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SUMMARY

To overcome the inadequacies of the harmonic method in the analysis
and prediction of shallow water tidal regimes, DoopsoN (1957) devised a
Harmonic Shallow Water Corrections (H.S.W.C.) method to improve the
quality of predicted times and heights of tidal turning points. This method
proved to be very powerful where the constituent M, is relatively dominant
in the tide. The theoretical background and technique of application as
presented by Doobsox is devised for hand calculations and for use on
mechanical harmonic analogue machines which were geared for conven-
tional constituents, not H.S.W.C. constituents. In this paper the method
is reformulated using a speciral analysis technique, thus providing a clear
explanation of the fundamental ideas involved. In the spectrum of a finite
time series record sampled at regular intervals, all the energy at frequen-
cies above the Nyquist frequency is aliased with frequencies below the
Nyquist frequency. The aliasing phenomenon when applied to high and
low waters, occurring at intervals of approximately half a lunar day, has
the inherent advantage that numerous constituents combine together, even
eliminating the need for separate identification. Caution must be exercised,
however, due to the fact that the time interval of half a lunar day is an
approximation only. Any selected constituents can be resolved by use of
the leasl squares method. This technique will be free from previous limit-
alions of a fixed length data (355 days) requirement, and it will also
handle effectively discontinuous data. An intensive comparison of Extended
Harmonic Method (E.H.M.), Improved Responsc Method (I.LR.M.)Y and
H.S.W.C. method, shows that all these methods are approaching their
theoretical limits. Examination of residuals indicales thal they are similar
in accuracy, but for some typical requirements one method can compute
predictions marginally better than the others.



88 INTERNATIONAL HYDROGRAPHIC REVIEW

1. INTRODUCTION

The harmonic method of tidal analysis and prediction initiated by
KELviN and DaARwIN, and further developed by Doopsox (1928), provided
sufficiently accurate predictions for deep water ports. When this method
was applied to the distorted tides of shallow water ports, it proved to be
inadequate. The principal reason for this was that, in shallow water,
various constituents interact strongly with each other, crealing in turn
the development of a large number of new constituents. It is difficult to
resolve all these constituents without large computing facilities. The failure
of the harmonic method was attributed to

a) the slow convergence and consequently large number of higher-

order consiituents;

b) the fact that some of these are speclrally very close and difficult

to resolve;

¢) the fact that the implications of this shallow water interaction

are as yel inadequately known, so that the specification of a
comprehensive harmonic model is often difficult if not impossible.

To overcome the above mentioned problems, Doobpson (1957) devised
a new method known as the Harmonic Shallow Water Corrections
(H.S.W.C.) method to improve the resolution and prediction of times and
heights of tidal turning points. The theoretical background is complex
and the technique given by him is very sophisticated. More particularly,
the method is orientated to meet the necessities and requirements of that
time, i.e. biased to manual analysis and a mechanical predictor geared
to different constituent speeds. The method was developed on the assump-
tion that M. dominates the other constituents, and the procedure proved
to be very powerful when such conditions prevail. However, some minor
anomalies existed, such as non-zero mean values of residuals obtained
from repredicting the analysed data. RossiTer & LENNoON (1968) have
shown that the above problem exists, and in turn investigated the widely
assumed reasons for failure of the harmonic method. If those reasons are
valid, then with present computing facilities to help resolve large numbers
of constituents, the harmonic method should be as accurate as the H.S.W.C.
method. RoSSITER & LENNON (1968), after examining the whole tidal spec-
irum, exiended the harmonic method to include 114 constituents, i.e. the
Extended Harmonic Method (E.H.M.. ZETLER & CumMiNgs (1967) agree
with this optimal number of constituents, but the performance of the
H.S.W.C. method was found {o be better than E.H.M. The efficiency of
the H.S.W.C. method is associated with the fact thal it concerns itself
only with the turning points and not with the total time profile, which
can be significantly distorted in shallow water. By giving additional weight
to high and low waters, better prediclions are achieved in those regions.
CArTwWRIGHT & RossITEr (1972) in their comparative assessment of the
H.S.W.C. method with E.HM. and [.LR.M. (an “Improved” version of the
“Response Method” of tidal analysis, programmed by D.E. CARTWRIGHT
about 1967 - sec references contained in CARTWRIGHT & ROSSITER
(1972)) have shown that for predictions of high and low waters, there is
little to choose between H.S.W.C. and 1.LR.M., but EH.M. gives large resi-
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duals. Amin (1976) found that the comparatively poor performance of
E.HM. was due to:

a) the shallow water constituents which are very close to others
and so cannot be adequately resolved from one year’s data;

b) shallow water constituents which have the same speed as others,
making it difficult to assume their relative contribution which
may vary from place to place, leading to the use of incorrect
nodal parameters.

