
SOME METHODS OF TIDAL ANALYSIS

by F. M o s e t t i  and B. M anca  

of the Trieste Geophysical Observatory

1. INTRODUCTION

A full knowledge of the harmonic constants for tidal constituents is 
important not only for theoretical studies and for improving astronomical 
tide predictions but more especially for making a better evaluation of 
variations in sea level due to meteorological causes. In fact, by eliminating 
the astronomic tide entirely from tide gauge records, as residue we have 
the effects due to seiches and to wind-produced accumulations of water.

W ith the classical tidal analysis methods of the Doodson type, based 
on a series of not very strictly selective filterings of the observed data, 
we obtain harmonic constants which include other effects besides those of 
the astronomic forces and are consequently in a certain measure variable. 
In such seas as the Adriatic, where tides are relatively small and perturb
ations (seiches, etc.) relatively strong, it was possible to compute harmonic 
constants for only six or seven constituents with sufficient accuracy, in 
spite of their variability.

These constituents are sufficient for prediction of the astronomical 
tide, but they don not permit a good isolation of variations in sea level 
due entirely to meteorological disturbances from tidal records.

In the Adriatic the periods of seiches are close to those of some of 
the tidal constituents, and moreover in the continuous or near-continuous 
spectral distribution of the seiches around their principal periods there 
exists energy whose frequency coincides (in several cases at least) with 
the tidal constituents. In consequence the harmonic analysis must be 
based on a series of very selective filterings so as to permit isolation of an 
oscillation having a maximum tide/noise ratio.

In the present article we shall be dealing with several methods —  all 
are electronic computer oriented —  enabling us to separate a certain number 
of tidal constituents by means of successive approximations, and thus to 
completely extract the astronomic tide from the tidal record.

All these methods were first worked out for use with the hourly values 
of tidal records obtained over a 3-year period (1966, 1967, 1968) at the 
Punta della Salute, Venice. W e report here on the results obtained with



these methods. The methods were later used for computing the tide for 
8 Adriatic ports.

2. METHOD No. 1 (MOSETTI F., CARROZZO M. T., 1971)

W e divided the frequency interval in which the tidal constituents 
occur into 14 wave groups —  7 diurnal and 7 semi-diurnal —  the periods 
within each group being very close to each other, but sufficiently distinct 
from the periods of constituents in all other groups.

W e first made a series of filterings (one for each group), so as to 
restore the effect of all the amplitudes of the constituents in a group and 
to exclude any contribution from the constituents in the remaining groups. 
Then by making a synthesis of the oscillations extracted at each filtering, 
we reconstructed the record for the astronomic tide without having to 
compute the harmonic constants.

In point of fact, the separation of tidal constituents into groups —  and 
the combination of these groups for the purpose of computing a record 
o f the astronomic tide —  would be perfectly warranted if the frequency 
interval in which each of these filters is used contained no other effect. 
In other words, if the other oscillations of sea level had frequencies lying 
outside the tidal constituents’ frequency band, and this could be the case 
in other seas.

For the Adriatic, with the results it is possible to achieve, we can as 
a first approximation evaluate the trends of seiches, their distribution in 
time and their development. Such results are not enough to enable us to 
obtain either a complete spectrum of seiche energy, or a perfect knowledge 
of the tides.

To have a better idea of the results obtainable merely by separating 
14 groups of constituents, instead of plotting graphs of the oscillations 
obtained with each of the filters as a function of time, in figure 1, graph 1 
we have shown the lines joining points of maximum and minimum ampli
tude for the oscillations in each group. The wave groups are designated 
by the conventional sign for one of the waves in the group, usually the 
one with the largest amplitude. Figure 1 deals with three groups only, 
KJ2, K 2 (with S2) and L 2.

Finally, the graphs themselves show the amplitude modulation for the 
wave obtained by each o f the filters.

It can easily be seen that these modulations are all perturbed to some 
extent, and this is a sign that they are not merely due to interference 
phenomena from waves within the group (for in that case the modulation 
would be periodic and regular, much in the same way as for the K2 group 
in which the tide/ratio is large), but rather to the occasional presence of 
waves lying in that part of the seiche spectrum situated in the interval of 
frequencies separated by each filter.
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In some groups possessing tidal components of significant amplitude 
(K 1( K2, M2) perturbations are relatively small, whereas they are very 
strong where the constituents have small amplitudes and the constituents 
(OOl  SOj, Jx, 0j) have periods very close to the basin’s own oscillation 
(21 to 23 hours).

