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GEOMETRY OF LINES AND CURVES

The dividing line in most existing treaties, agreements or decrees 
concerning either maritime boundaries (such as fishery limits, continental 
shelf delimitations, territorial water dividing lines, or concession limits) 
or straight baseline systems is stated in one of the following wTays : as 
a great circle arc, a loxodromie line, a small circle arc, or even more 
commonly as a ‘straight line’ between given points in terms of geogra
phical coordinates, or else by bearing and distance to a fixed point. 
These are the methods used, although in fact it is the spheroidal geodesic 
which represents the shortest distance betwTeen two points on the spheroidal 
ellipsoid (i.e. the oblate ellipsoid of revolution used as the reference 
surface in cartography.)

Apart from the equator and the meridians, which are closed, plane 
geodesics, all other geodesics are open curves of double curvature oscillating 
between two parallels of latitude symmetric to the equator. Furthermore 
they satisfy the condition that cos b . sin a is constant along the curve 
(b being the reduced latitude, a the azimuth). In other words, they are 
relatively complicated curves and so far they have been of only modest 
use to the navigator, or to others concerned w'ith the marine environment.

The straight line of the early “treaties” was normally interpreted 
by mariners as a loxodrome or compass line, for the simple reason that 
this curve happens to be a straight line on ordinary nautical charts (if 
they are on the Mercator projection). In more recent years, however, 
there has been a tendency to utilize great circle arcs in the wording of 
these treaties, or for their interpretation. The reason is, of course, that 
the great circle arc is considered a better representation of the curve of 
shortest distance. Under certain circumstances this is true, but it should 
be recalled that the great circle as such is not defined on the spheroid. 
Hence its use is meaningless, unless the corresponding sphere is identified 
by radius, centre, etc., and the appropriate coordinate conversions duly 
specified. In most treaties these are not mentioned, hence confusion and 
difficulties sometimes arise in the interpretation of positions in relation 
to the boundary line.



It is not easy to generalize about the differences between the various 
curves, due to the fact that both relative and absolute positions have 
decisive effects. The example below, gives an idea of the differences in 
terms of distance between two points A and B whose geographic positions 
are respectively (58"00' N, 0"00' EJ and (62“00' N, 10"00' E) for the 
spheroidal loxodrome, the great circle arc and the spheroidal geodesic.

Distance along :
(a) the spheroidal geodesic (International

As can be seen, the various curves do not vary greatly as regards 
length. It is interesting to note, however, that the distance along the

that along the geodesic. Using the correct radius (Gaussian curvature at 
60°) the great circle distance will work out at about 130 m less than the 
geodetic distance, which is in fact the more reasonable.

Figures 1 and 2 are illustrations based on the aforementioned posi-

F ig. 1. —  Longitude as a function o f  latitude :
(a; For a loxod rom e;
(b) For a geodesic (coinciding almost exactly with a great circle arc with its radius 

at 45»)
between points A (58‘'00 'N, 0°00' E) and B (62 -00 'N, 10”00 'E ).

(*) See (b) above : 1 nautical mile is equivalent to 1 minute o f arc in latitude 
=  1852 m.

ellipsoid) approx. 712 851 in
(b) the great circle arc, its radius having 

either :
a Gaussian curvature aL 60" N

or meridional curvature at 45° N
annrnx.L 1
approx.

712 722 m 
710 221 m

(c) the spheroidal loxodrome (computed 
by numerical integration) approx. 713 531 m

great circle arc (*) —  as mariners understand the term —  is less than

long.
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0'
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I 'ig. 2. —  Differences in latitude as a function o f  longitude :
(a) between a geodesic and its corresponding loxodrom e;
(b) between a geodesic and its corresponding great circle arc (with radius at 45°).

tions. They show the differences in the course of the geodesic, the corres
ponding loxodrome and the great circle arc (radius at 45° N).

Figure 1 depicts longitude as a function of latitude. Figure 2 shows 
the difference in latitude as a function of longitude. Curve (a) is referred 
to the left hand scale in minutes of arc, and curve (b) to the right hand 
scale which is in seconds of arc.

When examining the “cut off” arcs between the various lines their 
differences in area are seen to be more spectacular.

