REDEFINITION OF SALINITY

by W. S. Wooster, President of SCOR
A. J. Lee, Chairman of the ICES Hydrographical Committee
G. Dietrich, President of IAPSO

Reprinted from the Deutsche Hydrographische Zeitschrift, Jahrgang 22, Heft 1, 1969, by kind permission of the Deutsches Hydrographisches Institut, Hamburg.

IHB Note: In view of the importance of the definition of salinity in oceanography, the IHB has judged it necessary to reprint this article in the International Hydrographic Review.

Two definitions of salinity have been in use since the early part of the present century (M. Knudsen [1901], C. Forch, M. Knudsen and S. P. Sørensen [1902]). The procedural definition is that salinity is the amount (in grams) of dissolved solid material in a kilogram of sea water after all the bromine has been replaced by an equivalent quantity of chlorine, all the carbonate converted to oxide, and all of the organic matter destroyed. In practice, this procedure is difficult to carry out with high precision, and an empirical relation between salinity and chlorinity has been used as a working definition:

\[ S^\%_o = 0.030 + 1.8050 \text{ Cl }^\%_o \] (1)

This relation is useful because of the relative constancy of proportions of the major constituents of sea water, and because of the availability of a precise chemical method for determining chlorinity. However, it is based on only nine salinity determinations; the constant 0.030 results from the use of Baltic Sea water for the low concentrations. D. E. Carritt and J. H. Carpenter [1959] have estimated that the uncertainty of a computed value of salinity from a measured value of chlorinity using this relation can be as much as 0.04^\%_o, due to variations in the composition of sea water.

With the development of precise methods for measuring the electrical conductivity of sea water to a precision of 1 in 10^5, it became possible to consider a new definition of salinity based on conductivity. Accordingly, Roland Cox undertook an extensive investigation of the conductivity/chlorinity relationship, using a large number of seawater samples from all parts of the world ocean; the results of this research are described by R. A. Cox, F. Culkin and J. P. Riley [1967]. To supervise the preparation
of oceanographic tables based on these investigations, an international Joint
Panel on Oceanographic Tables and Standards was established by UNESCO,
the International Council for the Exploration of the Sea (ICES), the
Scientific Committee on Oceanic Research (SCOR) and the International
Association for the Physical Sciences of the Ocean (IAPSO).

In October 1966, International Oceanographic Tables were published
jointly by the National Institute of Oceanography of Great Britain and
UNESCO. These tables contain a new definition of salinity, as discussed
below. At the same time, ICES urged all oceanographers to use only these
tables in the future for computing salinity of sea water from conductivity.
In October 1967, IAPSO endorsed the Tables and the definition of salinity
and the relation between salinity and chlorinity contained therein, recom­
ended their use by oceanographers, and recommended that all oceanogra­
phic data reports henceforth should include an explicit statement of the
particular tables used to establish the values of salinity reported. In the
same month, the salinity definition was endorsed by the Executive
Committee of SCOR.

In preparing the Tables, the following arbitrary relation between
salinity and chlorinity was used:

$$ S^\%_\circ = 1.80655 \ Cl^\%_\circ $$

(2)

This relation is compatible with (1) with respect to older data of lower
precision, such as those resulting from chlorinity titrations, giving identical
results at salinity 35/\(\circ\) and differing by only 0.0026/\(\circ\) at salinities 32
and 38/\(\circ\).

The relation between salinity and conductivity ratio \(R_{15}\) (*) was based
on precise determinations of chlorinity and \(R_{15}\) on 135 natural sea water
samples, all collected within 100 m of the surface, and including samples
from all oceans and the Baltic, Black, Mediterranean and Red Seas. After
chlorinity was converted to salinity, using (2), the following polynomial
was computed by least squares:

$$ S^\%_\circ = -0.08996 + 28.29720 \ R_{15} + 12.80832 \ R_{15}^2 - 10.67869 \ R_{15}^3 \\
+ 5.98624 \ R_{15}^4 - 1.32311 \ R_{15}^5 $$

(3)

The root mean square deviation between a single point and the line was
0.002/\(\circ\) in chlorinity for samples having chlorinity above 15/\(\circ\) and
0.005/\(\circ\) for lower concentrations. Because of the variable composition
of the diluting river water, the estimation of salinity is less precise in regions
such as estuaries and the surface layers of the Baltic Sea. There is also
evidence that for deep oceanic waters (below 2000 m), the mean salinity
from chlorinity is about 0.003/\(\circ\) lower than that from conductivity
(R. A. Cox et al. [1967]).

Expression (3) constitutes the recommended definition of salinity. The
International Oceanographic Tables include a tabulation of this expression

(*) Conductivity ratio, \(R_{15}\), is the ratio of the conductivity of a water sample to that
of water having a salinity of exactly 35/\(\circ\), both samples being at the same temperature
(15 °C for \(R_{15}\)) and under a pressure of one standard atmosphere.
for conductivity ratios $R_{15}$ from 0.85000 to 1.17999 (at intervals of 0.00001) and salinities from 29.196 to 42.168/oo, along with correction tables for measurements at other temperatures. Recently, new tables connecting refractive index anomaly with salinity have been added (from the measurements of J.S.M. Rusby [1967]).

On behalf of the international organizations that have endorsed the new salinity definition and the associated tables, we would like to encourage their use by all oceanographers.

REFERENCES


Knudsen, M., 1901 : Hydrographical Tables, Copenhagen.