Any attempt to use this method to separate the individual tidal consti
tuents in order to construct a purer astronomical tide, one suitable both for 
a complete separation of the seiches and for determining their frequencies 
if these lie within the frequencies of the tidal constituents, is certain to be 
a failure. For filters it is in fact usually a case of filterings a fairly narrow 
band spectrum, but never a line spectrum unless long term tidal records 
(10 years of hourly values, for example) are available, for then it is possible 
to reduce the filter “ window ” to any desired extent. In order to avoid 
this shortcoming we have worked out two other methods which utilize 
the results obtained with Method 1, which we can say is a method of first 
approximation.

3. METHOD No. 2

W ith this method we compute the harmonic constants of the tidal 
constituents, by making a suitable analysis of the curves showing amplitude 
modulations for each of the 14 oscillations obtained with method 1 (see 
figure 1, graph 1) .

As the frequencies of the tidal constituents present in each of the 
14 groups are known we are able to determine the frequency with which 
the oscillation’s amplitude varies under the effect of interference from the 
constituent waves.

In fact, if we consider the composition of two waves of different 
amplitude :

y l i t )  =  a cos cj, t

y 2it)  =  b cos c.c2t ^

by putting w2 =  u, -f- Aw, Aw being very small as it obviously is in reality, 
we obtain :

y 2( t )  =  b cos (gl>, +  i u ) /  (2)

and we note that the Iwo constituents //, and ;/2 are in phase when :

A œ t  =  k 2 i r , k =  0, 1, 2 . . .

and that their amplitudes are added together, giving a résultant wave of 
amplitude (H — a +  )̂> whereas the two waves are in phase opposition 
when :

A œ t  =  i 2 k  +  I )  ir, k =  0 , 1 , 2 . . .

and thus the amplitudes are subtracted from one another giving a resultant 
with an amplitude h —  a —  b (see figure 2).
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F ig . 2. —  Graph of two waves whose frequencies are very close, but which have different
amplitudes.

In brief, the amplitude of the resultant takes the same value H on 
every occasion that the time increases by :

Computing these values of T  separately for each of the 14 groups of 
constituents <*> we see that all these values fall within the span 4 000-5 000 
hours <**>. It is therefore possible to eliminate from the fluctuations in 
wave amplitude all the occasional perturbations which, as can be seen on 
graph 1 of figure 1, have very short periods. These perturbations are caused 
by the irregular occurrence of seiches and other phenomena, and are elim i
nated by applying the filtering operations not to individual hourly values 
but to the maximum and minimum values shown in graph 1 of figure 1. 
After we have obtained the filtered curves of the modulated amplitudes 
(figure 1, graph 2) we then scale the values for H and h on these curves 
and use these to compute the amplitudes of the two constituents.

Corrections to the modulated amplitudes through the use o f filters 
could have equally well been by means of graphs, at least for the groups 
of constituents with the largest amplitudes where the tide/noise ratio 
is maximum. For the other groups, this graphical correction would not have 
been possible and consequently, in order to ensure uniformity of method, 
we deduced corrected curves by means of filtering all groups except the 
eleventh group where the only constituent with non-negligible amplitude 
is M2 and thus has no amplitude modulation.

After the filtering, in the groups where the constituents have fairly 
large amplitudes the modulated amplitudes are plainly periodic, and the 
modulation period is given by expression (3) (see, for example, K 2 in

(*) With this method we limit ourselves to computing the harmonic constants for 
only two constituents in each group, i.e. those with the largest amplitudes, but the 
method could be extended to three or more constituents.

(**) For example, the periods of the groups in figure 1, composed of the constituents 
and L,,, S2 and jL, YY2 and KJ., are respectively 4941, 4383 and 4937 hours. If we include 

other constituents of closer frequency we obtain periods of over 8 000 hours.

T =
2 7T 

A oj
(3)



figure 1). For the other cases it is seen that the modulation period is 
irregular when longer and stronger perturbations occur. In certain time 
intervals, however, the modulation period is regular and thus the advantage 
o f this method is as follows. I f  analyses extending over a fairly long  
period are available we are then able to evaluate the intervals on the record  
that are the least perturbed  and w here the amplitude varies with a regularity 
dictated by astronom ic laws, and we can in consequence com pute the 
harm onic constants fo r these very  intervals. In this way we eliminate the 
variability of harmonic constants. This variability prevents us applying any 
other method indiscriminately.