This work was carried out to find :

a) the theoretical explanation of the H.S.W.C. method on a spectral
basis;

b) a direct and simple computing technique;

c) the differences between E.H.M. and H.S'W.C. and under what
circumstances they appear.

2. DEVELOPMENT OF SHALLOW WATER CONSTITUENTS

The fundamental differential equations relating to the motion of a
homogeneous fluid in a one dimensional channel, when allowance is made
for second order terms but neglecting battom friction, are

o¢ N ou 9

— =D — — (Suy R
at ax ox S (2.1
ou o7 ou

— = — —u — 79
at £ ox ox €2.2)

where D is the mean depth of the fluid,
t is the time,
{ is the elevation of the surface above the mean level,
u is the mean velocity of the fluid, and
g is the acceleration due to gravity.

In deep water { and u are small, therefore the product terms
] () | ou
— (§w) and u —
ox ‘ ox

can be neglected, and equations (2.1) and (2.2) to a first approximation

become :
: 9
8, Bu (2.3)
or ox
du a¢ R
g 0 (2.4)
or g ox

The Airy solution (Lams, 1932, p. 281) of equations (2.1) and (2.2)
for a tidal wave consisting of a single constituent, and GALLAGHER & MUNK’s
(1971) solution of these equations for the interactions of incident and
reflected waves can be extended Lo a wave of two or more harmonic terms
to examine the interactions of various constituents. Consider a simple tidal
wave composed of Lwo lerms :

{=1Zycosoyt + Z, cosot (2.5)

entering the echannel al v = 0.
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The solutions of (2.3) and (2.4) which satisfy (2.5) are

§ = Z, cos g, ([ - ;7) + Z, cos g, ([ . ?) (2.6)

_£ e . x* X
u= . [ZO cos 0, (t - c) + Z, cos o, (t — g)J (2.7)
where : ¢ = (gD)'/?.

For the solutions of the non-linear equations (2.1) and (2.2) we replace
the product terms in these equations by using (2.6) and (2.7), and get :

K p (2.8)
ar ax '
a
2—1:=_ a§ ~f—3xl/(t,x) (2.9
X
x _ x
where : Y (¢, x) = Z} g, sin 20, (r - }) + 7} 0, sin 20, (t - ;)

X . X
+ 7,2, [(00 — 0,)sin (gg — 0}) (rA ) + (6, T 0,) sin (00+01)(t - )]
c
The solutions of which, consistent with (2.5), are
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The equations (2.10) and (2.11) show that corresponding to two terms,
there are four additional terms of speed : 20y, 20, 0y — 0y and oy + oy.
If other terms of astronomical origin are included in (2.5), each will inter-
act with the others and more terms will develop. A complete solution of
differential equations (2.1) and (2.2) involves infinite series of which (2.10)
and (2.11) contain the first few terms. The tidal profile will be more
distorted as the amplitudes of the higher harmonics increase and further
higher harmonies are generated through their interaction. Some of these
may have the same speeds as in (2.5), thus an internal feedback system
is set up. The significance of these terms, as we see from equations (2.10)
and (2.11), depends upon the amplitudes of the interacting terms, the
depth of water and the distance through which the tidal wave has pro-
gressed. The dependence of the amplitudes upon the distance x shows
that the system may break down when the tide progresses through a suffi-
ciently large distance, since the above solutions will not converge. In
that case it will be difficult 1o establish any simple relation between two
such points along the channel. In the differential equations we have not
taken into consideration the effect of bottom friction which also helps to
generate new constituents, but here the modes of interaction are different
and it is difficult to establish any exact relationship between the consti-
tuents originating from the two effects. Thus the real tide, in which
shallow water constituents are spread over a wide spectrum, is much
more complex than the above solution, and it is very hard to relate the
primary and shallow water constituents analytically. The whole system
of predictions is based on the knowledge of these composition constituents,
and due to lack of any comprehensive analytical lechnique their detection
and identification depend upon resolving these constituents from the
observed data. The difficulty of resolution from a short span of data or
alternatively handling long data spans, causes us to look again at Doob-
soN’s H.S.W.C. technique. Here one must bear in mind that the Doodson
method was developed more than fifty years ago, that it was devised for
hand calculations in so far as analysis is concerned, and for the limited
capacity and inadequate gearing of the mechanical tide predictor.

