SOME METHODS OF TIDAL ANALYSIS

by F. Mosetrt! and B. ManNca
of the Trieste Geophysical Observatory

1. INTRODUCTION

A full knowledge of the harmonic constants for tidal constituents is
important not only for theoretical studies and for improving astronomical
tide predictions but more especially for making a better evaluation of
variations in sea level due to meteorological causes. In fact, by eliminating
the astronomic tide entirely from tide gauge records, as residue we have
the effects due to seiches and to wind-produced accumulations of water.

With the classical tidal analysis methods of the Doodson type, based
on a series of not very strictly selective filterings of the observed data,
we obtain harmonic constants which include other effects besides those of
the astronomic forces and are consequently in a certain measure variable.
In such seas as the Adriatic, where tides are relatively small and perturb-
ations (seiches, etc.) relatively strong, it was possible to compute harmonic
constants for only six or seven constituents with sufficient accuracy, in
spite of their variability.

These constituents are sufficient for prediction of the astronomical
tide, but they don not permit a good isolation of variations in sea level
due entirely to meteorological disturbances from tidal records.

In the Adriatic the periods of seiches are close to those of some of
the tidal constituents, and moreover in the continuous or near-continuous
spectral distribution of the seiches around their principal periods there
exists energy whose frequency coincides (in several cases at least) with
the tidal constituents. In consequence the harmonic analysis must be
based on a series of very selective filterings so as to permit isolation of an
oscillation having a maximum tide/noise ratio.

In the present article we shall be dealing with several methods — all
are electronic computer oriented — enabling us to separate a certain number
of tidal constituents by means of successive approximations, and thus to
completely extract the astronomic tide from the tidal record.

All these methods were first worked out for use with the hourly values
of tidal records obtained over a 3-year period (1966, 1967, 1968) at the
Punta della Salute, Venice. We report here on the results obtained with



108 INTERNATIONAL HYDROGRAPHIC REVIEW

these methods. The methods were later used for computing the tide for
8 Adriatic ports.

2. METHOD No. 1 (MOSETTI F., CARROZZO M.T., 1971)

We divided the frequency interval in which the tidal constituents
occur into 14 wave groups — 7 diurnal and 7 semi-diurnal — the periods
within each group being very close to each other, but sufficiently distinct
from the periods of constituents in all other groups.

We first made a series of filterings (one for each group), sc as f¢
restore the effect of all the amplitudes of the constituents in a group and
to exclude any contribution from the constituents in the remaining groups.
Then by making a synthesis of the oscillations extracted at each filtering,
we reconstructed the record for the astronomic tide without having to
compute the harmonic constants.

In point of fact, the separation of tidal constituents into groups — and
the combination of these groups for the purpose of computing a record
of the astronomic tide — would be perfectly warranted if the frequency
interval in which each of these filters is used contained no other effect.
In other words, if the other oscillations of sea level had frequencies lying
outside the tidal constituents’ frequency band, and this could be the case
in other seas.

For the Adriatic, with the results it is possible to achieve, we can as
a first approximation evaluate the trends of seiches, their distribution in
time and their development. Such results are not enough to enable us to
obtain either a complete spectrum of seiche energy, or a perfect knowledge
of the tides.

To have a better idea of the results obtainable merely by separating
14 groups of constituents, instead of plotting graphs of the oscillations
obtained with each of the filters as a function of time, in figure 1, graph 1
we have shown the lines joining points of maximum and minimum ampli-
tude for the oscillations in each group. The wave groups are designated
by the conventional sign for one of the waves in the group, usually the
one with the largest amplitude. Figure 1 deals with three groups only,
KJ,, K, (with S;) and L,.

Finally, the graphs themselves show the amplitude modulation for the
wave obtained by each of the filters.

It can easily be seen that these modulations are all perturbed to some
extent, and this is a sign that they are not merely due to interference
phenomena from waves within the group (for in that case the modulation
would be periodic and regular, much in the same way as for the K, group
in which the tide/ratio is large), but rather to the occasional presence of
waves lying in that part of the seiche spectrum situated in the interval of
frequencies separated by each filter.
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In some groups possessing tidal components of significant amplitude
(K,, Ky, My) perturbations are relatively small, whereas they are very
strong where the constituents have small amplitudes and the constituents
(00,, SO,4, J;, 8,) have periods very close to the basin’s own oscillation
(21 to 23 hours).

