix of the above expression, we can see that it
may be split according to Fig. 4A. Thus, if we designate the upper half of
vector {y(H)} by V,, and the lower half of the same vector by V, we can
write (4f) as follows:

A WA v,
{c'(n)} =
B W'B Vv,
(4g)
A 0 v wWu v,
0 B U wiu v,
where U are unit matrices. Hence we have the first reduction:
v, + W,
710} = (4h)
vV, + Wy,

If we replace the vectors V, and V, by their respective elements, we then
obtain:

y1(0) = y(0) + W0y(4) y1(4) = y(0) + Why(4)
y1() = y(1) + Wox(s) 1(5) = y(1) + W*y(5) @)
¥1(2) = y(2) + WO¥(6) ¥1(6) = ¥(2) + Why(6)
y1(3) = y(3) + Wly(2) y1(?) = ¥(3) + Why(7)
From (4g) and (4h) we find:
A 0
{'(n)} = {y1(t)}
0 B

Now if we split y,({) into four vectors with two elements each, and replace
A and B by their respective matrices as shown in Fig. 4A we arrive at
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c wW'c o0 o \'H
- D W'D 0 o0 Vs
cin =
0 o E WXE LA
o 0 G WG ‘A
or
C 000 U WU oo \'H
, 0DOO U WU 0 o V4
{c'(n)y = x 2 ,
0 0 EO 0 0 U wiu \A
000G 0 0 UWuU \A
we then have the second reduction:
Vi + WOV,
Vi + wtv,
a@y= { .02
Vi+ W2y,
Vi+ WOV}

Since

V) = ¥1(0) VY = ¥1(2)
y1(1) ¥1(3)

we can write the second reduction in the following explicit form:

¥2(0) = y1(0) + Wy, (2)
y2(1) =y, (1) + Wy, (3)
¥2(2) = y1(0) + Wy, (2)
y2(3) =y1(1) + Wy, (3)
we then obtain from (4f), (4j), (4k)
}’3(0)\ 1
¥3(1) 1
y3(2)
y3(3)
y3(4)
y3(5)
¥3(6)
y3(D)/

1
w

{'(n)} =

il

¥1(9)
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“4)

(4k)

V= P dvy = (@
"1(7)

y2(4) = y,(4) + W2y, (6)
y2(5) =y, (5) + W2y (7)
y2(4) = y1(4)+ Wy, (6)

y2(5) =y, (5)+ Wey (7)
and (41):

1wl
1 W

which gives the third and last reduction:

¥3(0) = y2(0) + WOy, (1)
y3(l) = y2(0) + Wiy, (1)
¥3(2) = y2(2) + W2y,(3)
¥3(3) = y2(2) + Woy,(3)

¥3(4) = y2(4) + Wlyy(5)
¥3(5) = y2(4) + Wiyy(5)
¥3(6) = y2(6) + W3y,(6)
¥3(7) = ¥2(6) + Wy5(6)

(4D

¥2(0)
y2(1)
y2(2)
¥2(3)
y2(4)
¥2(5)
¥2(6)
¥2(7)

(4m)
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Further simplifications are still possible. In fact, expression (4c) gives:

WEHNIZ _ , -2inBIN_ p~im = — ) WP

Thus for N=23 we only need to know the values of W° W2, W2 and W3.
For N=2* we have to know 2¥—1 values of W&,

Expression (4m) shows thal successive values of B are equal to n and
appear in the computation in the same order as n does in vector {c’(n)}
of (4f). Hence all values of 3 can be obtained by flipping the binary bits
representing the integers in their natural order, from 0 to N—1. However,
this is not the best way of finding B if BCD (binary coded decimal)
computers are used. In fact, since it has been pointed out that we do not
need all the values of 3 for computation, it will be preferable to obtain the
values of B by using the reenrrence expressions worked out by Eng.
E. BERGAMINI.

