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ABSTRACT

T id a l research has had a long history, but the outstanding problem s 
still defeat current research techniques, includ ing large-scale com putation. 
The de fin ition  o f the tide-generating potentia l, basic to all research, is 
rev iew ed  in m odern terms. M odern usage in analysis introduces the concept 
o f  tida l ‘ adm ittance ’ functions, though lim ited  to rather narrow  frequency 
bands. A  ‘ rad iational potential ’ has also been found useful in defin ing the 
parts o f tidal signals which are due d irectly  or ind irectly  to solar radiation.

Lap lace ’s tidal equations ( l t e ) om it severa l terms from  the fu ll dyna
m ical equations, including the vertical acceleration. Controversies about 
the ju stifica tion  fo r l t e  have been fa ir ly  w e ll settled by  M tt.e s ’ (1974) 
dem onstration that, when regarded as the low est order in ternal w ave m ode 
in a stratified  flu id, solutions of the fu ll equations do converge to those o f 
l t e . Solutions in basins o f  simple geom etry are review ed and distinguished 
from  attem pts, m ain ly by P r o u d m a n , to solve for the real oceans by 
division  in to elem entary strips, and from  localized syntheses as Used  
by M u n k  fo r  the tides off California.

Th e m odern computer seemed to provide a ‘ breakthrough ’ in  solving 
l t e  fo r the w orld ’s oceans, but the results o f independent w orkers differ, 
m ostly  because o f the inadequacy in their treatm ent o f fr ic tion  and fo r  the 
elastic y ie ld in g  o f the Earth. The d ifference between estim ates o f the rate 
o f w ork in g  o f the Moon on the tides, about 3.5 X  1012 W , and o f the power 
loss in shallow  seas, about 1.7 X  1012 W , m arks a serious unidentified  sink 
o f energy. Conversion to internal tides has been suggested as a sink, but 
calculations are at present inconclusive.

Com puted models o f the global tides do, how ever, agree w e ll w ith  recent 
estimates o f  the M oon’s deceleration in longitude. Calculations based on



such astronom ical measures suggest an even higher figu re fo r the rate o f 
w ork ing , 4.3 X  1012 W . Th is  is considerably greater than the figu re o f 
2.7 X  1012 W  accepted until about 1970, thus accentuating the problem  of 
the m issing energy sink.

Future progress w ill requ ire m ore extensive program m es o f pelagic 
tidal m easurement. Th e technology fo r this is w ell developed but slow. 
A lt im e try  o f  the sea surface from  satellites could provide the much needed 
g lobal coverage i f  p roperly  backed up by  high-precision tracking o f the 
instrum ented satellite.

1. HISTORICAL RETROSPECT

T id a l science as a branch o f dynam ical oceanography began w iln  the 
w ork  o f L a p l a c e  (1775), w h ich  he later sum m arized w ith  subsequent w ork  
in his M écanique Celeste (1824). O f course, the foundations o f the subject 
in gravita tional theory go back still fu rther to N e w t o n ’ s P r in c ip in  (1687), 
w h ich  inspired several extensive series o f  tida l measurements and their 
corre lation  w ith  lunar m otions ( D e a c o n , 1970, C a r t w r i g h t , 1972). It  is 
th erefore a science o f venerable age, as was recognized by the IA PS O  (*) 
w hen  their ‘ Com m ittee on T ides ’ , under the late P ro fessor P r o u d m a n  o f 
L ive rp oo l, com piled a com plete b ib liography o f tidal publications from  1665 
to 1939, a w ork  w hich has since been updated to 1969 (IA P O  1955, 1957, 
1971). T h is  com pilation  reveals the fo llow in g  counts o f publications over 
50 year in terva ls since 1670 :

1670-1719 1720-1769 1770-1819 1820-1869 1870-1919 1920-1969

27 29 37 262 1 121 2 100

Thus, fo r  a fa ir ly  un iform  subject m atter, the quantity o f research lias 
been vigorously, i f  not exponentially, rising fo r  the last 150 years. To  be 
fa ir, there are signs that the output fo r the next half-century w ill not exceed 
the last figu re —  the 1960 decade produced about the same number of 
papers (410) as the 1920 decade —  but ev iden tly  research in this old subject 
is still flourish ing.

T h e  above facts m ay surprise the m any educated people w ho think of 
the tides as a phenom enon o f lim ited interest whose m ysteries were largely  
resolved  in the 19th century. Such people are quick to point out that tide- 
tables, w h ich  forecast the times and heights o f H igh W a ter and L ow  W ater 
fo r  every  port and seaside pier, have been produced sa tisfactorily  fo r over 
50 years. Further, discrepancies between such tables and the observed 
phenom ena are m ore o ften  the result o f the less predictable effects o f 
w eather on the sea surface than o f errors in the form u lation  o f the astro
n om ica lly  induced tides. W h y  then should oceanographers continue to 
investigate  the m otions induced by the Moon and the Sun ?

Th e reason in b r ie f is that in terest has shifted from  the de fin ition  o f 
tides in tim e to their de fin ition  in  space. T ides are unique among natural

(* ) In ternationa ] Association  o f the Physica l Sciences o f  the Ocean, then known 
as IA PO .



physical processes in that one can predict their motions w ell in to the future 
w ith  acceptable accuracy w ithout learn ing anything about their physical 
mechanism. W hen D a r w i n  (1883-86) first form ulated the rules o f harmonic 
tide prediction  he virtua lly  produced a cook-book recipe fo r producing tide- 
tables fo r a given place w ithout requ iring any reference to Lap lace ’s tidal 
equations or any kind o f hydrodynam ical law. A ll that is needed is to 
obtain a record o f the tide at the place in question fo r a few  lunar cycles
—  typ ica lly  a year —  and extract from  this record the amplitudes and 
phases o f a number of harmonic terms at know n  lunar and solar frequen
cies. These can be extrapolated w ith  m inor adjustments fo r m any decades 
into the future. There have, o f course, been several advances in technique 
since D arw in ’ s day (sum m arized by  G o d i n , 1971) and new approaches based 
on m odern concepts o f time series analysis (M u n k  &  C a r t w r i g h t , 1966), 
but tidal prediction remains an essentially em pirical art. Th e search fo r 
im proved accuracy in the prediction o f sea level and currents has been more 
p ro fitab ly  diverted into the study o f storm  surges, a subject outside the 
scope o f this review .

But since the time o f Laplace, scientists have realized that the tides as 
a mechanical system w ill never be fundam entally understood until we can 
define spatially the great com plex o f tidal waves which oscillate over the 
w orld ’s oceans, where they are generated. The great m a jo rity  o f tidal 
records in the past have been taken at coastal ports and r iver estuaries, 
m ostly in shallow  seas where the tides are dissipated. These g ive the least 
possible in form ation  about the behaviour o f  the tides in the ocean. To  this 
day no satisfactory ‘ cotidal map ’ o f the oceans has yet been produced. 
Such a map requires a combination of exacting measurements from  the 
open sea and the solution o f a set o f partia l differentia l equations w ith 
irregu lar boundaries to satisfy the wave mechanics. The problem s involved 
have taxed m athematicians fo r over a century and are only now  beginning 
to look possible w ith the aid o f m odern oceanographic technology and large 
computers.

