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Abstract

The effect of the background noise on the analyzed values of the tidal 
constituents can be evaluated if it is assumed to be of purely random 
character. The noise effectively prohibits the resolution of very close 
constituents while its influence is virtually negligible on well separated 
constituents. In the latter instance, the interference of the unanalyzable 
constituents becomes the major source of errors in short analyses.

INTRODUCTION

From experience it is known that the successful resolution of tidal 
constituents depends on :

1) the duration of the observations;
2) the size of the constituents;

3) the presence of neighbouring constituents;
4) the amount of errors or disturbances present in the observations.

These facts may be put on a firm mathematical basis and expressed 
quantitatively. W e shall see that :

1) the expected error on the value o f any constituent is independent 
of its am plitude and  frequency ( L e c o l a z e t , 1956);

2) that it grows drastically when one attempts to separate two or 
more closely lying constituents (V a n  E t t e  and Sc h o e m a k e r , 1966);

3) that in ordinary sequences of observation, the expected error for 
well separated constituents is really negligible compared to the interference 
of the unanalyzed constituents;

4) that an improved resolution of neighbouring constituents depends 
almost exclusively on extending the interval of observations.



1. The analysis

Let us consider a sequence of 2N +  1 observations, A t units of time 
apart :

{ * ' (/ ) }  / =  - N , . . . , -  1,0, 1 , . . . ,  N (1)

x '  may be considered as the superposition of two quantities :
a) the tidal signal x ( j )  ;
b) the noise n ( j )  which reflects rounding errors, mistakes in reading, 

gauge malfunctions, storm surges, tsunamis, etc.

W e therefore write :

*'(/) = x(j) + »(/) (2)

W e assume that n ( j ) ,  in the long run, is a purely random quantity 
and behaves as white noise :

1 N
E [«(/ )] -  — —  2  n ( l )  =  0 (3)

2N +  1 /=-n

1 N

E[«(/)«*(/')) “  r ^ - r r  2  «(/)«*(/) = v2 V2N +  1 / = - n

= ( °  I * * ’
(1  / =  /

(4)

where =

E [ ] means “ the expected value o f ” , v2 is the variance of the noise.

W e notice that the tidal constituents do satisfy (3) but on the other 
hand they are correlated and they do not satisfy (4) for j  ^  /.

Whatever the technique of analysis used, the end result w ill be the 
representation in the frequency space (a) of the function (1). In tidal 
practice we know that the representation of (1) in a space is of importance 
only over very narrow frequency bands, especially the diurnal and semi
diurnal bands over which the constituents are very closely packed. In the 
low frequency band which extends from 0 cycle/day to 1 cycle/day 
exclusively, the tidal signal becomes very weak. Although the background 
noise does not increase significantly in this band, it does become of the 
same magnitude as the tidal signal and normally masks it. W e shall focus 
our interest on the higher frequency bands over which the bulk of the 
tidal energy is concentrated.

x ( j ) ,  the tidal signal, can be written as

* (/ > -  Z  (5)
k = ~ n

ak is the complex amplitude of the Mh tidal constituent and it has to be 
evaluated; <jk is its frequency which is known very accurately a priori.



The ak s may be considered as the basis of a vector space, while from 
this point of view, the exp [2 Tiiokj h t ] ’s are operators transforming vectors 
from one space to another, namely from the frequency space to the time 
space and vice versa. Thus

x  =  La (6 )

is an abstract representation of (5) where L is the linear operator represent
ed by the exp [2 uiafc./Af] ’s. The inverse mapping of (6) is

a =  L _1;c (7)

which in our case can be written out as

ak 6 (0 )=  £  e ' 2w'° tM fx (/ ) (8)
/ = - .

§(o) is the value of the delta function §{.c) at x =  0, namely °°.

On account of the limited span of observations, (8) has to be replaced
by

2  A *m«m= £  e r 2n,a* IAf X U )  =  ek (9)
m = — n / = —N

where

K m =  £  (10)
/ = - N

and therefore tends to h(ok — Om) t°r J ~ * 00 ■
The solution for the am’s is

ak =  S  km Cm (1 1 )
k=~n

which is the end result of a standard analysis on a finite segment of 
observations. For the choice (10), (11) gives a least square fit to the 
observations. A kti  are the elements of the inverse matrix A -1.