3.1. Computation of harmonic constants by Method No. 2

a) Com putation of amplitudes.

Let us consider the most usual case —  that of the composition of two 
sine waves whose frequencies are very close but whose amplitudes and 
phases are different :

y , — a cos (oo,t +  

v, =  b cos (oo,/ +  <A,)
by putting :

co, =  co + 5

co2 = co — 5 with 5 >  0

, 4 - VW =>1 +^2w e obtain :

(4)

y (t )  =  (a + b )  cos (  St +  2 ^2)  cos ( cot +  - ‘ )

-  ( . - 6 )  sin (  Bt + sin ( « ,  +

(5)

The resultant from the two constituents is still an oscillation with a pulsa
tion io, and its amplitude A (/) is not constant but varies slowly with time 
according to a specific law that depends on the value of 8 and on the 
amplitudes and phases of the constituents, a law expressed by :

A(/) = -J a 2 + b 2 +  2 ab cos 2 (d t +  ^2  ̂ ( 6)

By putting :

S t + ~  ^2 = 0 (7)
2

we can see that amplitude A (/) has a maximum H and a minimum h 
respectively equal to :

H =  a +  b for 6 =  k it with k =  0, 1, 2 . . .

li =  a — b for 6 =  (2  k +  1 ) tt/2 with k — 0, 1, 2 . . .



When the values for H and h are known —  and these can be obtained 
from the curves given in figure 1, graph 2 —  for any group we are then 
immediately able to compute the amplitudes of both constituents <*> :

H +  h
a =

2
(9)

H -  h

b) Phase computation.

From equation (6) we see that the modulated amplitude of the resultant 
of the two constituents at a particular instant depends not only on 5 but 
also on amplitudes a and b and on the phase difference —  cp2 (**).

When the instant tm is known, this being reckoned from an initial 
instant t0 for which the amplitude of the resultant A (f) is maximum, with 
expression (7) we may compute the phase difference of the constituents 
at instant t0 ( if  tm —  0, i. e. that it coincides with the instant t0, the two 
constitutent w ill have a phase difference equal to zero).

W e have :
-  *>i ( 10>

whence
-  Vt =  2 5 tm = A co tm (U )

where Aw is known from the astronomic characteristics, and tm is obtained 
from the data (figure 1, graph 2).

Let us now consider time t  which elapses between instant £0, the time 
origin, and the instant at which expression (5) becomes equal to zero. At 
this instant this expression then becomes :

a cos (cot t  +  ) +  b cos (co2 r + <̂2 ) = 0 ^  2)

Thus, knowing the phase difference (11), equation (12) can for instance be 
expressed as a function of phase q̂ .

By writing : _

c o 7 t  +  A  o j t m  = / 3  ( 1 3 )

we obtain :

a cos a  +  b cos /3
tan i/>. = -------------- -------- — n 4 ï

a sin a +  b sin /3 ^

(*) T h is  is t r u e  a t  a f i r s t  a p p r o x im a t io n ,  since i t  is  u s u a l  to  co ns id e r  t h e  tw o  
c o n s t i tu e n ts  in  each  g ro up  w i th  a la rg e r  a m p l i t u d e  th a n  th e  o the rs .  In  th e  case of  g ro u p s  
5 a n d  13, close to  th e  c o n s t i tu e n ts  o f  l a rg e r  a m p l i tu d e  (Kj an d  P j  f o r  th e  5 th  g ro u p  a n d  
K2 a n d  S2 for  th e  13th group) th e re  a re  in  a d d i t io n  o th e r  c o n s t i tu e n t s  w hose  a m p l i t u d e s  
a r e  non-neg lig ib le .  H owever,  since th ese  c o n s t i tu e n ts  h av e  d i f fe re n c e s  o f  f r e q u e n c y  
a m o u n t in g  to  o n ly  a b o u t  0.04° per  h o u r ,  ex p re s s io n  (3) gives a n o th e r  m o d u la t io n  p e r io d  
—  i.e. 8 000 to  9 000 h o u r s  —  w h ich  is e l im in a te d  by  th e  f i l t e r s  w h ich  o n ly  s e p a ra t e  
p e r iod s  o f  b e tw ee n  4 000 a n d  5 000 h o u rs .