It is relevant to note that the very  simplest oceanic tidal problem  posed, 
and only partia lly  solved, by L a p l a c e  (1824), namely ‘ w hat waves are 
possible on a thin sheet o f flu id o f uniform  depth on a rotating sphere ? ’ 
has on ly recently been com pletely solved by  L o n g u e t -H ig g in s  (1968). Even 
the foundations o f Lap lace ’s dynam ical equations for the oceanic tides, 
which make certain  convenient but questionable approximations, were the 
subject o f renewed discussion in the 1940s ( P r o u d m a n , 1942, 1948, J e f f r e y s  
1943), and again very  recently ( M i l e s , 1974, P e k e r i s , 1975). Evidently, the 
subject is still under close scrutiny. New  developm ents and the fa ilu re o f 
old methods have caused scientists to re-exam ine the fundam entals.

By 1955, despite m any ingenious m athem atical solutions fo r  tides in 
idealized basins, P ro u d m an  chose as the title o f his presidential address to 
the IA P O  : ‘ Th e unknown tides o f the ocean ’ . Classical m athematical 
analysis seemed to have been carried as fa r as it would go in this fie ld  : a 
new approach was needed. Th is new approach came shortly afterwards 
from  the num erical techniques pioneered by H ansen  (1949) and P e k e r i s  
& D is h o n  (1961) and from  the deep-ocean pressure sensors pioneered by 
E y r i è s  et al. (1964) and S n o d g ra s s  (1968). A  new spirit o f optim ism  was



awakened in  a fie ld  which had previously lost its appeal to the younger 
researchers. The international Scientific Committee fo r  Oceanic Research 
(SCO R) set up a new  w ork ing group devoted to oceanic tides under the 
chairmanship o f W .H . M u n k  (la ter succeeded by the author). In 1966 this 
group aimed to produce defin itive global cotidal maps by about 1972.

But the good intentions proved over-optim istic. A fte r  the in itial ex
citem ent o f new results it was noticed that they were not rea lly  good enough. 
Results from  independent researchers disagreed w ith each other and w ith  
nature. New  corrections, previously ignored, were found to be im portant 
and these greatly com plicated the solution o f cotidal maps. Oceanographic 
tidal measurements have proved slow  and expensive, and their rate has 
seriously dw indled under the present econom ic stress. By 1977, the subject 
has returned to a state o f uncertainty, awaiting new  ideas. The situation 
is ideal fo r a review .

A lthough m ost o f the developments reviewed here w ill be recent ones, 
it is inevitable w ith  a subject o f this age to include some discussion o f 
older, w ell-tried material. Th is is necessary as a foundation fo r  the later 
w ork, and as an introduction to the m ajo rity  o f readers who are not actively  
concerned w ith the subject.

2. THE TIDE-GENERATING POTENTIAL

The potential o f the tide-raising forces on the Earth ’s surface due to 
the Sun or the Moon is fundam ental to all tidal studies. It may be defined 
as :

V =  "fM/r -  yM/d (2.1)

w here y  is the gravitational constant, M  is the mass o f the celestial body 
B, r  is the distance o f its centre of gravity  from  a given point P on the 
E a rth ’s surface, and d is the corresponding distance BC from  the Earth ’s 
centre (figu re  1).

Fig. 1. —  Karth, centre C, North  pole N. Moon or Sun at B, distance d from  C, at zenith 
angle a. re la tive  to po in t P on Earth’ s surface.

The first term  in (2.1) is sim ply the (negative) potential o f the N ew ton 
ian attraction at distance r and the second term is a convenient arb itrary



constant in  space. The vector tide-raising force per unit mass acting at P  
is given by  the spatial gradient o f V, but we do not need to expound its 
w ell-know n properties here since all useful results m ay be expressed m ore 
sim ply in term s o f the scalar V. It suffices to say that the com ponent o f  the 
tide-ra ising force which is effective in accelerating the w ater mass is that 
tangentia l to the Earth ’ s surface : the vertica l component is neglig ib le 
com pared w ith  the E arth ’s own vertica l gravita tional forces.

Equation  (2.1) is the negative o f the strictly  physical potential, and is 
taken so conventionally  because a positive increm ent in VT is balanced by a 
positive rise in  the w ater level at P to retain  an equ ipotential surface. Th e 
potential due to the cen trifuga l force o f the Earth ’ s rotation :

w here r„ is the normal from  P  to the E arth ’s axis NC and H is the rate o f 
rotation, is m erely additive to V. Being independent o f the position o f B it 
does not cause a tide but a constant equatorial bulge in the shape o f the 
Earth. (A  m inor exception is the ‘pole tid e ’, caused by the variation  in 
Ve due to the Chandler m otion o f the position  o f N, o f 1.2 y r period ic ity ).

T rea tin g  the Earth as a sphere o f radius a (corrections fo r  a spheroid 
can be made, but they are not im portan t), (2.1) can be expanded in term s 
o f a, the zenith angle o f the body B :

Here g  is the gravitational acceleration at P, E  is the E arth ’s mass, £ =  a/r 
is the body ’s equatorial parallax, and P „ ( c o s a )  are the Legendre polyno-

The firs t term  in (2.2) corresponds to a constant force para lle l to CB : 
it is balanced by the orbital accelerations and has no tida l interest. Th e 
second term  is the principal part o f the tide-generating potentia l, geom et
rica lly  a sym m etrical oval w ith  m ajor axis along CB. Since £ is about 
1/60 fo r  the Moon, the term  in  P 3 is considerab ly sm aller than the p rin 
cipal term , but its presence can be detected in the oceanic tides. Th e 
principal tidal term  fo r the Sun is, on average, 0.45 times that o f the 
Moon, but having £ o f the order o f 10~4, its P :i term  is quite negligib le.

F rom  the spherical triangle N PB ', w h ere B ' is the sub-lunar point, we 
m ay m ore conveniently express a  in term s o f N P  =  6 =  the co-latitude of 
the pi ace P, N B ' =  D =  the co-declination o f the body, and the angle :

w here X is the East longitude o f P, R  is the R ight Ascension o f the body, 
h  is the mean longitude o f the Sun, and t is Greenwich Mean T im e  in days. 
W e  shall restrict our attention to the principal tidal term  in vo lv ing  P 2 
(cos a ) and express the “ equ il ib r ium  tide ” C =  Cs +  & +  -  =  v/g  in term s 
o f the un-norm alized spherical harm onics P „ m ( 9) exp (im  \), w here :

V =  ga(M/E) [£2 cos a +  P 2{cos a )  +  Ç*P 3(cos a ) +  0 (£ 5) ]  (2.2)

m ials :
P 2(pi) =-^-(3/12 -  1) = — (5/i3 -  3m)

W e  obtain for the principal term  o f the equ ilibrium  tide :
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^2 =  A 2° ( t ) P 20(e )  +  X  [A 2m ( t )  P 2m (6)  cos m\ +  B2m ( t )  P 2m (6 ) sin mX] (2.3)

A 2° ( t )  =  a (M/E) k2° Z3P 2° ( D )

A 2m ( t )  4- iB 2m ( t )  =  a (M /E )k2m (  -  1 ) m £3P 2m(D )  exp [im {R  -  h -  2nt)] (2.4)

and A;,"1 is a sim ple norm alizing param eter (note that M u n k  & C a r t w r i g h t  
(1966) and w orks stem m ing from  that paper use a m ore sophisticated nor
m alization  than that im plied  by (2 .3 )).