Any attempt to use this method to separate the individual tidal consti-
tuents in order to construct a purer astronomical tide, one suitable both for
a complete separation of the seiches and for determining their frequencies
if these lie within the frequencies of the tidal constituents, is certain to be
a failure. For filters it is in fact usually a case of filterings a fairly narrow
band spectrum, but never a line spectrum unless long term tidal records
(10 years of hourly values, for example) are available, for then it is possible
to reduce the filter “ window ” to any desired extent. In order to avoid
this shortcoming we have worked out two other methods which utilize
the results obtained with Method 1, which we can say is a method of first
approximation,

3. METHOD No. 2

With this method we compute the harmonic constants of the tidal
constituents, by making a suitable analysis of the curves showing amplitude
modulations for each of the 14 oscillations obtained with method 1 (see
figure 1, graph 1).

As the frequencies of the tidal constituents present in each of the
14 groups are known we are able to determine the frequency with which
the oscillation’s amplitude varies under the effect of interference from the
constituent waves.

In fact, if we consider the composition of two waves of different
amplitude :
y;(t) = a cos w,t

V() = b cos w,t M

by putting w: = w; + Aw, Aw being very small as it obviously is in reality,
we obtain :
ya(t) = b cos (cul + Aw)t (2)

and we note that the iwo conslituents g, and 7. are in phase when :
Awt=%k2n, k=0,1,2 ...

and that their amphludes are added together, giving a resullunt wave of
amplitude (H = a + b), whereas the two waves are in phase opposition

when
Awt=QRk+1)nm, £k=0,1,2...

and thus the amplitudes are subtracted from one another giving a resultant
with an amplitude h = a — b (see figure 2).
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Fi1G. 2. — Graph of two waves whose frequencies are very close, but which have different
amplitudes.

In brief, the amplitude of the resultant takes the same value H on
every occasion that the time increases by :

2n
T =
Aw
Computing these values of T separately for each of the 14 groups of
constituents () we see that all these values fall within the span 4 000-5 000
hours **), It is therefore possible to eliminate from the fluctuations in
wave amplitude all the occasional perturbations which, as can be seen on
graph 1 of figure 1, have very short periods. These perturbations are caused
by the irregular occurrence of seiches and other phenomena, and are elimi-
nated by applying the filtering operations not to individual hourly values
but to the maximum and minimum values shown in graph 1 of figure 1.
After we have obtained the filtered curves of the modulated amplitudes
(figure 1, graph 2) we then scale the values for H and h on these curves
and use these to compute the amplitudes of the two constituents.

Corrections to the modulated amplitudes through the use of filters
could have equally well been by means of graphs, at least for the groups
of constituents with the largest amplitudes where the tide/noise ratio
is maximum. For the other groups, this graphical correction would not have
been possible and consequently, in order to ensure uniformity of method,
we deduced corrected curves by means of filtering all groups except the
eleventh group where the only constituent with non-negligible amplitude
is M, and thus has no amplitude modulation.

3)

After the filtering, in the groups where the constituents have fairly
large amplitudes the modulated amplitudes are plainly periodic, and the
modulation period is given by expression (3) (see, for example, K, in

(*) With this method we limit ourselves to computing the harmonic constants for
only two constituents in each group, i.e. those with the largest amplitudes, but the
method could be extended to three or more constituents.

(**) For example, the periods of the groups in figure 1, composed of the constituents
Ay and Ly, S, and K,, YY, and KJ,, are respectively 4941, 4383 and 4937 hours. If we include
other constituents of closer frequency we obtain periods of over 8 000 hours.



112 INTERNATIONAL HYDROGRAPHIC REVIEW

figure 1). For the other cases it is seen that the modulation period is
irregular when longer and stronger perturbations occur. In certain time
intervals, however, the modulation period is regular and thus the advantage
of this method is as follows. If analyses extending over a fairly long
period are available we are then able to evaluate the intervals on the record
that are the least perturbed and where the amplitude varies with a regularity
dictated by astronomic laws, and we can in consequence compule the
harmonic constants for these very intervals. In this way we eliminate the
variability of harmonic constants. This variability prevents us applying any
other method indiscriminately.

3.1. Computation of harmonic constants by Method No. 2

a) Computation of amplitudes.

Let us consider the most usual case — that of the composition of two
sine waves whose frequencies are very close but whose amplitudes and
phases are different :

ylzzcos(w,t+¢l) @)
), = b cos (w,t +
by putting : 72 2 ©2)
w, =w+d
w, =w-—238 with § > 0
t) =y, +
we oblain : v =y *y;
- Y, Ty
v(t) = (a+b) cos (6: + f—l——z) cos (wt + 1_——2‘)
2
)
. ‘px - ‘pz A ‘pl + ‘pz
— (a=b) sin ( 8t + =%} sin (cwr +=—72)
The resultant from the two conslituents is still an oscillation with a pulsa-
tion w, and its amplitude A (#) is not constant but varies slowly with time
according to a specific law that depends on the value of 3 and on the
amplitudes and phases of the constituents, a law expressed by :

At) =Ja? + b7 + 2 ab cos 2 (5r+“"—;“’2) (6)
By putting :
Y — V2
2

we can sce that amplitude A (f) has a maximum H and a minimum h
respeclively cqual to :

&t + =0 1)

H=a+bford =k=n with k. =0,1,2 ...
h=a—bford=QRk+1)n/2 withk=0,1,2...