(**) <pi is the  p h a se  of th e  w ave o f  h ig h e r  p u l s a t io n  u, ~  io +  5, a n d  <p2 is th e  p h a s e  of  
th e  w a v e  of low er  p u ls a t io n ,  =  w —  8 (6 >  o).



where a and b are known from (9 ); the quantities (13) are known since Uj 
and w 2 are known, and t  is computed with the aid of the data.

In a similar way we may also compute the second phase by expressing 
formula (12) as a function of <p2. However, when we know the value of one 
phase, the second can be obtained more simply using expression (11).

The values of <p obtained in this way could be a little doubtful since 
they could easily contain errors due to perturbations in the variation with 
time of expression (6), and the dephasings introduced change the value of 
the phase difference (<p2 —  <Pi) of the constituents. This phase computation 
which is carried out with the value of expression (5) at instant t0 can be 
repeated for other values of time taken at A t intervals each side of £0, using 
the least squares method to obtain the phases. As the amplitudes are 
already known we obtain the most likely values for cp—  i. e. those that are 
ihe best suited to approximate the function under consideration.

The results have been obtained with 0*, 1 January 1968 as the time 
origin, t0.

4. METHOD No. 3

In an Annex to the paper mentioned in the bibliography (M o s e t t i  F., 
C a r r o z z o  M . T., 1971) we have set out criteria for computing a mathe- 
matic filter by a linear combination o f 2n 1 symmetrical coefficients 
suitable for separating the groups of constituents from the tidal records.

A  linear combination of coefficients computed for a particular w0 leaves 
the frequency and phase of the constituent unchanged, whereas the ampli
tude is multiplied by an amplification factor :

M(co0) =  2 [a0 +  a, cos (c j0 A t ) +  a2 cos (2 co0A / )+ •• •

+  a„ cos (« to 0A O ] (15)

where w0 is the pulsation to be chosen, At the time interval of the sampled 
data, and a0, at ... a„ the n  1 coefficients of the linear combination.

By fixing this function beforehand by analytical means, for example 
M (to) =  1 for Wj :¾ u> ^  u>2 (with w2 —  w , as small as necessary) and where 
M (w ) =  0 is outside this interval, we can compute the coefficients a0, ..., 
an, considering expression (15) as the Fourier expansion of merely the 
cosines (M o s e t t i , 1959). This allows us to select a wave with pulsation w0 
lying within the interval Aw =  w2 —  Wj.

Since this expansion does not go as far as infinity, but stops at the n th 
term, the function M(w) takes the shape of a bell where the aperture A'w is 
larger than Aw (see figure 3).



W e may see on figure 4 that A'w depends on n, the number of coeffi
cients. W e note that to increase the filter’s selectivity it w ill be useless to 
increase the number of coefficients beyond a certain point.

Studying the pulsation values for the most important tidal constituents 
we see that in order to separate a constituent of pulsation o>0 the selectivity 
function must cancel out for the first constituent with a pulsation adjacent 
to w0. W ith an hourly sampling interval we cannot separate the individual 
constituents since the differences between adjacent pulsations are between 
~ 4-10“ 2 to 8-10-2 degrees per hour, and for values of this magnitude we 
are already within the asymptotic area of the curve shown in figure 4.

A u

F ig. 4. —  G ra p h  of  th e  w id th  o f  th e  se lec t iv i ty  fu n c t io n  A'u> p lo t te d  a g a in s t  t h e  n u m b e r  
o f  coeff ic ients .  T he  v a lu e s  o b ta in e d  f ro m  t r i a l s  a r e  in d ic a te d  by  th e  circles.



tu
C

E
3
C
4>-CH

a
si©uO
c

sV
9

O

J3H

o
£

n «-
?
z

th
e 

cu
rv

es
 

in
di

ca
te

s 
: 

1) 
th

e 
fil

te
r 

us
ed

 
to 

se
pa

ra
te

 
al

l 
th

e 
co

ns
ti

tu
en

ts
 

in 
Gr

ou
p 

3 
(s

ee
 

M
o

s
e

t
t

i, 
C

a
r

r
o

z
z

o
, 

19
71

); 
2) 

th
e 

fil
te

r 
th

at
 

on
ly

 
se

pa
ra

te
s 

th
e 

O
x 

co
ns

ti
tu

en
t 

(f
ir

st
 

fi
lt

er
in

g)
; 

an
d 

3) 
th

e 
fil

te
r 

se
pa

ra
ti

ng
 

th
e 

0
1 

co
ns

ti
tu

en
t 

on
ly

 
(th

ird
 

fi
lt

er
in

g)
.