Equation  (2.3) separates the tim e variables from  the geographical 
coordinates. Equation  (2.4) defines the three ‘species’ o f time variab le 
( A , B ) 2m. Species m =  0 varies w ith  the m onth ly or yea rly  frequencies o f 
£ and D  m ultip les thereof, causing the ‘ lo n g -p e r io d ’ tides. Species m =  1, 2 
vary  p rim arily  at a ‘ca rrier ’ frequency near m  cycles per day w ith  low- 
frequ ency  m odu lation  from  £ and D, causing the ‘d iu rna l’ and ‘sem i
d iu rna l’ tides respectively.

Th e functions *4, B are used in tw o d ifferent ways. In the first way, 
they are com puted d irectly  from  (2.4) as arb itrary  functions o f tim e t fo r 
d irect corre lation  w ith  tidal measurements. The position o f the celestial 
body is com puted w ith  respect to the ecliptic from  standard orbital fo r 
m ulae and these are sim ply transform ed to g, D  and R. Thus in the case 
o f  the Sun, i f  we ignore p lanetary and other very  m inor perturbations, the 
ecliptic longitude p and parallax £ are defined by :

w here e is the eccentric ity  o f the Earth ’ s orbit, p '  is the longitude o f peri
helion, and f  =  8".794 is the Sun’s mean parallax, h and p '  are defined 
from  astronom ical ephem erides as nearly linear functions of tim e w ith  
very  sm all accelerative terms, c and e (the ob liqu ity o f the ecliptic) are 
nearly  constant numbers w ith  slow  secular trends. The Sun’s declination D 
and right ascension R  are then derived from  (2.5) by the equations :

sin D  =  sin p sin e cos D  cos R  =  cos p cos D  sin R =  sin p cos e (2.6)

and the results used in (2.4).

Th e case o f the Moon is m ore com plicated because it has a non-trivial 
latitude variation  about the ecliptic, w hich involves the longitudes o f the 
node n, and also a num ber o f orb ita l terms depending on the position of the 
Sun. Besides n, we have tw o additional secular variables, the mean longi
tude o f the Moon, s, and the mean longitude o f perigee, p. These are best 
grouped in term s o f B r o w n ’ s variables Q l =  s  —  p, Q 2 =  h —  p', Q3 =  
s —  n, Q 4 =  s — h. The M oon ’s parallax, longitude and latitude are all 
expressed in the fo rm  :

m=  1
here

p =  h +  2e sin ( h -  p ’)  H----e2 sin 2 ( h  — p1)  +  . . .
4 (2.5)

£ =  % [1 +  e cos (h — p ' )  +  e2 cos 2 (h — p )  +  . . .]

(2.7)



w here M / l> are sets o f sm all integers including 0, and R t are amplitudes 
derived  from  the tables o f  B r o w n  (1919) or as re-com puted by E c k e r t  et al 
(1954). Para llax  (cos) and longitude (s in ) use the same secular argum ents : 
latitude (sin ) use other sets M / l>. D  and R  are fin a lly  computed from  fo r 
m ulae sim ilar to (2.6) but w ith  term s in vo lv in g  the M oon ’s latitude.

M odern tidal w orkers d iffer in the number o f terms used in (2.7) and 
hence in the accuracy o f their ephem erides. One certa in ly does not need 
the several thousand terms which are used fo r astronom ical work. L o n g 
m a n  (1959) used on ly 4 harm onic argum ents. M u n k  &  C a r t w r i g h t  (1966) 
used 7, derived from  an older expansion than B r o w n ' s . Th e author, as 
described in C a r t w r i g h t  & T a y l e r  (1971), currently uses about 110 argu
ments fo r  the Moon, giving an accuracy o f about 10-5  in units o f radians 
or mean parallax. Such accuracy is better than necessary fo r most pu r
poses. F o r  ord inary analysis o f tidal data, about ten term s in parallax and 
longitude and six in latitude give good results.

Th e second and older method o f re fe rr in g  to the equ ilibrium  tide (2.3) 
is in the form  o f a harm onic expansion fo r A nm(t ) .  (Th e harm onic expan
sion fo r B nm(t )  is identical except fo r a Jvr phase change). Th e firs t thorough 
harm onic series was produced by D o o d s o n  (1921), w ho used algebraic 
expansions based on B r o w n ’s (1919) series (2.7). C a r t w r i g h t  & T a y l e r  
(1971) and C a r t w r i g h t  & E d d e n  (1973) re-computed them  w ith  m odern 
astronom ical constants and greater accuracy, using spectral analysis o f 
tim e series o f The results are o f the form  :

w here are tabulated amplitudes, N / ‘> are sets o f sm all integers, and Sj 
are the six secular argum ents (2-rrt —  77- +  /1 —  s), s, h, p, — n, p ' respec
tively . These six arguments increase alm ost linearly in tim e and com plete 
one cycle in a lunar day, a sidereal month, a trop ica l year, 8.85 yr, 
18.61 yr and 21 X  103 yr respectively.

The frequencies o f the summed argum ents in (2.8) are conveniently 
arranged in a hierarchy, depending on the fineness o f  splitting. A ll terms 
w ith  the saine value o f A’, constitute a ‘species’ : the species are separated 
from  each other by about one cycle per lunar day. Term s w ith  the same

AV) constitute a group ’ : the groups are separated by one cycle per 
month. S im ilarly, (Ar, N 3, N :t) fo rm  a ‘constituent’ at one cycle per year 
separation. Because o f the im portance o f B r o w n ’s argum ent Q x, all terms 
o f a given  constituent conventionally  have the same value o f A7+ also. N on 
zero values o f AT3 supply ‘nodal m odu la tion ’ to a constituent. Non-zero 
A76 effectively  im plies a nearly constant phase shift.

As w ith  the harm onic expansion of the lunar orbit, some hundred terms 
in  (2.8) are necessary to define the poten tia l to, say, 1 %  accuracy, but a 
fewr term s have dom inantly  large am plitudes. These have been allocated 
sym bols (orig in a lly  by D arw in ) w hich are frequently  used in tidal litera
ture. Th e fo llow ing table lists particu lars o f the four largest terms (consti
tuents) in species 1 (d iu rnal) and 2 (sem i-d iu rnal). Species 0 (long-period ) 
constituents are not included because they  are re la tive ly  unim portant. For 
the given terms =  A’e =  0 : cor represents 277 times the listed frequency.