3. DOODSON’s HS.W.C. METHOD IN SPECTRAL FORM

The Fourier expansion of the function [(¢) which is continuous in
the interval (0, T) is given by :

& 27jr 27j
@y =05 +2 }_ (ozj cos JELA B; sin ﬂ”) (3.1
where /=1 T '
| T 2njt
%:$fo £y cos =dr j=0.1.2.3

1 T _ 2mjt .
6,-:¥/0 { () sin e j=1.2.3....

When funection () is sampled at points t = rA, r =0, 1, ... 2L, where A
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is the sampling interval, T = (2L + 1) A, then the corresponding set of
values {{, = {(rA))} is represented by the discrete Fourier series as follows:

% 2rmr - 2mmr ) (3
= 2 0§ —— T sin ——— 3.2
§)‘ AOT"—4<AI11 cos 2L+1 in 2L+1
n=-o 1
wnere
h 12k 2amr
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B i -
2L v 1,7, 2L + 1
21
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B =——"7—_. §, cos ‘ m=1,2...... L (3.4)
” 2L + 1 o 2L + 1
y =
Now multiplyving both sides of (2.1) by cos 2pmi#/T and substituling rA - ¢,
() becomes ¢, and summing over r = 0, I, 21, it gives
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On using equation (3.3) and the orthogonality relationship:

2\L . 2ajr 2miny . i
",;_.0 s L cos ST O torallj, m
A 2a( rm)r 2L+ 1forj +m= (2L + Diwherei=0.1.2.. ..
and o oS —————— = i
o 2L +1 { 0 otherwise

equation (3.5) reduces to:

A, =0, Y @iy om T %aLe)i+m) (3.6)

for m = 0 it gives:
2L+ 1)/ (3.7)
Similarly, multiplying by sin 27mi/T, (3.1) gives:

— \
Bm ‘Bm +—l ('G(2FL11]jfm 776(2Lf1)f«m) (‘x>
F=1

The resulls (3.6) — (3.8) show that in discrete Fourier series, the effects
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of higher frequencies than the Nyquist frequency f, (= 1/2 A) fold back
on the frequencies 0 — f..

Now if the tidal height is represented as:
{ = Z, cos (0t —€5) t ZZcos(af —€) (3.9)

where zero subscripts denote M. and summation is over all the remaining
significant lines;

substituting
Vy, =0yt — € )
8 =(o, - 0)t (e, —€) )
Z \
g, =X ——sind (3.10)
2 &
z
q, = Z— cosf
C ZO '/
the equation (3.9) becomes
¢ =ZyRcos (V, — ) (3.11)
where R=[(1 +g,)* +q2]'? (3.12)
and tan Yy = g, /(0 +q.) (3.13)

Following DoobsoN’s assumptions that it ¢, and ¢, are small, then since :
1
¥ = tan Y -- 3 tan Y + L.

the equations (3.12) and (3.13) give

V=q,—4,q9, tq,9; — qu o (3.14)
1,1 X
R:l+qc+;qs~§chs+ ........ (3.15)

The equation (3.11) can be written in the form

§ =(Zy +8)cosay(ny — 1) (3.16)

_ 1, 1 . .
6 = 7Z, (qc_+5qs—5chJ R | (3.17)

where
y 1 1 ,

=L ="(g. — o 2 g3 (3.18
7 o o ds —dsqe "4s4e ~ 3 4 ) )
o= Vol

As d8/dt and dn/dt are negligible in the vicinity of turning points, equation
(3.16) is an adequale represeniation of heigh!s and lags of lhe tide. Here
n, gives the times of maxima and minima of the M, tide and n gives the
shift in the maxima and minima of the M, resulting from the presence of
other constituents. When ¢. and ¢, are small, § and 7 will be small. Under
such circumstances, modulation of the M., tide will he small and the
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observed tide will have a profile close to that of the M, tide, thereforc
consecutive high or low water will be almost equally spaced with time
interval approximating to half a lunar day (HLD). The Nyquist tfrequency
f.. of such a time series will be

A

1o | —

cycle/ HL D

ta | —

i.e. conslitluent M; will be al Nyquist frequency, and the terms on the higher
frequency side of M, in the specirum will be aliased with terms in the
range 0 — o(M,) (speed of constituent M,) according to (3.6) — (3.8), as

" A\ 1 \¢ - 3 N i 1 H tn t o
shown in Table 1. Honrx (1948) alse considered this in relation to the

TaBLE 1
Sets of aliased constituents and their speeds

.rl\io (dip/e}?i[)’ Constituents
i 0.0 M, M, Mg, ... ...
2 0.5100967 Sa, MA, Ma,...........
3 1.0201934 Ssa, MKS, . MSK, , OP,,........... ..
4 5.8565756 SN,, MSN, 2MSNg. SNM, My, ... .. .. ..
5 0.7614611 N, Ly 0 2MIN, MN, ML, 2MN  3MNg L.
6 12.1079635 Ty, o
7 12.6180366 S,.2MS, MS, 2MS, 3MS,, . ... ... ...,
8 13.1281333 R,, . ... ...
9 13.6382313 2MK, MK,.2ZMK ... .........
10 18.4746122 2SN, 2SMNg . MwS, . ... ... ..
11 19.3794977 MSN, , MNS, , ZMSN, , 2MNS, .. ... ...
12 25.2360732 2SM,, S, 2SM,, 2 (MS),  3M2S,, ...
i3 26.2562679 SK,, MSK, ., 2MSK,, SKM, , 3M(SK), . .. . ..
14 27.2764626 2KM, K ... ......
15 159.5426537 00,,KO,, ... ...
16 160.5628484 SO, SK,............
17 161.5830418 SP,,............
18 166.4194239 J,,Q, M}, MQ,, ... ... ...
19 173.1808850 K,.O,.MK,,MO,, 2MK,, K 2MO,; . ... .. ..
20 173.6909817 S,,MS, ...
21 174.2010784 P, ,MP SO, .. ... ..
22 180.0 M, M, M oo
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similar problem of sampling tidal records in lunar time. Another account
of HoRrN’s principle is given in Appendix C of Munk & CARTWRIGHT (1966).