(a) The area between the spheroidal geodesic and the great circle arc
(radius at 45“ N) is approximately 10 km2.

(b) The area between the spheroidal geodesic and the spheroidal loxo
drome amounts to approximately 7100 km2.



Case (b) gives particular emphasis to the desirablility of having 
boundary lines, or segments of these boundary lines, defined in a 
uniform and unequivocal way. Although no doubt it is wishful thinking 
to suppose that in future all “treaties" will define a boundary line as being 
a geodesic (on the International ellipsoid, or any other recognized reference 
ellipsoid), much could be gained if there was at least a tacit understanding 
to this effect amongst hydrographers themselves.

CONSIDERATIONS REGARDING ACCU RACY

Besides the choice of a mathematical line or curve between a sequence 
of points there is also the question of accuracy of definition and of position 
w7hen determining a boundary line or segments of such a line.

True accuracy in the first context can be defined as the degree of 
precision of the geographical coordinates for boundary turning points, i.e. 
in full minutes of arc, in tenths of a minute of arc, or in seconds of arc. 
The coordinates should be expressed to the same degree of precision as 
those for the control points in the surrounding coastal area for both the 
case of a boundary line obtained by geodetic calculations (without loss 
of accuracy) on the basis of coastal control points and for that of a line 
merely “negotiated” (that is to say, one not based on mathematic criteria).

If the boundary line is to be regarded as provisional, due to the state 
of the charting of the area, then it is advisable to allow' for future changes 
by defining a boundary zone.

Let us now consider the real, or positional, accuracy. This can be 
defined as the accuracy of fixing at sea by navigational, hydrographic or 
geodetic means.

The general need for high positional accuracy at increasingly greater 
distances from the coast is underlined by the fact that exploration and 
exploitation of natural resources both on the sea bed and in the subsoil, 
as wrell as other marine activities are now feasible beyond the 200 m 
isobath. This again emphasises the necessity for unequivocal and accurate 
definition of all relevant boundary lines, be they close inshore or far out 
to sea. This should be done now, in order that disputes between nations 
and individuals may be avoided later on when exploitation interests may 
complicate the issue.

It is well known that the International Conference on the Law of the 
Sea, scheduled for 1974, visualizes an international regime for the oceanic 
sea bed and subsoil beyond the outer limits of national jurisdiction. 
Any agreement reached on this subject is bound to urge nations to 
delimit their outer shelf boundary, thus enabling them to invite bids 
for exploration and exploitation at the earliest possible date. Failure 
to reach international agreement on the other hand is unlikely to prevent 
a nation either from extending the limits of its shelf or exploring what 
is outside the shelf, as defined defined in the Geneva Convention of 1958.



This situation would be much more dangerous, since there would then 
be no general agreement upon outer boundaries adjacent to the high seas.

W e may ask what degree of absolute positional accuracy is actually 
required. Undoubtedly the most ambitous demand comes from the oil 
drilling companies who wish to know exactly where to put down their 
drills in order not to risk trespassing on neighbouring property. From 
this point of view even a few metres could be significant, especially in 
the case where a single geologic structure extends across a dividing line. 
In general, the same absolute accuracy is needed when it is a question 
of locating such a geologic feature, or of relocating the casing of a well 
or some object left behind on the sea floor.

What then are the possibilities of meeting these requirements ? Up 
to the present time it has not been possible to determine a position at 
sea by existing hydrographic or geodetic means to an accuracy of within 
a few metres, and certainly not at some distance from the coast out of 
sight of land.

However, this fact does not prevent us from defining the boundary 
line with the same accuracy of definition as that of the fundamental material 
such as maps, photographs, etc. on which (he computations are based. 
As advances are made in hydrographic and geodetic methods —  and nowa
days progress is very rapid —  this accuracy of definition will become more 
and more substantial, and eventually we shall end up by being able actually 
to mark the boundary line at sea with such systems as acoustic trans
ponders, cables, or active or passive markers anchored on the sea bed.

HYDROGRAPHIC OPERATIONS

When the hydrographer is called upon to define a boundary line 
according to certain criteria —  which may be either purely mathematical 
or of a less accurate nature such as a “negotiated line” —  he will often 
have to make constructions with his ruler and dividers and/or make a 
series of complicated computations.