(2 .8 )



Darwin
symbol N ! N 2 N 3 N 4

Frequency cycles 
per solar day

Origin
Amplitude

(m )
Geodetic
factor

Q i 1 - 2 0 1 0.8932441 Moon 0.01293
1 - 1 0  0 0.9295357 Moon 0.06752 P2 \ e )

P i 1 1 - 2  0 0.9972621 Sun 0.03142 sin (c j j  t + X)
1 1 0  0 1.0027379 Both 0.09497

n 2 2 - 1 0 1 1.8959820 Moon 0.01558
M , 2 0 0 0 1.9322736 Moon 0.08136 P 22 {6)
s2 2 2 - 2  0 2.0000000 Sun 0.03785 COS <Cd2 t + 2\)
k 2 2 2 0 0 2.0054758 Both 0.01030

As pointed out by C a r t w r i g h t  &  T a y l e k  (1971), the amplitudes of 
the tidal harm onic expansion are not constant on a long tim e scale but have 
secular trends o f the order o f  10-4  per century, due principa lly  to the trend 
in ob liqu ity  e. The 'frequencies ’ o f coursc also vary  slow ly w ith the secular 
accelerations o f the M oon ’ s elements, ow ing to p lanetary perturbations and 
tidal friction .

3. O C E A N I C  A D M I T T A N C E S

W e  need to know  the response o f  the ocean to the tide-generating 
potential. Since the latter is conven iently  expanded in a series o f low- 
order spherical harm onics (2.3) it suffices to investigate the response to 
these spatial harmonics ind ividually. Such a response is a function o f 
tim e and position. In this section I shall outline the nature o f the response 
in tim e at a given  position on the globe. Th is sort o f response is naturally 
determ ined by time series analysis o f tidal records, and in fact has rarely 
been treated by analytica l m athematics, w hich are usually fo r convenience 
restricted to a single periodic term  such as the M., harmonic constituent.

Th e oceanic tidal response is strongly linear. Th is  is evident from  
hydrodynam ic considerations (§ 4) and can be easily dem onstrated by the 
fact that the spectra o f tidal records from  places near the deep ocean 
contain strong lines at the m ajor harm onic frequencies present in the 
potential (figu re  2) and almost neglig ib le energy at m ultiples o f those 
frequencies. Non-linear effects do becom e evident in shallow  seas and these 
are im portan t in com puting tide predictions for coastal and estuarial ports. 
H ow ever, they have little  in fluence on the global mechanics o f the oceanic 
tides and w ill be neglected in this review , except in considering the nature 
o f the fr ic tion a l forces (§ 5).

W e  expect a relationship o f the fo rm  :

f ( f ) = R e ^  [ A ( t  — r ) +  iB (t  — T ) ] R ( r ) d r  (3.1)

w here £ is the elevation o f the sea surface above its mean level at a given 
place, A, B  are the tim e-dependent parts o f the potential (or equilibrium  
tide (2 .4 )) fo r a particular spherical harmonic, and R is a response function 
characteristic o f the ocean dynam ics. I have om itted the suffices m, n fo r  
convenience. Or equ ivalently, i f  H( f )  and G( f )  are the com plex ‘spectra’ o f 
£ and .4 respectively in the dom ain o f frequency f, we expect :

HQ )  =  Z ( f ) G ( f )  (3.2)



w here Z ( f )  is the com plex ‘adm ittance’ o f the ocean to the equ ilibrium  
tide, being the Fou rier transform  o f R ( t ) .

cycles/day

Fin. 2. —  Spectroscopy o f principal part o f  g ra v ita tion a l potential (top ) and o f 18 years ’ 
sea leve l at Honolulu. Black portions o f panels 2 and 3 denote part o f  spectrum coherent 
w ith  potentia l, wh ite portions incoherent part. The low est panels represent the corres

ponding adm ittance, spot estim ates and smoothed estim ates 
(from  M u n k  & C a r t w r i g h t  1966).

A  complete defin ition  o f the response function R ( t ) would tell us a lot 
about oceanic behaviour, but it is im possible to determ ine this function  
from  analysis o f the tides alone. It w ould be equivalent to -determining the 
adm ittance Z  at all frequencies : this is clearly im possible since any one 
tidal species occupies on ly a narrow  band o f frequencies, a few  cycles per 
m onth wide. It is tem pting to evaluate Z ( f ) for a number o f tidal species, 
say diurnal ( f  ~  1) and sem i-diurnal (/ ~  2), and interpolate between them  
to obtain w ider coverage o f Z ( f ) .  T h is  has occasionally been done fo r  
rough illustrative purposes, using the geodetic factors as a sort o f norm al
ization (e.g. W u n s c h , 1972), but the procedure is invalid  because the 
spherical harmonics associated w ith  the two species are different, w ith  
d ifferent associated adm ittance functions. Nevertheless, it is useful to know



what these adm ittances are like, even w ith in  the narrow  band o f each tidal 
species. A re  they nearly  constant, sm oothly vary ing  or sharply peaked ?

F igu re 2 shows a direct spectral comparison between the diurnal tide 
at Honolulu  and the corresponding potential function  A 21(t ) ,  evaluated by 
M u n k  and C a r t w r i g h t  (1966) —  one o f many sim ilar analyses w hich have 
since been carried out fo r  other places. The top panel shows a spectrum 
G (f ) at 1 cyc le per year resolution, computed as a Fourier transform  o f 
A aKf) for a span o f tim e simultaneous w ith  the sea-level data. The 
‘groups’ o f tida l constituents described in § 2 are obvious. Th e second panel 
shows the spectrum H( f )  o f £(/) —  top level o f each small colum n —  and 
also that part o f £(/) which is ‘coherent’ w ith  A.^ it)  in the statistical sense
—  lower, black level. The third panel shows the same data as the second 
but w ith the ‘incoherent’ (w h ite ) portion o f //(/) underneath. The d iffe r
ences between the white and biack levels (logarithm ic scale) show the 
im portant fact, still ignored by m any tidal analysts, o f a noise continuum 
in the sea-level spectrum, fillin g  the gaps between the tidal groups and 
setting a lim it to the reso lvab ility  o f the w eaker constituents. It is the 
continuum  w hich prevents us getting any m ore in form ation  outside the 
frequency range between groups (1 ±  4) shown in the figure, although the 
d iurnal potentia l contains w eak spectral energy outside this range. The 
continuum  level rises at low er frequencies, as in most geophysical pro
cesses. Th e long-period tides are therefore alm ost com pletely swamped 
by it, unless records o f very  long duration are analysed or special techniques 
are em ployed to reduce the noise level ( W it n s c h , 1967 ; C a r t w r i g h t , 1968).