Doopson transformed the continuous function 8 to a discrete function
to conform to the fact that information about frequencies higher than the
Nyquist frequency is lost due to aliasing, which in the time domain is
equivalent to a loss of information in between the sampling points. Here
the residual function will represent the envelope as shown in figure 1,
whose common solution agrees with the tide at high or low waters only.
Any attempt to retrieve informations about the tide from the envelope, at
points other than the sampling points, obvicusly will be in error.

i6

o2}
3
7
\
7
-
13
o
\
A
I
3
7
)
d
\
q
ol
\
d
N
I
I
A
]
\
N
]
—
|

S
T

HEIGHT [ Feet)
o
e ——
™ w— ]
| ————l
i\-—:——°
————
g:
y——
=]
——
faa——
}:::
—
\,-c
N——
)~
e —

o
&
\
by
U
1
!

16 TIME ( Days )
Fia. 1. — Tidal profiles :
total tide; -—.—.-— high and low waters of M., tide; ----- envelope of high

waters; ... envelope of low waters.

The equations (3.17) and (3.18) show that since 8 and n are functions of

residual constituents, whose speeds are expressed relative to the speed of

M., therefore they can be computed from differences of heights and times

respectively of observed and basic tides. The details of the analysis

technique are given in Appendix A.

Thus we conclude that:

(1) high or low water fimes and heighls can be constructed in two steps
(a) computing a basic tide consisting of the M., constituent, or more
constituents provided M, is dominant; (b) then improving the basic
tide by using § and 7);

(2) similarly, the tide at one port can be computed from the basic tide of
another port if the tidal characteristics of the two ports are comparable.

4. RESIDUAL ANALYSIS

To investigate the performance of the modified E.HM. and the
H.S.W.C. method based on the least squares technique, a comparative study
was carried out. Three ports — Southend *', Liverpool (¥) (Princes Pier)

(*) The original data for Liverpool and Southend were in feet and the final results
were converted into metres. Some differences under feet and metres, in both Table 2
and Table 3, are due to rounding off.
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and Wyndham (Cambridge Gulf, Australia) — which have significant
shallow water characteristics were selected. The tests were carried out on
results obtained from analysing one year’s data, this being the normal span
of data available for tidal analysis. Analyses were performed by the
H.S.W.C. method, using different numbers of basic constituents. The
residuals (values of observed - predicted levels and times) were computed
for each set of constituents. In figure 2 the distribution of errors in the
high and low water times and heights are shown in histograms. Some
differences between results from the E.H.M. and the H.S.W.C. method are
expected when resynthesizing the dependent data because E.H.M. constit-
uents are obtained from analysis of hourly heights whereas in the H.S.W.C.
method, although hourly values are used for basic constituents, the emphasis
is placed upon residuals at the turning points. The means and standard
deviations of residuals are given in Table 2. RossiTER & LENNON (1968)
found that Doopson’s H.S.W.C. technique gives non-zero means when
predicting the same period as analysed, but in the revised method
(Appendix A) near-zero means are obtained as expected since techniques
of analysis and prediction are compatible.

Noting that 1971 data was analysed for Southend, some similar
investigations were made on the data sets Jan. 1, 1962 to Jan. 7, 1963 and
Sep. 1, 1967 to Apr. 23, 1968. These periods were used by CARTWRIGHT &
Rossrrer (1972) so that, in addition, comparisons between the present
methods and LLR.M. were possible. The [.LR.M. constants were derived from
analysis of the 3-year period 1959-61. The mecans and standard deviations
of residuals are given in Table 3. The H.S.W.C. method gives consistent
accuracy, as shown in Table 2 and figure 2, but its superiority over other
methods is marginal and this requires explanation. This is considered due
to overfitting. The size of the harmonic model in relation to the data is
greater in the H.S.W.C. method than in conventional analysis. Consequent-
ly the noise content of the data sets is not sufficiently attenuated. E.H.M.
gives slightly the best heights while I.R.M. gives marginally the best times.
It has been observed, both at Liverpool and Southend, that in the case of
very high tides, particularly equinoctial, H.8.W.C. predictions are better
than E.H.M. predictions. Some of the observed and predicted equinoctial
tides are listed in Table 4 to demonstrate this effect, which seems to be due
to the fact that some distortion is associated with tides in the extreme
range only, but not the total tide. When dealing with high and low profiles
separately, it becomes possible to represent these variations harmonically.
The residual spectra were calculated, as displayed in figures 3.1 - 3.4, showing
that, on the average, residual power is almost identical. The variation in
the peaks at the positions of L, S, and P, is due to the use of nodal
parameters in the E.H.M. or basic tide. These parameters are computed
on the basis of equilibrium relationships, but in the real tide, as shown by