Years ago the median and equidistance lines were often simply 
constructed on ordinary Mercator charts without taking into account the 
distortion factor. Thus the parties were indirectly accepting an inaccuracy 
of definition for the line, with a probable error of as much as 1-2 nautical 
miles depending on the scale of the chart used.

As commercial interests increased, in particular in the continental 
shelf areas, it became obvious that for the definition of a dividing line 
between nations or between concessions an inaccuracy of such a magnitude 
was not acceptable to the parties concerned. It is of course always possible 
to “add zeros” at the end of imprecise coordinates, but this does not 
hide the fact that the sea bed will not be properly divided.

Some of the frequently employed methods will now be discussed in 
some detail.



THE B ILA TER A L EQUIDISTANCE LINE

Depending on the circumstances, an equidistance line —  or a median 
line —  may normally be determined either by computation alone or by 
means of a combination of accurate construction and computation. In 
both cases the equidistance line should be based on equal geodetic distances 
to surrounding low water marks on the coastline or from straight base
lines —  i.e. the baselines should be regarded as geodesics. As the low 
water mark is not normally included in the geodetic grid, the coordinates 
for the coastal control points or the baseline turning points must be 
recorded with the highest possible degree of accuracy, and they should 
be taken from either a large scale chart (preferably one at 1/25 000 or 
larger) or from vertical aerial photographs. In the case of a long straight 
baseline, if the identification of relevant control points is difficult the 
coordinates for the low w'ater marks should be registered to an accuracy 
that is compatible with the overall accuracy. Points along straight base
lines should in fact not be selected, because the line running between 
the various turning points is already defined as a geodesic.

In most cases the low water line is extremely irregular, due either 
to off-lying islands or a pronounced sinuosity of the coast. This in turn 
means that a great number of control points will have an influence on 
the course of the true equidistance line between the two states. The line 
may thus be delineated by a set of points forming many curves, and so 
will not be easy to define.

S ta te  A

tru e  eq. line

adj. eq. line

S ta te  B
Fio. 3



In such cases the respective states may for administrative purposes 
agree to an adjusted or approximate equidistance line that follows only 
roughly the general contour of the respective coastlines —  in other words 
to an “equidistance” line having only few, and relatively long, legs.

Figure 3 illustrates this situation. In this procedure a number of 
areas of different size and shape O,, s.,, s:l, s4) between the true and the 
adjusted equidistance lines will be “cut off”. From the point of view of 
equity of area it then seems advisable to choose the adjusted line 
according to an equal area “cut off” principle. This presupposes that 
each basic unit in the boundary waters has the same potential value. 
If this is not the case, then the contested area may be subdivided qualita
tively, i.e. the small areas can be weighted and compared in order to 
delineate a final line of division.

Appendix A contains a short description of an accurate method of 
determining equidistance points using a combination of plotting methods 
and calculation.

Appendix B describes computer programs, some at present under 
development, for automated calculation of a sequence of equidistance 
points.

MEASUREMENT OF AREAS

For many purposes in connection with maritime boundaries it is of 
importance to be able to measure with accuracy areas of different shapes 
and sizes. Direct measurement of these areas on charts, either by sub
division into triangles or trapezia, or by planimetry, is laborious and often 
inaccurate even if large-scale “equal area” charts and maps are available. 
However, provided the limiting lines are well defined, it is always possible 
to use the computational method to define these areas with a high degree 
of accuracy by the method of subdivision into triangles. Appendix B 
describes a computer program for automated computation of areas on 
the spheroid that are bounded by a curve, or curves.

DETERMINATION OF A  LINE A  GIVEN DISTANCE 
FROM  THE COAST —  THE U NILATERAL EQUIDISTANCE LINE

Some maritime boundaries are defined as curves located at a given 
distance from the low water mark line and/or straight baselines. Ter
ritorial water lines, fishery limits, customs limits, pollution zone limits 
are examples of curves based on distance criteria. Mathematically such a 
curve is the envelope of small consecutive circles with a given distance as 
radius and centered on the low water mark line. From the point of view 
of plotting, this curve can be easily constructed using dividers and a



curvetracer. However, only moderate accuracy is obtained by this method, 
depending on the scale and projection used. When a higher degree of 
accuracy is needed —  or when the chart or map does not cover the whole 
area in question —  it will be necessary to use an electronic ocmputer.