For an actual set of tidal observations, such as given by (1), the end 
result o f an analysis is

4 =  t  i  £  f T ^ ^ x ' U )  (12)
m = — n m = ~ n  /= —N

a 'k is only an estimate of ak.

2. The expected error

From (1) and (12), we see that the error on ak is

A k =  I  I  A - > " 2,r,<,- M , » ( ; )  (13)
m = —n / = —N



A* is a complex quantity like ak. It is easier to consider its absolute value 
square :

I A „ | * =  Z s  2  Ç  A ^ A
m m j  /

Assuming n ( j )  behaves as white noise, (3) and (4) yield

E|IA* 1’1 =7a7  2  5  2  a „  a,m. a,,.
I A  I m m  /

since

Arm Arm

(SLfcm being the minor of Aj.m, and |A| the determinant of A. The expression 
can be compressed further by noting that

2  ( - ) m+k A „ „ . a k„  =  i a  i
m

is the development of A into its minors. Therefore

E[| A k \2] =  — S& (14)
* I A|

a concise expression for the expected absolute square error on the 
amplitude o f the constituent ak.

Now we will evaluate what this error amounts to for the three cases 
of well separated constituents, o f doublets and of triplets.

a) W ell  separated constituents

In the case of good separation

A km = 5*m(2 N +  D  +  ekm (15)

where the Ejtm’s are quantities an order of magnitude smaller than 2N +  1; 
they will therefore be ignored from our subsequent considerations.

(14) becomes

E[|Afc|2] = v2/(2N +  1) (16)

in which v2 can be estimated from :

’ ’  *  2nTT , L  lx'0) - r  “i  07)
(16) indicates that the expected square error is independent of frequency, 
of the amplitude ak of the constituent and that it is inversely proportional 
to 2N +  1, which measures the duration of the observations.

To 95% probability, the amplitude o f ak w ill fall between the limits

± 2v/(2N +  1)+1/2 (18)

In the physical notation of a constituent as A k cos (o kt — çk)  which is the 
equivalent o f the ak exp [2 niakjA t ]  +  a _ k exp [ — 2 7ii'a*Af] in our form
ulas with a _ k =  a*k for real observations, A fc being the real amplitude 
and çfc, the phase lag; |afc| is equivalent to (l/2)Aft and Ç& is the phase lag



of ah. The limits of confidence on A k, ç* are therefore

A A k =  ± 4v/(2N +  1)+1/2 

=■= ± 4v/Ak(2N +  1)+1/2 radians

(19)

(20)

to 95% confidence ( L e c o l a z e t ,  1956).
W e can introduce some numbers into (18) in order to obtain an idea 

of its magnitude. In ordinary observations on the vertical tide, a value of 
v =  3 cm is about of the usual order of magnitude. For this value, and

The major tidal constituents such as M2, K2, S2, N2, Kj and Ox are of the 
order of 30 cm, so that with a background noise of 9 cm2 their value should 
be affected by a relatively slight uncertainty if they happen to be well 
separated. On the other hand, the margin of error gives the minimum 
value of the separated constituents which can be considered as meaningful 
from a given analysis.

b) A Doublet

From short sequences of observations, it may happen that two 
constituents of importance such as M2 and S2, M2 and N,, and Oj, Kj and 
P t, etc., are not well separated. Mathematically this means that in (15) 
the Efcm’s relating to the pair are no longer negligible with respect to 2N -(-1 
and that the matrix A loses its quasidiagonal character.

In this case we return to (12) and (14) and rewrite the matrix as

in which the two close constituents have been labelled 1 and 2. The 
remainder matrix A R can have any form.

2N +  1 = 25 hours (1 day), 181 (— 1 week), 361 (~  15 days), 
8 000 (~  1 year) . 

± 2v/(2N + 1)+1/2 = ± 1.2, 0.45, 0.32, 0.07 cm.

(21)

In (21) :
A u — A jj — 2N +  1

sin[(2N +  l)7rA/(a1 — o2)] 

s in [7 rA /(o ,  — o 2)]

From (14) the expected error is :

I A j j  A j j  I A R I I A jj A  j j  | ^ 2 )

3v2
“  7T2 (2N + I )3 A f(ffj — o2)2



The approximation holds when (2N+ l)îuAf(ai — a2) is a small quantity; this 
depends on the frequency difference a 1 —a2 being so small that in spite of 
its multiplication by 2N +  1, there results still a small quantity.