Fis. 2. — TFrequency distribution of errors in predictions of turning points using
various sets of constituents.
G, : E.H.M, Cons. (110); G, : E.H.M. Cons. (110) + H.S.W.C.; G, : 60 basic cons. + H.S.W.C.;
Gy : 30 basic cons. -+ H.S.W.C. (for Wyndham, 60 basic cons. of Cape Domett
+ H.S.W.C)).
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TABLE 2
The means and standard deviations of residuals obtained from re-predicting
the analysed data.

{a) Southend 1971 ; (b) Liverpool (Princes Pier) from Nov. 27, 1972 to

Nov. 27, 1973; (¢) Wyndham (Cambridge Gulf, Australia) from July 12, 1973
to July 4, 1974

HIGH WATER

Low WATIR

Prcd'icti(m Times Heights Times Heights
Constituents
min. metre (1) min. metre (ft)

(a) Southend

E.HM. Cons. (110) Mcan 1.56 0.015]( -0.04%) 424 | - 0025, 0.082),
Standard 0.9y 0.173] (0.566) 10.15 0.184 (0.604)
Deviation

I H.M. Cons. (110) Mean 0.01 0.001 | 0.002) 0.01 0.00 (0.001)

+ H.SW.C. Standard 6.07 0.162] (0.539) 9.10 0.179 | (0.588)
Deviation

Basic (60) Mecan 0.0 0.001 {(-0.003}| - 0.0t 0.003] (0.001)

+ H.SW.C. Stundard 6.28 0,166} (0.544) 9.01 0.1751 (0.575)
Deviation

Buasic (50) Mean 0.09 0.0 (0.0) 0.07 0.0 (0.0)

+ H.S.W.C. Standard 6.37 0.166| (0.545) 9.08 0.177] (0.581)
Deviation

(b) Liverpool

E.HM. Cons. (110) Mean 2.07 0.015] (0.049) 1.95 0.002] (0.0067)
Stundard 7.42 0.1681 (0.550) 7.39 0.200] {0.655)
Deviation

E.H.M. Cons. (110) Mecan 0.07 0.0 (0.0) 0.0 0.0 {0.001)

t H.S.W.C. Standard 6.31 0.162] (0.531) 6.81 0.193 (0.633)
Deviation

Basic Cons. (60) Mecan 0.05 0.0 (0.0) 0.0 0.0 (0.0)

- HS.W.C. Standard 6.37 0.159] (0.523) 6.94 0.196] (0.642)
Deviation

Basic Cons. (50) Mean 0.09 0.0 0.0 0.03 0.0 (0.001),

+ HSW.C. Standard 6.32 Q.161| (0.527) 6.99 0.196] (0.643)
Deviation

(¢c) Wyndham

E.HM. Cons. (110) Mean 393 0.026 2.59 0.028
Standard 7.09 0.116 8.80 0.140
Deviation

E.H.M. Cons. (110) Mecan (.00 0.016 0.01 0.013

r H.SW.C Standard 6.09 0.100 7.39 0.126
Deviation

Basic Cons. (60) Mean 0.01 0.002 0.01 0.0

+ HSW.C Standard 6.35 0.100 7.32 0.122
Deviation

Basic Cons. (60) Mean 1.00 0.015 1.01 0.024

of Capce Domett Standard 7.12 0.259 &.03 0.230

+ H.S.W.C. Deviation
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TaBLE 3
The means and standard deviations of Southend residuals
from data sels:
(a) From Jan. 1, 1962 to Jan. 7, 1963; (b) From Sep. 1, 1967
to Apr. 23, 1968

99

HIGH WATI RS

Low WATIERS

Prcdi_ction Times Heights Times Heights
Constituents
min. metre (ft) min. metre (f1)

(a) 1/1/62-7/1)63
E.H.M. Cons (110) Mcan 1.91 0.065 |[(-0.213) 312 —-0.011 |(--0.035)

Standard

Deviation 9.11 0.205 (0.672)| 11.50 0.238 (0.784)
E.HM. Cons. (110) Mcan 0.43 —0.052 [(-0.170)| - 1.05 0.014 (0.047)
+ HSWC. Standard

Deviation 0.206 (0.675)| 11.32 0.243 (0.797)
Basic Cons. (60) Mcean 22 -0.049 | -0.160)[ —0.91 0.018 (0.060)
+ H.S.W.C. Standard