It may be recalled that the United Nations Seabed Commission in its 
preparatory work has indicated that it anticipates that any delimitation 
of an international and/or intermediate zone on the oceanic seabed and 
its subsoil will be based on straight distance criteria, probably in combina
tion with a depth criterion.

A n n r v n i v  a
1  A L i / 1

M AN UAL DETERMINATION OF TRUE EQUIDISTANCE POINTS

An earlier articles of mine (*} mentioned the development of an elec
tronic computer program able to cope with all possible geographical 
possibilities. The development of this program is, however, very involved 
and continues to demand considerable effort. For most cases encountered 
in practical life a sufficiently accurate result may be obtained within a 
reasonable time by using a procedure involving a combination of plotting 
and manual calculation.

Figure 4 depicts at small scale two states (A and B) having several 
capes and prominent headlands. For reasons of simplicity it has been 
supposed that only one low water mark point (control point) on each 
cape or headland influences the course of the true equidistance line 
between the two states. These points are marked successively al3 a2, ... 
and bu b.,, ... b7l. Using the method of construction presented by 
R.H. K e n n e d y  (**) the approximate positions of the equidistance turning 
points ni,, m.2, ... m,, (which are the points of intersection between neigh
bouring bisector lines) are found and their geographical coordinates are 
listed (approximate accuracy; to a full minute of arc). If a Mercator 
chart or other non-conformal chart is used allowance must be made for 
possible scale factors. Point m, in this example is equidistant from 
control points at, bt, b„ and so forth —  to within the precision just 
indicated.

In the next step the precise UTM or geographical coordinates for the 
control points nx, a.,, ... an and b.2, ... fr- arc read from a large scale 
geodetic map (preferably at 1/25 000 or larger) to within the desired, or 
possible, order of accuracy. To find the exact coordinates for points iuj, 
m.j, ... //1,, the procedure is as follows (see figure 5) :

(*) Notes on hydrographic assistance to the solution o f  sea boundary problems. 
Int. Ilydr. lieu., Vol. XLVIII, (2), 1071, pp. 149-159.

(**) Brief remarks on median lines and lines o f  equidistance and the methods used 
in their construction. Paper presented at the Geneva Conference on the Law o f  the Sea, 
2 April 1958.



Fig. 4. —  Generalized plot on a small scale 
(For reasons o f  simplicity straight baselines have not been introduced).

On the International ellipsoid (or any other reference ellipsoid) the 
geodetic distances and their forward (and if required their back) azimuths 
between and the three respective control points at, and b.2 are com
puted either manually or on an electronic computer. One method would 
be to use the formulae suggested by P.D. T h o m a s  (*). In cases where 
there is some doubt as to the relevance of a chosen control point, the 
distance from this to /nt and from m, to potential neighbouring control 
points should be calculated and compared as a basis on which to make 
a choice.

A Cartesian grid is used (see figure 6 ), and point together with 
the three forward azimuths of the geodesics are plotted with as centre.

(*) Spheroidal Geodesics, Reference Systems and Local Geometry, U.S. Naval Ocean
ographic Office, SP 138, 1970.
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F ig . 5. —  Detail o f  portion o f  figure 4.
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Fig. (I. —  Detail o f  portion o f  figure 5. An example o f  a large scale Cartesian plot. 
m ' and m "  have been plotted on the basis o f  mean distances o f  respectively 217 426 m

and 217 313 m.



A suitable scale, to allow for adequate presentation of small differences 
in calculated distance, must be chosen. W e must also keep in mind that 
for first order accuracy the position line at a given distance from a fixed 
point will be a line perpendicular to the appropriate azimuth in the given 
distance. Two arbitrary equidistance points m / and m x"  referring res
pectively to a-i, fcj and nx, b., are then chosen in the vicinity of m x and are 
plotted. In the present case the mean of the distances m 1nl, irij/), and 
JUifl,, m has been used. From the general plot we then draw lines 
through m / and m x"  in directions parallel to the appropriate bisector 
legs 1 and 2 (see figure 5). The intersection of these lines is point m / "  
which is the position of the true equidistance turning point. The coor
dinates —  which may be either UTM or geographical —  for m / "  may be 
easily read to the desired accuracy from the large scale plot.