(22) may be rewritten as

12V1
E " * ■ ! • ] - E H  « . n - B N  +  u u M ,  <23>

where
Aip =  27t(2N +  1) AKtfj — O j )  radians (24)

Acf> measures the relative phase difference between the two constituents 
over the interval of observations. For instance, if we consider the doublet 
S2 K2, over an interval of 360 hours. A<f> amounts to :

A*> =  2tt x 361 x 0.0833333333 -  0.0835614924) rad =  0.52 rad or 29.65° 
Then

E[|AK2|2] =  E[|AS2|2] =  45vJ/(2N+ 1)

so that the margin of error on the analyzed amplitude of the doublet 
considered would be increased by a factor of about 7 compared to the 
margin o f possible error for the well separated constituents.

So by attempting to resolve a close doublet, the margin of expected 
error is increased by a factor of 2 VIT/A<f> which becomes infinitely large for 
infinitely close constituents. Once again the expected error depends on 
the variance of the noise and it is independent of the amplitude and 
frequency of the constituents considered.

c) A triplet

Now we attempt the resolution of three very close constituents. 
Amongst the triplets of interest, we have N2 M2 S2 and T 2 S2 K2. W e may 
label the elements of the triplets as 1, 2 and 3. Then (14) yields

E [|A ,|2] = _

V1
A  22
A 32

^23 I 
A 33 1

1 A| A „ A|2 A 13
A 21 A j2 A 23
A 3, A 32 ^33

(25)

with similar formulas for constituents 2 and 3. To particularize formulas 
such as (25) one must use some special relationships between the o’s of 
the constituents. For the triplets concerned

Oj — o2 “  b and a. — a. 2b

where b =  0.54"/hour for N2 M2 S2 and b =  0.04°/hour for T 2 S2 K2. Under 
these special circumstances, we may write

,21 _  80E[|An I2] =  E [|A t  I2] = ---------------------- 7 
n2 1--------------- 2 (2N +  1) (Ai^)



E[|AM2|2] = E[|AS2I2] =
180v2

(2N +  1) (A vj)4
(27)

E[|AS2I2]= E [| A k/ ]  =
20 v2

(2N +  1) (A <p)A
(28)

where

A ip =  (2N +  1)2jtA tb  .

The equalities between the expected values of the triplets are only 
formal as the b ’s are different. W e note from (26) to (28) that the margin 
of probable error increases by a factor of (A</>)-2 compared tP a factor of 
(A 4>)-1 for a doublet, at least for the special set considered here and that 
the constituent in the middle suffers the most. If we take A<j> ~  1/2 radian, 
the margin of error is increased by factors of 35, 54 and 18 for the elements 
of the triplets considered with the margin of probable error of a single well 
separated constituent.

Therefore there is a drastic increase in the probability of making an 
error in the resolution of two or more close constituents. The risk of 
error can be eliminated simply by not attempting to resolve close lying 
constituents.

3. Rayleigh’s criterion

W e now have to define precisely what we mean by well separated or 
by close constituents or better, what we mean by separable and non- 
separable constituents. This may be done by considering the matrix which 
depends on the relative phase difference between the pairs of constituents 
analyzed from a set o f observations.

In the instance o f a doublet

A matrix with elements like (29) is a source of numerical instability 
during the course of the inversion of the matrix A and its use should be 
avoided. The criterion for the off diagonal elements to be smaller than 
the diagonal elements is

1

n A t (a 1 -  a2)

while :
A jj — A22 — 2N + 1 (29)

1

7rA/(a1 — o3)
<  2N +  1

or
(2N + 1)ttA t (a 1 ~ a 2) > \

or
A <p >  2 radians or 115° (30)



Those familiar with the practice of the analysis of tides know that the 
criterion used for the separability of constituents is the so called Rayleigh’s 
criterion which states that two constituents are separable if their relative 
phase difference over the interval o f observation equals or exceeds 2:: 
radians :

>  2tt radians or 1 cycle (31 )

Rayleigh’s criterion is derived from the laboratory practice of optics 
where it makes physical sense. It is a rule, not a mathematical theorem. 
(30) indicates that in tidal analysis, it is over stringent. For constituent 
phase differences less than the one given (31), the resolution is still possible 
with a margin of probable error which can be calculated with the help of
(4). (14) does indicate that the error risks becoming very great for close 
lying constituents. For constituents a fair distance apart, although less 
than the one indicated by (3 !). the probable error may remain wilhin 
tolerable limits.