Deviation 928 0.208 (0.684) 11.14 0.244 (0.801)
Basic Cons. (50) Mean 0.21 -0.036 | -0.110) 1.01 0.033 (0.109)
+ H.S.W.C. Standard

Deviation 9.53 0.209 (0.685) 11.25 0.244 (0.801)
E.H.M. Cons (110) (*) Meuan 1.56 -0.064 [(--0.210) .46 -0.013 [ 0.042)

Standard

Deviation 8.63 0.206 (0.676)] 11.66 0.233 (0.765)
LR.M. (**) Mcan 2.6 (-0.006) 2.7 ( 017

Standard

Deviation 8.2 (0.69) 11.1 (0.79)
(b) 1/9/67-23/4/68
E.H.M. Cons. (110) Mecan 1.03 0.050 (0.164) 1.73 -0,006 [ 0.020)

Standard

Deviation 993 0.240 (0.786) 16.49 0.2506 (0.841)

VE.HM. Cons. (110) Mcan 0.09 0.092 (0.302)] - 2.53 0.051 (0.166)

+ HS.WC. Standard

Deviation | 10.05 0.246 (0.808)] 15.65 0.264 (0.865)
Busic Cons. (60) Mcan Q.06 0.077 (0.252) —1.66 0.030 (0.099)
+ HSWC. Standard

Deviation | 10.34 0.251 (0.824)] 14.64 0.264 (0.865)
Basic Cons. (50) Mcan -0.12 0.086 (0.282) --1.67 0.048 (0.160)
- HS.W.C. Standard

Deviation | 10.41 55 (0.835) 14.40 0.266 (0.872)
E.HM. Cons (110)*) Mecan 1.35 0.053 (0.173) 2.12 -0.010 | 0.032)

Standard

Deviation | 10.12 0.237 (0.779) 14.98 0.259 (0.84)
LR.M.(**) Mean 22 (0.02) 3.6 001

Standard

Deviation 98 (0.82) 13.9 (0.89)

(*) Nodal terms of L, are not used.
(**) As in CARTWRIGHT & ROSSITIR (1972).
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AMIN (1976), these are perturbed by overlapping shallow water constituents.
The evidence of figures 3.1-3.4 and Table 3 also suggests that the optimal
number of constituents in H.S.W.C. is about sixty but it may slightly vary

INTERNATIONAL HYDROGRAPHIC REVIEW

from port to port.

TasLE 4

Comparison of residuals of ertreme high levels obtained from E.H.M.
and H.S.W.C. method:

(a) Southend; (b) Liverpool

Residuals
Observation
Date H.S.W.C. E.H.M.
Time Height Time Height Time Height

(GM.T) (ft) (Min.) (ft) (Min,) (ft)

a) Southend
6. 4.62 0058 20.6 — 10 0.3 12 0.1
1333 20.6 — 12 0.0 — 7 — 0.1
14.10.62 0040 20.7 6 0.1 6 --0.1
1243 20.5 — 1 0.1 3 —0.1
15.10.62 0143 20.5 6 - 0.1 6 - 04
1331 20.2 3 —-0.3 1 - 0.7
6.10.67 0146 21.2 - 2 0.8 — 2 0.6
1356 20.5 1 0.1 2 - 04
28. 3.71 0057 19.2 - 3 - 0.5 -12 - 038
1341 18.9 | - 0.7 0 - 1.0
5.10.71 0035 19.6 5 0.0 11 - 04
1241 18.7 5 — 0.9 7 1.4

(b) Liverpool
8. 3.62 0012 31.0 5 - 0.3 5 - 0.2
1237 32.6 7 0.0 1 0.2
16. 9.62 0014 324 0 0.0 1 0.3
1236 31.1 8 0.0 5 2
28. 3.67 0020 324 - 7 0.7 5 1.0
1232 329 7 0.4 — 10 0.7
4.10.67 1115 32.1 —13 1.3 8 1.4
2330 327 6 0.6 9 09
6. 4.73 0030 31.1 6 0.8 - 7 1.0
1252 31.7 3 1.0 - 6 1.1
11.11.73 1122 29.7 10 —0.2 5 -0.1
2341 30.0 8 - 0.5 3 —-04
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Though the different methods give similar accuracy for a port, residual
power varies significantly from port to port. This is due to non-tidal
influences such as meteorological effects, fresh-water flow and flooding
areas inundated at high tides. At Wyndham, the predicted heights are in
good agreement with observations, times are generally quite accurate but
errors increase at neaps. This characteristic error is very large in some
cases, and appears to be related to local topography. The possibility of
obtaining improved predictions for Wyndham using the basic predictions
for Cape Domett, which is a deep port and exposed to open sea, was also
investigated. However, the best results are achieved by the H.S.W.C.
method based on its own basic sixty constituents. The Wyndham problem
represents a special case, and it may be possible to explain and solve the
problem of large time residuals at neaps on the basis of a mathematical
model which can account for inflow and outflow of water from surrounding
areas.