(8)
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When the values for H and h are known — and these can be obtained
from the curves given in figure 1, graph 2 — for any group we are then
immediately able to compute the amplitudes of both constituents () :

H+h

9

b) Phase computation.

From equation (6) we see that the modulated amplitude of the resultant
of the two constituents at a particular instant depends not only on § but
also on amplitudes a and b and on the phase difference ¢, — @, (**).

When the instant ¢, is known, this being reckoned from an initial
instant {, for which the amplitude of the resultant A(#) is maximum, with
expression (7) we may compute the phase difference of the constituents
at instant ¢, (if ¢, = 0, i. e. that it coincides with the instant ¢, the two
constitutent will have a phase difference equal to zero).

We have : 10)
§t, =229
2
whence

p2 —py =261, = Awt, an
where Aw is known from the asironomic characteristics, and t, is obtained
from the data (figure 1, graph 2).

Let us now consider time t which elapses between instant {;, the time
origin, and the instant at which expression (5) becomes equal to zero. At
this instant this expression then becomes :

acos (w, 7T+ y¢;) +bcos(w7+p,)=0 (12)

Thus, knowing the phase difference (11), equation (12) can for instance be
expressed as a function of phase o,.

B riti :
y writing W, T =«
w, T+ Awt, = (13)
we obtain :
acosa+ b cosf3
tan ¢, = (14)

asin ¢ + bsin 8

(*) This is true at a first approximation, since it is usual to consider the two
constituents in each group with a larger amplitude than the others. In the case of groups
5 and 13, close to the constituents of larger amplitude (K, and 1’1 for the 5th group and
K; and S, for the 13th group) there are in addition other constituents whose amplitudes
are non-negligible. However, since these constituents have differences of frequency
amounting to only about 0.04° per hour, expression (3) gives another modulation period
— i.e. 8000 to 9000 hours — which is eliminated by the filters which only separate
periods of between 4 000 and 5 000 hours.

(**) ¢, is the phase of the wave of higher pulsation w, = w + &, and ¢, is the phase of
the wave of lower pulsation, w, = w — & (58 > o).
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where a and b are known from (9); the quantities (13) are known since w,
and w, are known, and 7 is computed with the aid of the data.

In a similar way we may also compute the second phase by expressing
formula (12) as a function of ¢,. However, when we know the value of one
phase, the second can be obtained more simply using expression (11).

The values of ¢ obtained in this way could be a little doubtful since
they could easily contain errors due to perturbations in the variation with
time of expression (6), and the dephasings introduced change the value of
the phase difference (po — @;) of the constituents. This phase computation
which is carried out with the value of expression (5) at instant f{, can be
repeated for other values of time taken at At intervals each side of ¢, using
the least squares method to obtain the phases. As the amplitudes are
already known we obtain the most likely values for ¢ — i. e. those that are
ihe best suited to approximate the function under consideration.

The results have been obtained with 0% 1 January 1968 as the time
origin, f,.

4. METHOD No. 3

In an Annex to the paper mentioned in the bibliography (MoserTtI F.,
Carrozzo M. T, 1971) we have set out criteria for computing a mathe-
matic filter by a linear combination of 2n 4 1 symmetrical coefficients
suitable for separating the groups of constituents from the tidal records.

A linear combination of coefficients computed for a particular w, leaves
the frequency and phase of the constituent unchanged, whereas the ampli-
tude is multiplied by an amplification factor :

M(wq) = 2 [ag + a, cos (wgAt) +a;, cos (2 waAt)+ - -
+ a, cos (nwyAt)] (15)

where w, is the pulsation to be chosen, Af the time interval of the sampled
data, and ay, a, ... a, the n 4 1 coefficients of the linear combination.

By fixing this function beforehand by analytical means, for example
M(w) =1 for w; < w < w,; (with w, — w; as small as necessary) and where
M(w) = 0 is outside this interval, we can compute the coefficients a,, aj ...,
a,, considering expression (15) as the Fourier expansion of merely the
cosines (MoseTTI, 1959). This allows us to select a wave with pulsation w,
lying within the interval Aw = w, — w;.

Since this expansion does not go as far as infinity, but stops at the n*
term, the function M(w) takes the shape of a bell where the aperture A’'w is
larger than Aw (see figure 3).
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Fi6. 3. — Curve showing the selectivity function M(w).