In our personal practice of tidal analysis we resolve constituents which 
lie as close as 0.8 cycle apart. This rule may be considered as our definition 
of separable and non-separable constituents.

A >  0.8 cycle or 1.6 w radians or 288° (32)

4. The relative unimportance of the background noise compared to the influence
of the unresolved constituents

For two relatively close constituents resolved according to criterion 
(32), the margin of probable error is approximately given by

______________ ± 2 y______________  ___________ ± 2 v___________ ± 2v
(2N +  I ) 1' 2 ( 1 — sin2(1/2) A ^ )1̂2 (2N + I ) 1'2 (1 -  4Ay>-2)1/2 ~  (2N + I ) 1'2

(1/4) A <p2 (33)

for all the pairs satisfying (32).

The criterion of separability (32) therefore allows us to use (18) as 
an adequate measure of the margin of error. We notice in section 2a that 
it amounts to a fraction o f a centimetre for ordinary values of the 
background noise. This fact simply indicates that there is little smearing 
of pairs of close constituents if  they satisfy at least the criterion of 
separation (32).

W e are still left with the problem of the presence of the close (hidden, 
unanalyzable) constituents which could not be resolved on account of the 
very fact that the presence of the background noise makes their resolution 
virtually impossible or at least highly untrustworthy. These hidden 
constituents turn out to be the major problem of tidal analysis and not 
really the presence of the unavoidable background noise.

To trace the effect of these hidden constituents a series of twenty-four 
consecutive monthly analyses were made of the vertical tide at Victoria,
B.C. The results were compared with those of a global two-year analysis



which could be considered as giving nearly definitive values for the major 
constituents. In the monthly analyses, Ka in particular exhibited oscilla
tions which had to be attributed to some close unanalyzed constituents and 
not to the background noise. Table 1 shows the observed fluctuations in Kj.

T a b l e  1

Deviations in the amplitude and phase of K , as observed in a series 
of twenty-four monthly analyses at Victoria, British Columbia, Canada

Deviations Found in Monthly Analyses 

Month A  g  Month A  g
imber cm degrees Number cm degrees

1 2.1 0.1 13 0.6 0.7
2 0 1.1 14 -  2.1 0.4
3 -  2.7 0.4 15 -  2.7 0.5
4 1.5 1.5 16 -  0.6 1.1
5 -  0.6 0.3 17 -  0.3 1.9
6 -  0.6 1.6 18 -  1.5 -  0.2
7 -  0.6 -  1.2 19 0.6 -  1.8
8 1.2 -  2.1 20 2.1 -  1.1
9 1.8 -  1.0 21 3.1 -  0.6

10 1.2 0.0 22 1.8 -  0.2
11 0.6 0 23 3.4 -  0.5
12 2.4 -  1.3 24 2.4 0.6

Amplitude and phase of K t from a two-year analysis : 63.1 cm 149.0°.

A M P  PHASE

F ig. 1. —  Variations in  the amplitude and phase o f the constituent found in monthly 
analyses compared to  their “ true” values.

Thick line : Observed values.
Thin line : The contribution o f the constituents nu <p, and S,.
The amplitude is in feet, a unit still in use in Canada.



The background noise could account for oscillations of ±  0.5 cm. In 
Table 1 the scatter exceeds this value and it exhibits marked periodicities. 
The contribution of Pj to K, has been removed in the tbale so the perturb
ations must be attributed mainly to 7ij, Sj, and <f>lt other close neighbours 
of Ki. The two-year analysis revealed the values of these constituents and 
so their monthly contribution to K t could be calculated : figure 1 shows 
that they account for the bulk o f the deviations observed in the monthly 
values o f Kj.

Naturally if the modulation of the main constituents obtained from 
short analyses can be traced to their close satellites and not really to the 
background noise, it does not imply in turn that one learns the exact 
value of the predominant constituents from short analyses : they are 
automatically modulated by their satellites whose amplitude, frequency and 
even their identity are unknown at times.

The theory o f error just discussed shows that it is highly perilous to 
look for these hidden constituents but it does not suggest any other 
technique for their search.