Let us write the natural numbers from 0 to 2*—! in the binary system.
By flipping the bits and writing the corresponding results as decimal
figures we can form the complete sequence of values of § in due order.
If we repeat such an operation for y = 2,3, 4,5 and select the alternate
even values of 3, then we can construct the following table:

k1o 1 2 3 4 5 6 7
v

2 | o

3 | o 2

s o 4 2 6

5 lo 8 4 12 2 10 6 14

From this table it is easy to grasp that each sequence is equal to the double
of its precedent continued by another sequence obtained by summing 2 to
each element of this double. We will express this fact by the general

expression:
!
S, =28,.,,25,,+2 (4n)

To obtain the odd values of 3 necessary for the computations all we need
to do is to add 1 to each element of $’,. Hence we have the final sequence
of § values used in the computations expressed by:

— ’ .
S, —S,),,S;+ 1 (40)
We can then express vector {W#3} by the general formula
{WPk} = {cos 27B, /N — i sin 2nB,/N}
with
=0,1,2,.......... 2r-1 1 (4p)

In order to obtain the recurrence formulas expressing the successive
reductions (4i), (41) and (4m), lel us write these expressions in the following
form:
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y1(m) = y(m) + W°. y(m + N/2)
l=1: (4~q)
y1(m + N/2) = y(m) — WO. y(m + N/2)
with m=0,1,2,.......... N/2 —- 1
y2(m) = y1(m) + Wl y,(m + N/4)
j=2. ya(m + N/4) =y (m) —Wo.yl(m + N/4)

ya(m + 2N/4) = y, (m + 2N/4) + W, y, (m + 3N/4)
ya(m + 3N/4) = y, (m + 2N/4) — W', y, (m + 3N/4)

with m=0,1,2,.......... N/4 -1

and
¥3(m) = ya(m) + WO yy(m + N/8)
y3(m + N/8) = y;(m) — W, ya(m + N/B)

y3(m + 2N/8) = y,(m + 2N/8) + W', y,(m + 3N/8)

y3(m + 3N/8) = y,(m + 2N/8) — W', y,(m + 3N/8)

ya(m + AN/8) = y,(m + 4N/8) + W2, y,(m + 5N/8)

ya(m + 5N/8) = y,(m + 4N/8) — W2. y,(m + 5N/8)

ya(m + 6N/8) = y,(m + 6N/8) + W3, y,(m + 7N/8)

y3(m + 7/N8) = y,(m + 6N/8) — W3, y,(m + 7N/8)

with m=0,1,...N/8-1

The values of y; given by the last reduction are the elements of the column
vector { ¢/(n) }. To obtain the elements of the column vector { c¢(n) } all we
need to do is to re-arrange the elements of { ¢/(n) } according to the increas-
ing orders of n. Since N=2 we can generalize the above reduction by
representing any couple of expressions by the following couple of recurrence
formulas:

ym +(2k) .20y =y, | (h+ (2k).227) + Whk Yi_i(m + (2k + 1) . 277 ()
T

yim + 2k +1). 2%y = yim + (2k). 207F) — 2WPky, ;(m + (2k + 1). 2 7)
i 1, 2,........0..... v
k=0,1,2........... 2-1_
m=0,1,2........... -1 1

Let us now take a glance at the economy obtained by using this
algorithm. If we count the operations indicated in reductions (4i), (41) and
(4m) we find 24 sums and 24 products. But if we note that 24 = 3 x 23
for N = 23 we may generalize this calculation for N = 2 by writing

T.= 427

however we saw above that since W8+~/2 = — WS#, the number of products
can be halved, thus for the number of products we have:

T=nvy.271
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Now if (4¢) is used in the classical way, each element of {c¢(n)} is obtained
by N products. Hence N X N is the number of products necessary to
compute all the elements of {c(n)}. Since N = 2 we have

T = 2%
for the total number of producis. Conscquently the economy will be
represented by the ratio
T'/T = 27*1/y
which gives 128 fewer multiplications when vy = 13. This figure corresponds
to a series with 8 192 points.