T h e  low est  tw o  pane ls  o f  f igu re  2 sh ow  the estimates o f  Z ( f )  derived  
f r o m  the spectra l analysis, f irst ly  as real and im a g in a ry  parts, an d  secondly  
as am p litude  ratio  J Z  | an d  phase  lead a rg  ( Z ). Evidently , the function  
is not constant, bu t  neither does it sh o w  any  detailed structure w ith in  the 
given f req u en cy  band . It is best described as ‘sm ooth ly  v a r ia b le ’. Most  
t idal adm ittances w h ich  have  been evaluated cou ld  be s im ila r ly  described,  
a lth ough  som e  sh ow  a s ingle  peak  o r  t rough  in | Z  |, suggesting a b road  
resonance  o r  an t i-resonance  o f  a pa rt icu la r  ocean basin . T h is  is interesting, 
because  ca lcu lat ions  of n o rm a l  w a v e  modes on a rotating  sphere  ( L o n g u e t -  
H igg in s ,  1968) or realistic ocean (P la t z m a n ,  1975) sh o w  a dense range  of  
such m odes  at frequenc ies  occupied  by  the t idal bands . These  should  p ro 
duce a co r re sp on d in g  n u m b e r  o f  peaks in adm ittance  functions, w ith  rap id  
changes  in phase, p rov ided  the ‘Q fa c to r ’ is h igh  enough. T h e  fact that 
such peaks  a re  not in genera ] observed suggests that the oceanic Q must  
be ra ther  lo w  and  d iss ipation  re lative ly  h igh  ( G a r r e t t  & M unk , 1971). On  
the other han d ,  W e b b  (1973 a ) has identified a very  n a r r o w  peak  w ith  
associated phase  change at Cairns, N E  A u stra l ia ,  indicating a rather  
l igh t ly  d a m p e d  resonance o f  the Cora l Sea (see also M c M u r t r e i :  & W e b b ,  
1975). T h e  m ost fam ou s  tidal resonance, in the B a y  o f  F u n d y ,  N o va  
Scotia, w h ic h  p roduces  the largest recorded tidal am plitudes  in the world ,  
has a m u ch  b ro a d e r  adm ittance  peak, affecting the w ho le  sem i-d iu rn a l  spe
cies. T h is  appears  to be a com binat ion  o f  a genera l  m agn if icat ion  of the 
sem i-d iu rn a l  tides in the N o r th  Atlantic  O cean  an d  m ore local resonances  
invo lv ing  the G u l f  o f M a in e  an d  the B a y  itself ( G a r r e t t ,  1973 ; H eaps  & 
G r e e n b e r g ,  1974). C a r t w r i g h t  (1971) has identified an anti-resonance



o f the diurnal tides in the southwest A tlantic, bringing the adm ittance 
am plitude to zero near the frequency o f at Simons Bay.

CYCLES PER DAY

Fie,. Log am plitudes and phases o f  adm ittances (C<t) diurnal tides, (b )  sem i-d iurnal
tides) at four w id e ly  spaced locations in the B ritish  Isles; Lerw ick  (Shetland), S tornow ay 
(L ew is ), Malin Head (E ire) and Scilly  Isless (C orn w a ll). A rrow s denote the frequencies

of the principal harm onic constituents.

Figure 3 gives an impression of how  little the adm ittance function 
varies in character over a distance o f the order o f 1 000 km. The natural 
logarithm  of Z  is drawn fo r diurnal and sem i-diurnal tides fo r four places 
on the oceanic coast o f the UK, from  St M ary ’s, Scilly Isles to Lerw ick , 
Shetland. In Z  =  In | Z  j -f- i arg ( Z )  has the characteristic that a general 
m agnification  or change of phase lead over the whole tidal species m erely 
shifts the curves representing the real and im aginary parts up or down, 
w ithout altering their general shape. In fact, one sees that the shapes 
are rem arkably sim ilar at the four places. Th is applies to the tides o f the 
w hole o f the northwest European seaboard, when allowances are made fo r 
non-linear effects induced by shallow water.

One unusual characteristic shown in figure 3 is the pronounced nega
tive slope o f diurnal phase lead, nearly 2tt across the species bandwidth. 
Th is phenomenon is observed over the northeastern Atlantic from  the 
Azores to the Faeroes, but vanishes on the North Am erican coast. It has 
never been physically explained. A less pronounced phase slope is com m on 
in the semi-diurnal tides throughout the world with some exceptions, and 
is responsible fo r the long-observed phenomenon o f tidal ‘age’ whereby the 
spring tides lag the times o f Fu ll and N ew  Moon by a day or so, due to 
the difference in phase o f M 2 and S2. T id a l age is now firm ly  attributed to 
the effect o f tidal friction  ( P r o u i i m a n , 1941 ; G a r r e t t  & M u n k , 1971 ; 
W e b b , 1973 b) but the mechanism w hereby it is produced is too complicated 
fo r  a simple heuristic explanation.

On a more technical level, there is some interest in methods of trans



fo rm ing a band-lim ited tidal adm ittance function as discussed above into a 
tim e relation between £ (0  and A (/), B (t ) .  A lthough w e cannot fu lly  define 
a response function R ( t )  as it appears in (3.1), there are various ways of 
defin ing a fin ite  series o f terms like :

K

f ( 0 =  X  wkLk [A{t) +  if i (r )] (3.3)
fc=o

w here L k is a series o f simple linear operators and wk is a set o f complex 
‘w eights ’ , whose Fourier transform  fits the adm ittance (3.2) optim ally 
w ith in  its valid band o f  frequencies. M u n k  & Ca r t w r i g h t  (1966) used a 
series o f tim e-lagged terms :

L k [ C ( t ) ] = C ( t  k A t )

w ith  A t  =  2 days, equ ivalent to fittin g  a r  oui ici series to Z ( f )  o f period
icity  0.5 cycles per day in frequency. Z e t l e r  & M u n k  (1975) have im 
proved on this slightly by w ritin g  the right-hand side as C ( t — T  —  kAr ) ,  
w here T  is the tidal ‘age’ appropriate to the species. W eb b  (1974) pro
posed :

£ ki c ( 0 ]  =  exp ( i0Jmt )  (  -  id/dt)k [exp (  -  icomt) C * ( t ) ]

equivalent to a simple power series developm ent o f Z ( f )  about a central 
frequency / =  œm/‘2ir. Yet another scheme has been proposed by G r o v e s  
& R e y n o l d s  (1975), in which L k is a sequence o f specially constructed 
orthogonal functions o f time, called by the authors ‘ orthotides ’ . Their 
advantage is that their associated ‘ orthoweights ’ wk are, unlike in the 
other schemes mentioned, num erically stable, w ith  a tendency to dim inish 
in magnitude as k  is increased.

3.1 Radiational tides

W hen admittances to the gravitational tide-generating potential are 
evaluated from  a set o f tidal data, it is generally found that a sm all but 
defin ite anom aly appears at the frequencies o f the solar tides, near 1 and 
2 cycles per solar day and at 1 cycle per year. These anomalies have been 
known fo r many years to tidal analysts and generally  ascribed to ‘ m eteoro
logical effects ’ w ithout inspiring much curiosity. Now  the tides in the 
atm osphere are almost en tire ly  at the solar frequencies, due to the thermal 
effect o f rad iation  (C h a p m a n  & L i n d z e n , 1970). The lunar atm ospheric tides 
are extrem ely small in com parison w ith the solar, showing that the gravi
tational tidal forces are ineffective : part o f  the lunar tide is even derived 
from  coupling w ith the ocean ( H o l l i n g s w o r t h , 1971). M u n k  & C a r t 
w r i g h t  (1966) postulated that the solar anomalies in the ocean were also 
the result o f solar radiation, w ithout specify ing the precise physical mechan
ism. There are various possible mechanisms : direct radiation pressure 
(sm all), d irect surface heating and cooling, and onshore w inds caused 
by heating and cooling o f  coastal land, coupling w ith  the atm ospheric tide 
through surface pressure. In order to deal w ith  any of these in a general 
w ay, M u n k  defined a ‘ radiational potential ’, whose gradient equals the 
amount o f  radiation received per unit area at a given point o f the Earth ’s 
surface, neglecting transient atm ospheric losses. Thus :



cos a (0 <  a <  V* n, day)
£/(0, X, 0 =  (3.4)

( 0 (½ it <  a <  n, night)

w here S is the solar constant, taken as unity fo r convenience, g is the Sun’ s 
parallax and £ its mean value, and a  is the zenith angle o f the Sun at the 
point P as in  figu re 1.