If necessary, a check on the determination of point rn /" can readily 
be made by computation of the geodetic distances and azimuths from this 
point to the control points a u b x and b 2. In cases where the desired 
accuracy (which must be within the limits of the accuracy of the control 
points) is not immediately obtained the plotting process will have to be 
repeated.

The above procedure is repeated for each equidistance turning point, 
and this gives the composite equidistance line between points m u m.,, ... 
in geographical coordinates.

As regards general accuracy, the limiting factor is the degree of 
reliability of the coordinates for the coastal control points since geodesics 
can in practice be computed without any loss of accuracy. With future 
precise geodetic or navigational fixing at sea in view, we can state that 
a definitive accuracy of a tenth of a second of arc would normally be 
attained from a well surveyed surrounding landinass.

APPENDIX B 

SUM M ARY OF ELECTRONIC COMPUTER PROGRAM S

1. Program FRV 131-1 : Spheroidal Areas.

FRV 131-1 is a program in Algol (written by F.G. S t r 0 b e c h  in 1972) 
which will give the approximate area of any n-corner polygon on the 
spheroid (*). The approximation can be refined by increasing the number 
of points along the curves. This question will however be dealt with 
in more detail later.

The only limitations as to the positions and number of corner points 
for the polygon are the following :

(*) Cf. N. W. H u m p h r i s  : International GJoJml System for  defining Maritime Boun
daries. I.H. Bulletin, December 1971, pp. 412-416.



(1) The difference in longitude of two adjacent corner points must 
not exceed 180°.

(2) Neither of the Poles may be encircled by the polygon. (They may, 
however, well be one of the corner points).

(3) The length of the polygon’s sides should be limited —  preferably 
to not more than 100 nautical miles —  in order to assure high 
accuracy.

(4) The polygon must not be too small. It should preferably be of 
more than 1 km2.

(5) The number of corners allowed will depend on the capacity 
of the specific computer.

Computation is based on the very simple formula :
S =  e II-

S being the spherical area, R the spherical radius (here the radius of 
the Meussnier sphere), e the spherical excess which is equal to the sum 
of the polygon’s angles minus (u —  2 )tc where n is the number of corners. 
This means that in principle the computation is reduced to calculating 
the spherical angles and the radius of the Meussnier sphere. This is the 
sphere which offers the best spheric approximation to the spheroid in 
the vicinity of a single point as it has a radius equal to the Gaussian 
curvature of the spheroid at the said point.

The total area of the polygon is subsequently found by calculation 
of n —  2 spheric triangles formed by a selected combination of corner points. 
A fixed rotation in the listing of corner point coordinates allows for both 
this selection and possible concavities of the polygon. The area of each 
sub-triangle is calculated as if it were lying on the Meussnier sphere 
at the mid-latitude of the triangle. To reduce the influence of the 
latitudinal factor the program itself arranges the sub-division into triangles 
in such a way as to give each triangle the minimum latitudinal extension. 
The spherical angles are computed according to Napierian rules.

As indicated earlier, the approximation may be refined by insertion 
of extra points along the outer lines of the polygon. These points may 
come from geodesics, great circle arcs, loxodromes, or from any other 
curve. To meet this requirement sub-programs for the geodesic 
(FRV 133-1), the great circle arc (FRV 132-1), and the loxodrome 
(FRV 134-1) have been written. Where a coastline or the limits of 
territorial waters is one of the outer lines, the subdivision may be carried 
out by selecting the coordinates along this line either manually or with 
a pencil follower.

2. FRV 132-1. Subdivision of the Great Circle Arc.

This computer program (written by F.G. S t r 0 b e c h  in 1971) will supply 
geographical latitude to the nearest hundredth of a second of arc for every 
full minute step in geographical latitude along the great circle arc between 
the two given positions.



The total distance (to the nearest hundredth of a metre) along the 
great circle arc is based on the Earth’s radius at 45° Latitude.

If required, further subdivision can be made manually without loss 
of accuracy. Geographical tables (*) could be used to find the distances 
corresponding to other radii.

Table 1 shows part of the printout for the example given at the 
beginning of this article.