We have seen that the last reduction gives the elements y,(f{) which
are equal to the elements of {c¢’(n)}. In addition we saw that the values of
Bx used in the computations are also the alternate values of n. Thus, since
the sequence S, given by (40) is the sequence of values of §,, we can write:

S, =B, =ng, £=0,1,2,..... 2r-1_1 (4s)
Consequently the complete sequence of values of n will be
S,',' =n,. K=012..... 2y -1 (4t)

where for K/ = 2k + 1 we have:

Ny = ng, + 2771 (4u)

The Fortran IV programs for using both this algorithm and formula
(3k) are given here under.

IR IN]
Vi

FILE 9=FRANCUO,UNIT=D15h,LUCK,AREA=2000,RECURD=192
FILE O6=NUFILEsUNIT=PRINTERPUNLAGELED

C CHAE *% SECA » PALILHA =~ 10/9/638
C FAST FUURIER TRHANSFURM
C YACLY AMD THE EAPUNENT OF 2, DESIGNED GAMA» ARE THE D[ATA,

COUMPLEX YA(D12)snULETAC2%6)»AUX
IMIEGER GAMA,COLF L»CUFRF2,BETA(256)
DPI=6.2831852
KEAD(5,1000) GAMA
I=GAMA=2
J=0
BETAC1)=0
DU 20u M=1,1
JsJ+l
NL=2%* )
L=nlL/2
ITi=L+1
D 100 Ju=1sl

100 BETA(JUI=2+BETACJUI)
D0 200 JJ=T11»,HNL

200 sETA(JI)I=BETA(JU=LI+2
DU 300 JJd=1,NL
KK=JJ+HL

300 HETA(KK)SBETA(JJI+1
LL=2*NL
N=2**GAMA
PN=N
I=N/2
DU 4060 K=1s1]
FPLBETA=RETACN)
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400 WBETA(K)=CMPLXCCUSCOPI*PBETA/PN)Y»SIN(DPI*#PHETA/PN))
READ(S21200)CYACJ)»Jd=1sN)
DD SO0 L=1,GAMA
LGAMASGAMA=L
MM=2*«LGAMA
KK=24w({~1)
DO 500 K=1,nrK
DG 500 H=1,MH
COEFl=H+(K=1)w2uMHh
CULF2=M+(2%K=1) =M
YACCOUF2)=Ya(CnEF2)xusETA(K)
YACCOEFL)=SYACCSHIF1)+YA(CCOLF2)
500 YA(UAEF2)=YACCOLF1)=2.,«YA(CQLF?)
M=Q
xi=1
MNM= e
1A
SU6UD K]
MM=pg TACR D)+
GU U 700
§90 MMEMM+]
GN T 700
600 CUNT]INUE
WRITE(6,1300) (YACL)»I=1sND
WRITECQI(YACI)»I=1,5296)
STUP
700 M=M+1
IF(M +GT, MM) GU 10 800
AUX=YA(MHM)Y/X]
YA(MM)=YA(M)/XI
YA(M)sAUX
IFCM +FQe 1 +NRe M JEQ, NM) YA(M)BYA(M)/2,
800 IF(MUD(M»2) EQ. 0) GO TO 6007
GU T0 550
1000 FURMAT(IS)?
1100 FORMAT(26Xs1615)
1200 FURMAT(200(28F3.0/))
1300 FORMAT(9X»2E44.0)
END

FILE 6=NOFILE,UNIT=PRINTER,UNLABELED
FILE 9=FRANCO,UNIT=DISK,LO0CK,AREA=2000,RECORD=192

CNAE  »» SECA +% FRANCO 25711768
SPECTRAL ANALYSIS
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PN = NHMIER OF POINTS OF THE FNURIER ANALYSIS AND AM s NUMARER
CF LAGS USFD IN AN EQUIVALENT POWER SPECTRAL ANALYSIS THROUGH