U  m ay be expanded in  spherical harm onics as was the gravita tional 
potentia l in § 2. Th e principal features are the appearance o f harm onics 
P|°, P ^  ow ing to the asym m etry o f the function  (3.4), and the slow  conver
gence o f the harm onics o f degree 2, 4, 6, ... ow ing to the night-tim e cutoff. 
Th e zonal harm onic P / ’ has a strong annual term , otherw ise w eak ly  repre
sented in the gravitational tide. Th is provides what is m ore usually called 
the ‘ seasonal variation  in mean sea level whose g lobal distribution was 
intensively studied by P a t u l l o  et al. (1955). Its physical cause is certa in ly 
a com bination o f the last three o f the fou r mechanisms m entioned earlier, 
in com parable proportions.

The I V  term, proportional to eu cos 8 (0 is the latitude, \ is the longi
tude) provides a term  o f solar da ily  period which is again very  w eakly 
represented in the gravitational tide. Th e terms P 3°, P 2\ P ,,2 are s im ilar to 
the corresponding gravitational terms but m ay be distinguished from  them 
in the oceanic tide by the fact that they lack contributions from  the Moon 
at their respective frequencies, especia lly in the harm onic constituents K ! 
and K 2. Th e fu ll harm onic developm ent o f all the leading terms in the 
radiational potential has been tabulated by C a r t w r i g h t  & T a y l k r  (1971).

Analyses o f tidal records em p loy ing both gravitational and radiational 
tidal potentials ( (2.2) and (3.4) ) by C a r t w r i g h t  (1968), Z e t l k r  (1971) and 
C a r t w r i g h t  & E d d e n  (1977) strongly suggest that the m ajor com ponent of 
the radiational anom aly is fo rc ing  from  the atm ospheric tide. In the first 
place, the diurnal anom aly (S ^  is a lw ays much w eaker than the sem i
diurnal (S2). Th is m ay sound strange for a response to the diurnal radiation 
pattern, but it is a w ell-know n feature o f the tide in the surface atm ospheric 
pressure. As explained by Chapman & L in d z e n  (1970), the tide in the upper 
atm osphere is indeed prin c ipa lly  d iurnal w ith  h igher harmonics, but the 
vertical w ave form  is such that at ground level the diurnal com ponent is 
suppressed and the first harm onic (S2) predom inates. In the ocean the 
am plitude o f S, is typ ica lly  10 mm or so (and in some cases could be 
partia lly  attributed to a diurnal defect in  the recording m echanism  o f the 
conventional tide gauge), w hile that o f S2 is about 17 % o f the gravitational 
S2 component, typ ica lly  50-100 mm.

Another feature o f the S2 rad iational tide supporting its derivation  
from  the atm osphere is the fact that its phase tends to lead that o f  the gra
vita tional S3 component by an angle near 240°. Th is tallies w ith  the w ell- 
known property o f the sem i-diurnal atm ospheric tide, that its m in im um  
(corresponding to a positive static rise in sea leve l) occurs at about 4 o ’clock, 
local time, everyw here on the globe. H ow ever, since the am plitude o f the 
atm ospheric tide is on ly o f the order o f 1 mbar, corresponding statistica lly 
to about a 10 mm rise in sea level, the dynam ics o f the transfer m echanism  
cannot be said to be properly  understood.



4. LA P LA C E ’S TID A L EQUATIONS AND SOLUTIONS 
FOR IDEALIZED GEOMETRY

W e  now have to consider the dynamical equations on which so much 
analytical tidal work has been based over the past 150 years. Laplace’s 
equations for continuity and momentum are physically plausible and have 
been verified in several limited seas. However, they do not perfectly repre
sent the mechanical system. The neglected terms are small, but it is not 
at all obvious at what stage of solution of the complete equations they 
should be set equal to zero, when oceans of global dimensions are consider
ed. Scepticism was first raised by B j e r k n e s  et al. (1933), who pointed out 
that in neglecting vertical acceleration, Laplace’s equations did not permit 
vertical cellular motions which could he important features of tidal motion 
at certain critical latitudes, especially for the diurnal tides in the atmos
phere. There followed a period of controversy in which the principal defen
der of the conventional approximations was P r o u d m a n  (1942). He showed 
that in certain spherical basins for which simple solutions to both the 
‘ complete ’ and Laplace’s equations were possible, Laplace’s equations gave 
a very good approximation everywhere except near the poles for the Iv., 
constituent and near the equator for long-period tides. Later, following 
some work of H y l l k r a a s  (1939), P r o u d m a n  (1948) showed that when den
sity stratification is allowed for, even these restrictions are removed. Most 
recently, the limiting processes in ignoring vertical acceleration and other 
terms in Laplace’s equations have been rigorously analysed by M i l e s  (1974), 
who arrived at a justification which, when expressed in simple terms, is 
fairly similar to that of P r o u d m a n  (1948).

In this review it would be impossible to give an adequate account of 
M i l e s ’ analysis, but it is appropriate to point out the ways in which 
Laplace’s equations differ from a complete mechanical description and 
under what circumstances the relevant terms may be justifiably neglected. 
W e take fixed local coordinates (x, y, z) in the south, east and vertically 
upwards directions respectively, and corresponding velocity components 
(u, v, w). Let also v denote the two-dimensional horizontal vector with 
components (u, v) and £ the elevation of the surface above its mean level 
z =  0. W e assume the bottom, z  =  —  h(x, y ), to be fixed at this stage ; the 
elastic yielding of the Earth will be considered in g 6.1.

In the first place, we ignore products of the variables, such as occur in 
the distinction between Eulerian acceleration dv/dt  and the particle accel
eration D r /D t =  dv/dt -)- v grad . v ; we also ignore horizontal viscosity. 
Both may be shown to be very small in comparison with the leading terms 
in the oceanic tides, and moreover they do not radically alter the character 
of the motion. Vertical viscosity vd2u>/dz2 may enter the equations when 
integrated over the depth, giving a resultant horizontal stress from bottom 
friction, but even this is negligible in the main body of the ocean with which 
we are concerned at present. The equation of volume continuity is :

du/dx +  dvjdy +  d iv/dz =  — p —1 dp/dt (4.1)

where p is the density. If the fluid is taken to he homogeneous, the only



contribution to p ~ 1dp/dt  is through compressibility. This term may be 
shown to be of the order of (g h /c 2) times typical terms on the left, where 
c is the speed of sound in water (1400 km s - 1). Since h is typically 4 km, 
the factor quoted is of the order of 1 /5 0  and may be neglected because 
again it does not alter the character of the motion. Putting the right-hand 
side of (4.1) equal to zero and integrating vertically, we obtain the usual 
expression of continuity :

d(hü)/dx +  d(hv)/dy +  9 f/0 f =  0 (4.2)

where (ü, v) are the depth-averaged horizontal components of velocity.
W ith  no more than the above-mentioned restrictions the equations of 

horizontal and vertical acceleration are respectively :

d\>fdt +  2SiAt> +  2 S iA \u  =  — grad (p/p — (4.3) 

dujfot -  2SiA\> =  ( — p ~ l dp[dz — g)k  (4.4)

where S i', S i "  are the vectors representing the local vertical and horizontal 
components of the Earth’s rotation, of magnitudes fi cos 6, fl sin 0 (0 is the 
co-latitude) respectively, w, k are the vertical vectors of magnitude w, 1, 
and p is the pressure. g% is the generating potential as discussed in § 2. The 
terms involving w  and the second term of (4.4) are in general small com
pared with the leading terms and are often omitted, as they are in Laplace’ s 
equations. However, it is just these omissions which have raised scepticism.