T able 1

Latit u d e  N_______L o n gitude E Latitude N L o n g i t u d e  E

59 38 07 . 56 03 35 0 0 . 00 59 46 55.22 03 56 0 0 . 0 0
59 38 32.86 03 36 0 0 . 0 0 59 47 20 . 15 03 57 0 0 . 0 0
59 38 58 . 15 03 37 0 0 . 00 59 47 45 . 06 03 58 0 0 . 0 0
59 39 23 . 43 03 38 0 0 . 0 0 59 48 09 . 95 03 59 0 0 . 0 0
59 39 48 . 68 03 39 0 0 . 00 59 48 34.82 04 00 0 0 . 0 0
59 40 13.92 03 40 0 0 . 00 59 48 59.68 04 01 0 0 . 0 0
59 40 39 . 13 03 41 0 0 . 0 0 59 49 24.  52 04 02 0 0 . 0 0
59 41 04.  33 03 42 0 0 . 00 59 49 49.  34 04 03 0 0 . 0 0
59 41 29.  51 03 43 0 0 . 00 59 50 14.14 04 04 0 0 . 0 0
59 41 54 . 67 03 44 0 0 . 0 0 59 50 38.93 04 05 0 0 . 0 0
59 42 19.82 03 45 0 0 . 0 0 59 51 03 . 70 04 06 0 0 . 0 0
59 42 44 . 94 03 46 0 0 . 0 0 59 51 28 . 45 04 07 0 0 . 0 0
59 43 10.  05 03 47 0 0 . 0 0 59 51 53.18 04 08 0 0 . 0 0
59 43 35.  14 03 48 0 0 . 0 0 59 52 17.89 04 09 0 0 . 0 0
59 44 0 0 . 2 2 03 49 0 0 . 00 59 52 42 . 59 04 10 0 0 . 0 0
59 44 25 . 27 03 50 0 0 . 0 0 59 53 07 . 27 04 11 0 0 . 0 0
59 44 50.  31 03 51 0 0 . 0 0 59 53 31.93 04 12 0 0 . 0 0
59 45 15.  32 03 52 0 0 . 0 0 59 53 56.57 04 13 0 0 . 0 0
59 45 4 0 . 3 3 03 53 0 0 . 0 0 59 54 21 . 19 04 14 0 0 . 0 0
59 46 05.  31 03 54 0 0 . 00 59 54 45 . 80 04 15 0 0 . 0 0
59 46 30 . 27 03 55 0 0 . 0 0 59 55 10.39 04 16 0 0 . 0 0

D: 710.22087 km

3. FRV 133-1. Subdivision of Spheroidal Loxodrome.

This is a specific program (written by B. Rost A n d e r s e n  in 1972) for 
giving the geographical longitude to the nearest fourth decimal in seconds 
of arc for every full minute step in geographical latitude along the 
loxodrome between points A  and B.

Computation of the total distance along the loxodrome (to the nearest 
hundredth of a metre) is on the basis of numerical integration.

A more flexible program is now under development.
Table 2 shows part of the printout for the example given at the 

beginning of this article.

(*) Cf. D.H.K. A miran  and A P. Schick : Geographical Conversion Tables, Zürich, 1961.
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4. FRV 134-1. Subdivision of Spheroidal Geodesic.

This is a program (written by F.G. S t r 0 b e c h  in 1972) for providing 
intermediate points in geographical latitude and longitude to the nearest 
thousandth of a second of arc along the spheroidal geodesic between two 
given points. Both the number of subdivisions and the reference ellipsoid 
can be chosen at will.

Furthermore, the forward and the back azimuth at each step in then 
obtained, together with the cumulative distance (to the nearest hundredth 
of a metre) between the two extreme end points.

T.un.K 3

Latitude_______________ Longitude___________ back azimuth_____forw. azimuth

0 5 9 38 06 . 284 n 0(03 34 5 4 . 834 P,

0 5 9 38 30 . 858 n 0 0 3 35 5 3 . 0 8 7 p

05 9 38 5 5 . 425 n 00 3 36 51 . 36 3 n

05 9 39 1 9 . 984 n 003 37 4 9 . 6 6 3 p

0 5 9 39 4 4 . 536 n 00 3 38 4 7 . 986 p

0 5 9 40 0 9 . 081 n 00 3 39 4 6 . 33 3 p

0 5 9 40 3 3 . 61 9 n 00 3 4 0 4 4 . 704 p.