One may write formally the expression for the amplitude of the major 
constituent perturbed by its satellite :

. 1 £  sin[(2N +  1)jtA t (o k. — ofc) ]
a k  —  a k  ±  n  +  ovt i i a k ' -------------. r ----------- ( 3 4 )* k 2N + 1 Ac* =—N sm[irAf(afc. — ak)]

where ak =  the true amplitude of the constituent analyzed;
/1 =  the contribution o f the background noise (to be effectively 

neglected) ;
ak. — the amplitude of the m close constituents lying in the vicinity 

of the fcth constituent.

There is no problem in evaluating the ratio of the sine functions if 
the frequencies of the disturbing constituents are known, but this is as 
far as we can go with the help of (34).

Empirically it is known that the relative phase and amplitude of 
close constituents of astronomical origin have pretty constant values and 
may be used to get a better estimate of the value of ak in (34). However, 
these relative phases and amplitudes do vary appreciably from one locality 
to another from their mean values. In addition, some constituents of 
shallow water origin do disturb appreciably the main constituents, but 
their probable relative phase and amplitude are really unpredictable. In 
tidal practice the effect of P t on Klf K2 and T2 on S2, v2 on N2 in short 
analyses is taken into consideration and the analyzed values of the main 
constituents are corrected with the help of an approximation to (34). But 
as we have seen in the case of K 1( some modulation still remains.

In the M2 group, H o r n  (1960) has noticed that two constituents very 
close to M2 are quite significant. They are characterized by the Doodson 
Numbers (2 0 —1 0 0 1) and (2 0 1 0 0 —1). Also in the same group, 
K 0 2, which has exactly the same frequency as M2 does also disturb M2. 
Its effect can be ascertained from the careful study of a succession of long 
analyses.

The margin of variability of the analyzed constituents may be calculat



ed grossly by identifying some of the constituents which do disturb them, 
picking out of them those of astronomical origin whose relative amplitude 
can be calculated from Doodson’s development of the tidal potential 
(D o o d s o n , 1954) and by modifying their contribution by the sine factor 
encountered in (34) which measures their contribution to the a*, frequency. 
For example, in the K x group, 67 % of Tt1; 84 % of P1( 96 % of S and 
84 % of (f)1 do contribute to the analyzed values of in a monthly analysis. 
The tidal development of the tidal potential indicates that their relative 
amplitude should be of the order of 2 %, 32 % ,  1 % and 1 % of the 
amplitude of . Leaving aside the contribution of Pj which is taken 
into account in routine calculation, we are left with a possible 4 % of 
possible variation in Kj in a monthly analysis.

It is now well established that the major source of variation in the 
resolution of constituents from short analyses is the presence of hidden 
constituents. The intensity of the modulation will depend on:

1) the amplitude of the analysed constituent itself;
2) the relative phase and amplitude of the hidden neighbouring 

constituents;
3) the interval of observations.

5. Short tidal current observations

Current observations very often are carried out only during a short 
interval of time on account of the difficulties of observation.

From one day of observations, the semidiurnal band can be separated 
from the diurnal band and suprisingly well from the point of view of the 
background noise. If the variance is something like 0.15 knot, a sensible 
value, the margin of the expected error is ±  0.06 knot. These limits spread 
over barely 0.1 knot while the amplitude of the major tidal constituents is 
of the order of 1 knot. The resolution of the constituents within the diurnal 
and semidiurnal bands is not achieved through this process though. It is 
the practice to attempt this resolution by using the relative phase and 
amplitude of the main constituents obtained from observations on the 
vertical tide at some neighbouring harbour. Naturally no new knowledge 
is obtained by this procedure. Genuine new information can only be 
obtained by prolonging the observations on the tidal currents.

The solution of the equations of hydrodynamics for the basin under 
consideration may yield more sensible information about the tidal streams 
present than some haphazard current observations, at least when non
linear interaction is not predominant. On the other hand, the theoretical 
values of the tidal streams may be checked with the help of a few well 
chosen series of current observations.



GENERAL CONCLUSIONS

The effect of the background noise on well separated constituents can be 
actually disregarded even if the interval of observations extends only over 
twenty-four hours. However, the noise does disturb drastically the resolu
tion of close constituents and actually prohibits the attempt of resolving 
constituents whose relative phase difference is less than a given minimum 
value. This minimum relative phase difference is given approximately by 
Rayleigh’s criterion which however is slightly overstringent in the problem 
under consideration. The choice of analyzable constituents by the use of 
such a criterion does not minimize in any way the interference of the 
hidden cuusLilueuls . This interference can be reduced oniy by extending 
the interval of observations and by identifying and isolating the inter
fering constituents.
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