Liverpool and Southend predictions give greater residuals than Wynd-
ham. The tidal regimes are highly distorted. Meteorological conditions
induce large perturbations; after the perturbing force disappears, a damped
oscillatory residual persists for some time.

5. CONCLUSIONS

The results from CarTwRIGHT & ROSsSITER (1972) and the present work
suggest that all methods, from both the theoretical and applied points of
view, are stretched to their limits. The main problems affecting these
analyses and prediction methods are the non-tidal effects in the observed
data arising from meteorology. Though the analyses of residuals show that
accuracy is similar, it has been observed that for specific purposes one may
be given preference over others. LLR.M. at Southend, for example, predicts
better times, while E.H.M. gives better heights. The differences are marginal
and the choice of one rather than the other is difficult, as computations of
times and heights are invariably linked in user requirements. Though the
statistical evidence indicates that EHM. and H.S.W.C. are similar in
accuracy, nevertheless in cases studied, experience suggests that using
H.S.W.C. extreme high waters are predicted rather better than those of
E.H.M. Using E.H.M,, Southend extreme high levels are predicted anomal-
ously high, while Liverpool extreme tides are predicted lower than
observations. Since E.H.M. deals with the tidal profile as a whole, and
moreover since extreme high and low waters seem to be associated with
the maximum distortion of the profile, it is perhaps not surprising that
large residuals occur here. These extreme levels are sensitive events for the
user concerned with flood warning and matters of coastal defence, so that
the superior performance of H.S.W.C. is significant. Although the statistical
analysis of residuals does not argue strongly for H.S.W.C. by comparison
with other methods, nevertheless it does seem to remove the systematic
error associated with extreme high levels, and to the typical user this is
significant enough to favour the H.S.W.C. method. H.S.W.C. is a “two-step
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method” similar to predictor-corrector methods in the numerical integra-
tion of differential equations. The basic constituents give an estimale of
high and low water times and heights, and the H.S.W.C. constituents are
used to improve these estimates. The solution has limitations in that ideally
it calls for two contradictory requirements:

a) in the basic tide, the divergence of high or low waters from a
regular time interval of half a lunar day should be minimal, since
the theoretical speeds of all H.S.W.C. constituenls make this
assumption. This can be achieved by using M, only as the basic
tide;

b) the fit of the basic tide to the actual should be good, otherwise
the harmonic variation of the actual about the basic will again
significantly distort the theoretical time interval of half a Junar
day. An average time offset which remains reasonably constant is
however acceptable and can be modelled by the H.S.W.C. cons-
tituents. This condition can only be achieved by incorporating in
the basic tide a comprehensive set of constituents in addition to
M..

Yet failure to meet cither condition introduces an unwelcome noise in
the results. In practice it is found that an optimum solution is achieved by
the use of about sixty basic constituents, but this assumes a predominant
M,. In diurnally-dominated tides, where K; approaches the magnitude of
M,, a satisfactory solution cannot be achieved and the H.S.W.C. method
becomes inappropriate. A similar problem arises in certain areas of high
shallow-water interaction, which manifests itself in the form of double
high or double low waters. There the problem can be overcome by omitting
from the basic constituent set certain of the high-frequency tides until the
basic profile is simplified into an unambiguous semidiurnal form. In such
cases the first and second events are treated as separate time series, each
with their own H.S.W.C. analysis and prediction procedure. It is recognised
that the presence of shallow-water interaction increases dramatically the
problem of predictions and often implies a high susceptibility to additional
non-tidal perturbations, which cannot in any case be predicted significantly
in advance of real time. Despite the fact that one can expect discrepancies
between predicted and observed tide, it has been shown that the H.S.W.C.
method can be used effectively to remove systematic bias in the residuals.
This in itself is a significant achievement of g¢great valuc to the user.

APPENDIX A

Analysis Technique

The equations (3.17) and (3.18) show that 8 and 7, the differences
between basic predictions and observed tides both in heights and times, are
functions of residual constituents. If the &s and n’s are separated such
that:
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S(H) are the differences of high water heights,
s are the differences of low water heights,
' are the differences of high water times, and
'L are the differences of low water times;

then the residual constituents are grouped together to form a small number
of constituents called the H.S.W.C. constituents. This feature arises due fo
aliasing according to the equations (3.6) - (3.8) and as shown in Table 1. Any
of these series can be expressed in the form:
6[.(H)::(Hk cos (W +w, t; - x, ) Tri{t) (A1)
K

where summation is over all the significant lines in the specirum and

n(t) is the noise in the series,

H is the amplitude,

W is the initial phase, as later defined,

w is the speed (deg/HLD), and

X is an arbitrary phase lag
of the H.S.W.C. constituent.