However, the number o f coefficients being equal, it is possible to make 
At vary in a manner similar to the classic process of Doodson’s method, and 
thus obtain more restricted selectivity functions enabling us to separate all 
the constituents in the group for so long as any remain.

As an example we have entered on figure 5 the selectivity function 
which restores the constituent Ox to 100 % and cancels out at the same 
time as the first contiguous constituent (M PX) of the third group. This 
function is obtained by a linear combination o f 305 coefficients with At =  7 
hours as sampling interval (i. e. instead of taking hourly values the interval 
is fixed at 7 hours). By choosing the most suitable combination o f the At 
and n  parameters according to the differences between the frequencies to 
be separated, we were able to compute similar filters for all the tidal 
constituents in the 14 groups.

As expression (15) is a periodic function defined within the intervals
0 — -it, it —  2n, etc., similar filters cannot be used directly on the tidal 
records. For instance, by sampling at an interval of At —  8 hours, the filter 
constructed for a particular part of the diurnal wave spectrum also separates 
a similar area of the spectrum falling within the semi-diurnal range, and 
vice versa. Hence the necessity for first o f all separating the diurnal range 
from the semi-diurnal one, or even better, to separate groups of constituents 
in the two ranges (see Method 1) and then to proceed to the fine separation 
of the constituents in each group.

This is the method used for the Punta della Salute, Venice tidal records.

The results are largely pure sine curves with amplitudes that are 
constant over the whole of the remaining analysed interval which was in 
fact the central year of the 3-year analysis.

The small percentage of modulation still remaining in some constituents 
is due to the fact that the filters have a slight residual transparency for the 
other oscillations.

The constituents 2 Qx, 0lt XXj, Y Y 2, XX2 (*> in which somewhat larger 
modulations still remain have not been taken into consideration for this 
study of the astronomical tide.

Applying the least squares method to the filtered data we computed 
the harmonic constants (i. e. the amplitudes and phases of the constituents), 
their phases being O'1 on 1 January 1968.

The results obtained are given in table 1.

(*) XXU XX2 and YY2 are constituents (without symbols) belonging respectively to 
the groups 4, 8 and 14.



T a b l e  1

D efin itive  harm onic constants fo r  33 constituents of the tide at the Punta  
della Salute, Venice tidal station.

The phases are referred  to 0h on 1 January 1968. 
Constituents m arked w ith an asterisk rem ain perturbed  even after filtering  

( see section 3 ),  and have n ot been taken into consideration for  
the com putation of the astronom ical tide.

The 14 groups are those of Method No. 1 (see section 2).

Group Symbol A (cm ) O<P Group Symbol A (cm ) O'P

j ( 2Q, 0.26 118.2* g s x x 2 0.06 184.3*

( ° 1 0.32 182.1 ( m n s 2 0.27 198.6

i Q1 1.16 173.4 o i 2N2 0.18 192.3
2 i Pi 0.43 332.4 y

( 0.71 303.7

o j 0 , 6.10 263.5 i n ( n 2 3.91 322.4
j

( MP, 1.00 194.5
1 u 0.64 105.3

A j XX, 0.30 324.3* h m 2 22.07 26.5
( M, 0.91 227.3

19 ( 0.46 157.4

I 0.33 335.7
i z ( Ls 0.94 251.7

\ P, 5.25 248.9 ( T3 1.04 68.8
C < s, 1.83 55.5

13
) S2 12.40 31.6J> / K> 18.58 270.9 ) r 2 0.86 55.4

! 1.16 297.0 ( K2 5.74 230.3
'  'Pi 0.66 159.6

14
s yy2 0.22 227.5*

6 i 01 0.43 130.4* ( k j2 0.39 257.2
\ J, 0.81 309.5

< SO, 0.91 186.1
7 1 oo, 1.82 80.3

5. CONCLUSIONS

W ith  this fairly high number of constituents the astronomic tide can 
be computed. As a result of eliminating the astronomic effect from the 
tidal record, all effects due to other causes are revealed. By way of example, 
in figure 6 we show the results from an analysis of a short period of tidal 
data from the Punta della Salute, Venice, station.

The astronomic tide has been computed by synthesizing a total of 28 
tidal constituents. The residue contains simply the energy spectrum attri
butable to such non-astronomic causes as seiches.
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