0 5 9 4 0 58 . 149 n 00 3 41 4 3 . 099 p

0 5 9 41 2 2 . 6 7 3 n 003 4 2 4 1 . 517 p.

0 5 9 41 4 7 . 189 n 00 3 4 3 3 9 . 95 9 p

05 9 42 1 1 . 69 7 n 00 3 44 38 . 42 5 p

0 5 9 4 2 3 6 . 199 n 0 0 3 4 5 3 6 . 9 1 4 (>

05 9 4 3 0 0 . 693 n 00 3 4 6 3 5 . 42 7 p.

0 5 9 43 2 5 . 180 n 00 3 47 3 3 . 96 4 p

0 5 9 43 49 . 66 0 n 00 3 48 3 2 . 525 e
0 5 9 44 1 4 . 132 n 003 49 3 1 . 109 f*
0 5 9 44 3 8 . 597 n 00 3 50 2 9 . 718 p

0 5 9 45 0 3 . 055 n 00 3 51 2 8 . 350 P.

0 5 9 45 2 7 . 505 n 00 3 5 2 2 7 . no6 p

0 5 9 45 5 1 . 949 n 00 3 53 2 5 . 6 8 5 p
0 5 9 46 16 . 385 n 00 3 54 2 4 . 389 p

0 5 9 46 4 0 . 813 n 00 3 55 2 3 . 116 p

05 9 4 7 0 5 . 2 34 n 00 3 56 2 1 . 86 7 p.
0 5 9 4 7 2 9 . 648 n 003 57 2 0 . 6 4 3 p
0 5 9 4 7 5 4 . 055 n 0 0 3 58 1 9 . 44 1 p.
05 9 4 8 1 8 . 454 n 00 3 59 1 8 . 26 4 p
0 5 9 4 8 4 2 . 846 n 004 on 1 7 . 111 a
059 49 0 7 . 231 n 0 04 01 1 5 . 98 1 p
05 9 49 3 1 . 6 0 8 n 004 02 1 4 . 876 p.
059 49 5 5 . 9 7 8 n 00 4 03 1 3 . 79 4 p
0 5 9 50 2 0 . 341 n 0 0 4 04 1 2 . 736 e
05 9 50 4 4 . 6 9 6 n 004 05 1 1 . 70 3 p
05 9 51 0 9 . 0 4 4 n 00 4 06 10 . 6 9 3 p
05 9 51 3 3 . 385 n 00 4 07 0 9 . 707 p
059 51 5 7 . 718 n 00 4 08 0 8 . 74 5 p
059 52 2 2 . 044 n 004 09 0 7 . 8 0 7 p
05 9 52 4 6 . 362 n 004 10 0 6 . 89 2 p.
05 9 5 3 1 0 . 6 7 3 n 00 4 11 06 . 002 p
05 9 53 3 4 . 9 7 7 n 004 12 0 5 . 136 p
05 9 5 3 5 9 . 2 7 3 n 004 13 0 4 . 29 4 p
05 9 54 2 3 . 562 n 004 14 0 3 . 476 p