To illustrate the difficulties, in the simplified case of periodic motions 
in constant depth h and uniform density, Laplace’s equations (4.2) and (4.9) 
reduce to a freeware equation in £ :

V2 r +  ( ^ ) - 1 (w 2 _ 4 S Y 2K =  0 (4.5)

where 2-77/oj is the period and fT  =  |Si'| =  fl  cos 0 (2Ii' is often denoted by 
the symbol f). Equation (4.5) is elliptic and has solutions which change 
character from trigonometric to exponential at the ‘ critical co-latitudes ’ 
given by cos 0 =  w /2{l  (near 3 0“ latitude for diurnal periods, near the poles 
for semi-diurnal). The full equations (4.1), (4.3) and (4.4),\however, reduce 
to an equation which is hyperbolic if co2 <  4O2, and their solutions near the 
critical latitudes do not reduce to those of (4.5) as h approaches zero. As 
P r o u d m a n  (1942) showed, the solutions of the full and the approximate 
equations approach each other uniformly only in certain zones remote from  
the critical latitudes.

By allowing for the realistic complication of density stratification the 
dilemma is resolved ( P r o u d m a n , 1948, M i l e s ,  1974). Equations (4.1), (4.3) 
and (4.4) still stand with p =  /) ( - ,  /) , and in addition we have the equation 
for mass continuity :

dp/dt — wN2p/g =  0
(4.6)

where :
N2 = ~  g p - 1 dp/dz (4 .7 )

(N is the ‘buoyancy frequency’ which is the natural frequency of internal 
oscillations of the fluid, typically about 10 times the semi-diurnal tidal 
frequency). The non-static terms in the equation for vertical motion (4.4)



are now balanced by buoyancy forces through the term p - 1. The solution 
of (4.1), (4.3), (4.4) and (4.6) allows an infinite set of wave modes with 
different vertical structure according to their mode number. The lowest 
order mode, having motion nearly uniform with respect to the vertical, is 
found to agree closely with the solution to the simplified barotropic (i.e. 
Laplace’s) equations at all latitudes. Near the critical latitudes the previous 
discrepancy is replaced by a weak coupling between the barotropic motion 
and the internal motions represented by the highest order modes.

Confidence in the traditional approximation for obtaining global tidal 
solutions is thus restored, since the ocean is always well stratified. La
place’s equations may be derived by setting p =  p, the mean density of the 
sea, assumed constant, and ignoring the term in w in (4.3) and the left-hand 
side of (4.4). Vertical integration of (4.4) then gives the ‘ hydrostatic’ 
approximation :

P =  P g ( Ç - z ) + P 0 (4.8)

where p0 is the atmospheric pressure, assumed uniform. Substituting (4.8) 
in (4.3) and again averaging in the vertical gives :

dü/dr +  2SÎA\> — — g grad (f — f )  (4.9)

Equation (4.9) combined with the continuity equation (4.2) and expressed 
if necessary in terms of co-latitude and longitude constitute Laplace’s tidal 
equations for the independent variables ü, v, £ ( P e k e r i s  (1975) has recently 
given a more formal derivation).

M u c h  m a t h e m a t i c a l  e f f o r t  w a s  d e v o t e d  f r o m  t h e  t i m e  o f  L a p l a c e  t o  
a b o u t  1950 i n  d e r i v i n g  s o l u t i o n s  f o r  t h e  t i d a l  e q u a t i o n s  i n  a n  o c e a n  o f  
u n i f o r m  d e p t h  c o v e r i n g  a  c o m p l e t e  s p h e r e  o r  s i m p l e  p o r t i o n s  o f  a  s p h e r e .  
R e v i e w s  o f  t h e  o l d e r  w o r k  m a y  b e  f o u n d  i n  L a m b  (1932) a n d  D o o d s o n  
(1958). H e r e  I o u t l i n e  o n l y  t h e  p r i n c i p a l  r e s u l t s  a s  f a r  a s  t h e y  h a v e  a  
b e a r i n g  o n  m o d e r n  w o r k .  H o u g h  (1897) i m p r o v e d  o n  L a p l a c e ’ s  m e t h o d  o f  
s o l u t i o n  f o r  a  c o m p l e t e  s p h e r e ,  a n d  s h o w e d  t h a t  t h e  f a m i l y  o f  e i g e n s o l u t i o n s  
d i v i d e s  i t s e l f  i n t o  t w o  c l a s s e s  : i ,  t h o s e  w h i c h  m e r g e  i n t o  o r d i n a r y  g r a v i t y  
w a v e s  a s  f i  t e n d s  t o  z e r o  : a n d  n ,  t h o s e  w h i c h  t e n d  t o  s t e a d y  c u r r e n t s  w i t h  
l i t t l e  a s o c i a t e d  s u r f a c e  e l e v a t i o n .  W a v e s  o f  c l a s s  i i  e x i s t  o n l y  a t  l o w  f r e 
q u e n c i e s  a n d  c o r r e s p o n d  w ' i t h  w h a t  w e  n o w  k n o w  a s  ‘ R o s s b y ’ o r  ‘p l a n e t 
a r y  w a v e s ’ , i n  w h i c h  t h e  m a i n  r e s t o r i n g  f o r c e  i s  t h e  v a r i a t i o n  o f  t h e  C o r i o -  
l i s  f o r c e  2Si'A i>  w i t h  l a t i t u d e  ( L o n g u e t - H i g g i n s , 1964). O t h e r  c l a s s  i i  
w a v e s  h a v e  s i n c e  b e e n  i d e n t i f i e d  a s  b e i n g  a s s o c i a t e d  w i t h  a b r u p t  c h a n g e s  i n  
t o p o g r a p h y  ( v a r y i n g  / i )  s u c h  a s  t h e  ‘ c o n t i n e n t a l  s h e l f  w a v e s  ’ w h i c h  h a v e  
b e e n  s h o w n  t o  e x i s t  a t  t i d a l  f r e q u e n c i e s  ( C a r t w r i g h t , 1969, H u t h n a n c e ,
1974).