AUTOCORRELATION,
DIMENSION PEPSIC100)»2(512)
READ(S,101) PN,AM
P1=3,141592
M=t
Al=z0,
IFCPN=1334,32,251

1 L=(PN=1,)%0,0015
GO T0 3

2 L=(PN=1,)/AM

3. AL=L
DELKA=8,/(2,*%AL)

S IFCAI.NELALY GO TO 9
PEPSI(IM)=0,25
GO 70 6
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9 UsSCAI=ALI*DELKA
IFCU,NEL1,) GO TO 10
PEPSI(IM)=D,125
Gd 10 6

10 G=PIxy
D=G*(1,=Unr=2) w4,
PEPST(IMI=SIN(GI/D
IFCAI=2,%AL)6+6,70

6 IM=IM+1
Al=Al+1,

GOTO0 S

70 N=PN
READC9I(Z(JUIsJalsrN)
DO 200 J=1,N»2
M=(J+1)/2

200 Z(M)I=ZCUIww2+T(J+1) w2
Z{1)=0,
LL=2=+L
NI=N/Z2
DO 300 M=1,NI
KK=n=M+1

300 Z(KK+L)=Z(KK)
DO 350 J=1,L
Z(J)=0,

350 Z(NI+J+L)I=0,
U3J 400 K=1,N1
ib=LL+1
A=0,
GO 370 IM=1,1L
N=IM»Kmq

370 AZA+I(NI*PEPSICIM)

400 ZIN=LL)=A
WRITEC,»1700) (ZCIYLI=10NID

1700 FORMAT(9X»2£44,.8)

101 FORMAT(2F&.0)
END

5. — CONCLUSION

It is of interest to point out that a real link has been established
between the classical power spectral analysis and the analysis carried out
through the Fourier method. In addition the law for resolving the matrix
into factors was well established by starting from rearranging the rows of
the original matrix according to the flipping of binary bits.

Another interesting feature of this procedure is the fact that expres-
sions (3g) and (3h) are discrete forms of the convolutions of 1/2 H2(k) with
®(k) or W(k), as the case may be. In fact, since H(k) = 0 for k£ < 0 and
k > m, the convolution for continuous values of 1/2 H2(k) is:

m 1
X(k,) = 3 BA (k) Wik, — k) dk

When the Tukey filter is used Ak does not appear in the discrete forms
because Ak =1 in such cases.

We are now in a position to foresee a new development of this subject
so far as tidal analysis is concerned. In actual fact, it is not usual to take
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Fic. 5A. — Power Spectrum — Aratia Bay.

advantage of the Fourier analysis used to obtain the power spectrum to
compute tidal harmonic constants. However, we believe that either the
Myazaki or the Cartwright-Catton method may be used to “adjust” the
Fourier analysis to the angular frequency of the astronomical constituents
in order to find these constants. If so, we will be able to “fish” the needed
harmoniec terms from among those given by the Fourier analysis. The only
objection is that the span is tied to a power of 2 and not to a classical
multiple of one lunation. We know, however, that some least square
analyses have been effected with no regard paid to the conventional spans
and that the results were shown to be correct. Hence we hope to find an
economical solution for avoiding heavy supplementary computations in
order to arrive at the harmonic constants from the Fourier analysis itself,
such as it is used to obtain the power spectrum.

It has been shown that the least possible number of hours to be
analysed to obtain accurate results is 1 334. However, some useful inform-
ation can be extracted from shorter records. In fact, we effected the
analysis of a very short record (512 = 2% points) taken at Arati Bay (Brazil)
by using the filter at its narrowest possible width. The result (see fig. 5A)
showed very clearly the maxima corresponding to 0, 1, 2, 3 and 4 c.p.d.
The relative importance of the clusters is about the same as that obtained
with the conventional harmonic analysis by the Tidal Institute method for
a 32-day span. It is interesting to note that two spikes can be seen,
corresponding respectively to the third and fourth diurnal species, which
are particularly small (about 2 cm).

It should be pointed out that the resolution for such a short span is
too poor to separate adequately numerous constituents of the same species.
But the species themselves are very well enhanced. In many cases this is
very useful information. In order to obtain a good separation of the

37
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constituents it is necessary to analyse a six-month record (4 096 points),
especially if we desire to identify new shallow water constituents {3].
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