2 30 11 36. . 29 5 0 5 0 11 36 ., 2 9 5
23 0 12 2 6 . , 5 5 8 0 5 0 1 2 2 6 . , 5 5 8
2 30 13 16, , 846 0 5 0 13 16 . , 8 4 5
23 0 14 07 . , 1 5  7 0 5 0 14 0 7 . , 15 7
2 30 14 57. , 49 2 0 5 0 14 5 7. , 4 9 2
2 30 15 4 7 . , 8 5 1 05 0 15 4 7 . , 8 5 1
2 30 16 38, , 2 34 0 5 0 16 38 . . 2  34
2 3 0 1 7 28 . , 6 4 1 05 0 17 28 . . 6 4 1
23 0 18 19. , 072 05 0 18 19 . . 07 2
2 30 19 09. ,5 27 05 0 19 09 . . 5 2 7
230 20 00, . 0 0 6 05 0 20 00 . . 0 0 6
2 3 0 20 50. , 5 0 9 05 0 20 50 . . 5 0 9
2 3 0 21 41 , . 0 3 6 05 0 21 4 1 . , 0 3 6
230 22 31. . ^ 8 7 05 0 2 2 31. . 5 8 7
2 30 23 22 . , 1 6 2 05 0 23 22 . . 1 6 2
2 3 0 24 12. , 76 1 05 0 24 12 ,. 76 1
23 0 2 5 03 . , 384 05 0 25 03 , . 3 8 4
230 25 54. , 0 3 1 05 0 25 54 . . 0 3 1
2 30 26 4 4 . , 7 0 2 0 5 0 26 4 4 . . 702
23 0 2 7 35. , 398 05 0 27 35 . . 3 9 8
23 0 28 26 . . 1 1 7 0 5 0 28 26 . , 1 1 7
2 3 0 29 16. , 861 05 0 29 16. , 8 6 0
23 0 30 07. . 6 2 8 05 0 30 07 . , 6 2 8
2 30 30 58, , 4 2  0 05 0 30 58 , , 4 2  0
2 30 31 4 9 . ,2 36 0 5 0 31 4 9 . , 2 3 6
2 30 32 4 0 . , 076 05 0 32 4 0 . . 0 7 6
23 0 33 30. , 9 4 0 0 5 0 33 30 . , 9 4 0
23 0 34 2 1 . , 8 2 8 0 5 0 34 2 1 . , 8 2  8
23 0 35 12 . , 740 0 5 0 35 12 . , 7 ^ 0
2 30 36 0 3 . , 6 7 7 0 5 0 36 0 3 . , 6 7 7
2 3 0 36 5 4 . , 6 3 7 0 5 0 36 5 4 . ,6 37
23 0 37 4 5 . 6 2 2 05 0 37 4 5 . ,6 22
23 0 38 36 . 6 3 2 0 5 0 38 3 6 . , 6 3 1
2 3 0 39 2 7 . 66 5 0 5 0 39 2 7 . , 6 6 5
2 30 40 1 8 . 722 05 0 4 0 1 8 . , 7 2 2
2 3 0 41 0 9 . 80 4 0 5 0 41 0 9 . ! 80 4
230 42 0 0 . 9 10 0 5 0 42 0 0 . 9 1 0
23 0 42 5 2 . 0 4 0 0 5 0 42 5 2 . 0 4 0
2 30 43 4 3 . 19 4 0 5 0 43 4 3 . 194
230 44 3 4 . 37 3 0 5 0 44 3 4 . 3 7 3
23 0 45 2 5 . 576 0 5 0 45 2 5 . 576

D: 712.850930 km



Table 3 is part of the printout for the example given at the beginning 
of this article. The International ellipsoid is used, and the number of 
subdivisions is 600.

5. FRV 135-1. Bilateral Equidistance Points.

This is a program (written by F.G. S t r 0 b e c h  in 1972) for computing 
single equidistance turning points based on straight baselines which are 
taken as geodesics.

Figure 7 demonstrates the different approaches to the computation 
of equidistance turning points for the case of coastal control points and 
for straight baselines.

6. FRV 135-2. Bilateral Equidistance Line.

Program No. 5 (FRV 135-1) is actually a sub-program of the program 
FRV 135-2 (written by F.G. S t r 0 b e c h  in 1973) and it attempts to provide 
the whole extent of the equidistance line between two adjacent or opposite 
states.

In cases where the coastal state does not have straight baselines 
along either the whole or part of its coast, then the low water line is 
digitized discretely in a manner compatible with the coastal configuration. 
For instance ŵ hen the coastline is highly indented the discrete steps will 
be short —  and vice versa. This computation is based on straight base
lines (geodesics) only. It can also be used for those parts of a coast

I'm. 7



where no formal baselines exist, the reasoning here being that the 
digitized sections are composed of short lengths of straight line which 
follow the low water line very closely.

7. FR V  136-1. Unilateral Equidistance Line.

As the next step a program for giving a sequence of points along a 
curve at a given distance from the low water line is to be written by 
F.G. S t r 0 b e c h . Territorial water lines and fishery and pollution zones 
are all based on the distance criterion, and the delimitation of the 
international seabed area is also likely to be based on a similar criterion. 
This program could thus be used for the accurate determination of 
all these limits.
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