We may see on figure 4 that A’w depends on n, the number of coeffi-
cients. We note that to increase the filter’s selectivity it will be useless to
increase the number of coefficients beyond a certain point.

Studying the pulsation values for the most important tidal constituents
we see that in order to separate a constituent of pulsation w, the selectivity
function must cancel out for the first constituent with a pulsation adjacent
to w,. With an hourly sampling interval we cannot separate the individual
constituents since the differences between adjacent pulsations are between
~ 4-10-2 to 8-10—2 degrees per hour, and for values of this magnitude we
are already within the asymptotic area of the curve shown in figure 4.

w

X

0 t + + : $ : $ + n
0 500 1000

Fic. 4. — Graph of the width of the selectivity function A’w plotted against the number
of coefficients. The values obtained from trials are indicated by the circles.
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However, the number of coefficients being equal, it is possible to make
At vary in a manner similar to the classic process of Doodson’s method, and
thus obtain more restricted selectivity functions enabling us to separate all
the constituents in the group for so long as any remain.

As an example we have entered on figure 5 the selectivity function
which restores the constituent O; to 100 9% and cancels out at the same
time as the first contiguous constituent (MP,) of the third group. This
function is obtained by a linear combination of 305 coefficients with At =7
hours as sampling interval (i. e. instead of taking hourly values the interval
is fixed at 7 hours). By choosing the most suitable combination of the Af
and n parameters according to the differences between the frequencies to
be separated, we were able to compute similar filters for all the tidal
constituents in the 14 groups.

As expression (15) is a periodic function defined within the intervals
0—=, ®— 2, etc, similar filters cannot be used directly on the tidal
records. For instance, by sampling at an interval of At = 8 hours, the filter
constructed for a particular part of the diurnal wave spectrum also separates
a similar area of the spectrum falling within the semi-diurnal range, and
vice versa. Hence the necessity for first of all separating the diurnal range
from the semi-diurnal one, or even better, to separate groups of constituents
in the two ranges (see Method 1) and then to proceed to the fine separation
of the constituents in each group.

This is the method used for the Punta della Salute, Venice tidal records.

The results are largely pure sine curves with amplitudes that are
constant over the whole of the remaining analysed interval which was in
fact the central year of the 3-year analysis.

The small percentage of modulation still remaining in some constituents
is due to the fact that the filters have a slight residual transparency for the
other oscillations.

The constituents 2 Q;, 8;, XX;, YY,, XX, ® in which somewhat larger
modulations still remain have not been taken into consideration for this
study of the astronomical tide.

Applying the least squares method to the filtered data we computed
the harmonic constants (i. e. the amplitudes and phases of the constituents),
their phases being 0* on 1 January 1968.

The results obtained are given in table 1.

() XX,, XX, and YY, are constituents (without symbols) belonging respectively to
the groups 4, 8 and 14.
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TABLE 1

Definitive harmonic constants for 33 constituents of the tide at the Punta
della Salute, Venice tidal station.

The phases are referred to 0* on 1 January 1968.
Constituents marked with an asterisk remain perturbed even after filtering
(see section 3), and have not been taken into consideration for
the computation of the astronomical tide.

The 14 groups are those of Method No. 1 (sce section 2).

Group Symbol A(cm) ° Group Symbol A(cm) o’
.29 0.26  118.2% e | XX 0.06  184.3*
R 0.32 182.1 ©  ( MNS, 0.27 198.6
5 ’ Q 1.16 173.4 9 3 2N, 0.18 1923

o1 0.43 3324 |, 0.71 303.7
3 g 0, 6.10  263.5 0 § N, 391 3224
MP, 1.00 194.5 v, 0.64 105.3
4 zxx1 0.30  324.3%* 11 M, 22.07 265
M, 0.1 227.3 . 3 A, 0.46 157.4
™ 0.33 3357 L, 0.94 2517
P, 5.25 2489 (T, 1.04 688
5 Sy 1.83 555 13 S S, 12.40  31.6
K, 18.58 270.9 ( R, 0.86 55.4
2 116  297.0 | K, 5.74 2303
#1 0.66 1596 e { YYs 0.22 227.5*
6 {91 0.43  130.4* { KJ, 0.39  257.2
], 0.81  309.5
{ SO, 0.91  186.1
7 00, 1.82  80.3

5. CONCLUSIONS

With this fairly high number of constituents the astronomic tide can
be computed. As a result of eliminating the astronomic effect from the
tidal record, all effects due to other causes are revealed. By way of example,
in figure 6 we show the results from an analysis of a short period of tidal
data from the Punta della Salute, Venice, station.

The astronomic tide has been computed by synthesizing a total of 28
tidal constituents. The residue contains simply the energy spectrum attri-
butable to such non-astronomic causes as seiches.
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