The initial phase of the H.S.W.C. constituent depends upon the initial
phases of the individual constituents contributing to it, which are given by
V=r7 tas +bh +cp +dN' tep, ¢ (A.2)

Here r, a, b, ¢, d and e are integers which represent the argument number
of the constituent,
¢ is a phase constant; and

7 = local mean Junar time reduced to angle;

s = the mean longitude of the Moon;

h = the mean longitude of the Sun;

p = the mean longitude of the Moon’s perigee;

N’ = the negative of the mean longitude of the ascending node of the
Moon;

p1 = the mean longitude of the Sun’s perigee.

Taking the high water of the astronomical tide occurring at moon’s
lower transit, + = 0, the corresponding phase equation (A.2) becomes:
V=W+¢ (A.3)
where
W =as +bh +cp +dN +¢p, (A.4)

Although it is seen that a single H.S.W.C. constituent comprises the
contributions from a number of conventional harmonic constituents, it is
notable that the part of the argument number of the latter which determines
W in equation (A.4) is in each case identical in magnitude, though possibly
opposite in sign. Therefore the initial phase of all the component consti-
tuents which are grouped within a single H.S.W.C. constituent can be
considered equal. This is possible due to the symmetry of the harmonic
cosine function about zero. In this way, constituents of speed w are associat-
ed with an initial phase W, and those of speed —w are associated with an
initial phase —W, although in practice this distinction is irrelevant. In
equation (A.1) these are represented by a single constituent such as :
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H, cos(W, +w, t —x)=Z, cos(W, rw,r r¢, -€)
+Z,cos (=W —wit +d, —€,) to (A.S)
where
H, = {[Z, cos (¢, €,) FZ,cos(p, —€)+....1
. ; g ) 2.,1/2
+ [-Z,sin(¢, — €) T2, sin{g, —€,) +...1°;

X, =tan ! —Z,sin(@, -€)+Zysin(p, —€)+ ...
k Z, cos($, - €) +Zycos(p, —€) +...

Thus the initial phase W of the constituent can be calculated by using

the argument number of any constituent of the group.

To calculate s, h, p, N and p, at the moon’s lower transit, these
parameters are first calculaled for 0 hour, preferably on the 3rd day of the
appropriate data set using standard formulae, then the time correction ¢,
for the moon’s lower transit is given by:

s - h

VTR (A.6)

A negative value here will indicate the time of the previous lower transit
and musl not be adjusted; s, h, p, N’ and p; can then be incremented by the
time difference ¢, to give the initial phases of H.S.W.C. constituents when
substituted in equation (A.4) for high water series §"' and nt'!’. The origin
is fixed at the aslronomical high water occurring at time ¢, and for low water
series, 8" and n'™, at the low water which follows {,. But observed and
astronomical lides are not in phase, therefore the above initial phases are
applied to the nearesl observed high water time (, such that:

¢, t,. = Iisa minimum, (A7)
€
- 0
where t, =1 +—
0o

Here ¢, is the phase lag on the astronomical tide and o is the speed of M,
used in basic predictions.

Equation (A.6) shows that when h is greater than s, ¢, will be negative,
therefore if s, h, p, N” and p, are for the 0 hour of the first day of the span
of data then ¢, will be out of the time scale of data. To avoid this, initially,
s, b, p, N and p; must be calculated for the 0 hour of the third day from
the start of data.

Now the equation (A1) can bhe written as :

5 = \T (A, cosw, 1, + By sinw, 1)+ n(r;) (A.9)

where Ae = Hcos (e mx) (A.10)
B, = — H,sin(W, —x,) |

The H.S.W.C. constituents can be oblained by solving the redundant system

(A.9) for A’s and B’s by the least squares technique so that the noise effect

is minimal. The whole technique of analysis is summed up in the following

algorithm:
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Algorithm for the H.S.W.C. Analysis

(1) Tabulate observed times and heights of turning points.

(2) Analyse the hourly heights for the basic constituents.

(3) Compute the basic predictions for turning points from the constituents
(obtained in step 2).

(4) Form the difference series of times and heights by subtracting the
basic predictions (step 3) from the observations (step 1).

(5) Separate the difference series into four series of (a) high water heights,
(b) low water heights, (¢) high water times and (d) low water times.

(6) Compute s, h, p, N and p, for 0 hour of day 3 of the observalions.

(7) Calculate the time correction {, of moon’s lower transit which is given

by:
Y s h

T 4290

(8) Correel s, h, p, N” and p,, (step 6) for time {, and use these values in
equation (A.4) lo gel initial phases.
(9) Compute the time of the nearest high water as:
€
=1, + -0
9

t

p
and fix the origin at observed high water time ¢, such that [ty — &.]
is a minimum.

Initial phases obtained in step 8 correspond to this origin.

(10)  Compute A’s and B’s unknown parameters, from equation (A.9) using
the least squares technique, and obtain H's and x’s from (A.10).
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