The complete range of possible eigenfunctions for the spherical ocean 
was computed by L o n g u e t - H i g g i n s  (1968). Figure 4 shows a plot of the 
eigenfrequencies as a function of (gh/a2)1/2, both normalized with respect 
to 2fi (a is the radius) for spherical harmonic waves denoted by parameters 
n and s, with in this case 5 =  2. They are divided firstly into a group of 
modes travelling eastward (a), in which all waves are of class I, and those 
travelling westward (b) which are further subdivided into a highfrequen- 
cies group, again of class I, and a lower frequency group which are of



class II. A numerical value of the abscissa for typical oceanic depths is 
0.2 and the semi-diurnal tidal frequency gives about ±  1 in the ordinate. 
W e see that these values fall well within the range of normal modes, so 
it is not surprising that oceanic resonances to the tide-generating forces 
occur. L o n g u e t - H i g g in s  also identified eigensolutions corresponding to 
negative values of h. These are not possible physically as free waves, of 
course, but they would become relevant in matching a given forcing field 
with a complete set of normal modes.

F ig . 4. —  Eigenfrequencies o f  free inodes o f  oscillation on a sphere proportional to 
exp (2iX). (a) Modes travelling eastwards, (b) modes travelling westwards. In the abscissa, 
h is the uniform depth o f  the fluid in units o f  the Earth’s radius. The ordinate gives 
frequency in units of  the inertial frequency at the pole (from L onguet-H iggins 1968).

Solutions for a bounded portion of a sphere come a little nearer to 
representing the effects of the continental boundaries to the real oceans. 
The necessity to set the normal velocity to zero along the boundaries greatly 
complicates the mathematics. In an important series of papers, P r o u d m a n  
(1917, 1931) set out general theorems by which the normal modes and 
forced solutions may be calculated for oceans bounded by arbitrary coasts. 
G o l d s b r o u g h  (1927) solved for the forced K2 tidal constituent in a sea 
bounded by two meridians 60° apart, somewhat like the Atlantic Ocean. 
He found that resonance occurred at depths rather less than that of the 
actual Atlantic Ocean. P r o u d m a n  & D o o d s o n  (1936, 1938) solved for both 
the Ki and K2 tidal constituents in an ocean bounded by meridians 180” 
apart, somewhat like the Pacific. As the assumed mean depth was reduced, 
successive resonances were passed, at each of which a new node of zero 
elevation appeared in the solution, more nodes for K2 than for K ,. It is 
now known that at least 2 nodes exist in the Pacific Ocean for K, and 6 
for K ,. The complete set of normal modes for such a hemispherical ocean 
has been computed by L o n g u e t - H i g g i n s  & P o n d  (1970), in a manner similar 
to L o n g u e t - H i g g i n s ’ treatment of the spherical ocean. All these calcula-



t i o n s  c o n f i r m  t h a t  e l e v a t i o n s  t e n d  t o  b e  h i g h e s t  n e a r  t h e  b o u n d i n g  c o a s t ,  
s o m e w h a t  a f t e r  t h e  m a n n e r  o f  t h e  w e l l - k n o w n  ‘ K e l v i n  w a v e ’ i n  s i m p l e r  
g e o m e t r y .

5. TIDAL CALCULATIONS IN OCEAN OF MORE GENERAL SHAPE

Exact solutions for simple portions of a sphere aid our understanding 
of howT tides behave in the real ocean, but do no more than that. Irregular 
boundaries and depth topography greatly complicate the situation and 
require other techniques for solution. W e should distinguish here between 
oceanic solutions and solutions for shallow semi-enclosed seas. In the 
latter case, the gravitational forcing function represented by g£ in equa
tion (4.9) can be ignored and the tides can be treated as free waves driven 
by the wave form at the sea’s openings to the ocean, which in many cases 
can be determined from measurement. The elevations round the coast are, 
in any case, determinable from measurement. If the tidal currents are also 
known these also provide boundary gradients of £ through equation (4.9).

Even simpler is the case of an elongated gulf or channel like the 
Adriatic or Red Seas. There we may take the r  axis along the gulf, and 
assume that transverse currents v  are much smaller than u (a procedure 
justified with some rigour by P r o u d m a n  (1925 a)). The equations of 
continuity and acceleration ((4.2) and (4.9)) reduce to :

d(hu)/d x  =  — 9f/91 a n d  du/dr =  — gd£/dx — r(u)/ph

respectively, where r(u) is the frictional stress on the bottom, and h =  h(x) 
is the mean depth of each transverse section of the sea. W ith a linear form 
r  =  pcü for the frictional stress, which is usually adequate at this degree 
of approximation, and a tidal constituent of period 2ir/oo for which ü =  
U exp < — iajt), £ =  Z  exp (—  icot), the above equations yield :

iccZ =  d{hU)jdx (to2 — icoc) U +  g(b/dx)\b(hU)jdx] =  0

These equations may easily be solved numerically for a given sequence of 
depths h (x ), with the boundary values Z =  at the open sea end(s) of 
the gulf and U =  0 at a closed end. Finally, the gradient of elevation 
across the width of the gulf may be obtained from the transverse equation 
involving simply the ‘Coriolis’ or ‘geostrophic’ stress :

9 f/av =  -  2n'v(x)ig

D e f a n t  (1961) shows several examples of cotidal maps for elongated seas 
derived essentially by this method with hand computation.

But such methods, even when extended to two dimensions, cannot deal 
directly with seas of oceanic scale because of the complications of spherical 
geometry, the tide-generating forces, and the relative lack of boundary data. 
W hile the full problem can only be tackled by finite-difference methods 
with large modern computers, it is worth briefly considering some of the 
semi-analytical methods which have been applied to limited portions of 
open oceans. Several approaches were developed by P r o u d m a n  and his



associates in pre-computer days. His ‘tidal theorem’ ( P r o u d m a n , 1925 b) 
relates surface integrals of the forced tides over the area of any sea on a 
sphere to line integrals round its boundaries, after the manner of Green’s 
potential theorem. In its more practical form, if a certain family of free 
waves can be defined in the sea area APA' (figure 5 («)) but unrestricted by 
the boundaries, then the elevations and currents of forced tides along the 
parallel of latitude A A ' can be determined by a series of explicit integrals 
involving the family of free waves, the tide-generating potential, and the 
(coastal) tidal elevations round the boundary APA'. The process can then 
be repeated for the zone BAA'B', and so continued to cover possibly an 
extensive sea area. Unfortunately, however, the free-wave solutions can 
only be solved tractably for a sea of constant depth, so at least each latitu
dinal strip must be approximated by a uniform depth, which is sometimes 
unrealistic. The method appears to have been applied seriously only in one 
case, to part of the Indian Ocean ( F a i r b a i r n , 1954). 

p

Fie.. 5. (a) Illustrating P houiiman ’ s tidal theorem. (h) Geometry o f  P houdm an ’ s (1946) 
general expansion for tides in a two-dimensional latitudinal section.

A method which involves dividing an oceanic area into a small number 
of rectangles, each of constant depth, was applied by G r a c e  (1932, 1935) 
to the Gulf of Mexico and the Bay of Biscay. It has the disadvantage that 
the tidal currents must be assumed constant along each of the rectangle’s 
sides, which tend to be rather long for such a property to be realistic.

P r o u d m a n  (1946) developed a more powerful approach. A narrow 
strip of ocean is bounded by two parallels of latitude, RR' and SS' (figure
5 (6)). W ithin the strip, the depth topography may be any function of 
longitude, but must be constant along each meridian. An important touch 
of realism is added by allowing the tides within the strip to radiate outwards 
into adjacent shallow water at R and R' at an arbitrary rate determined 
by the depths at those ends (possibly zero) ; this allows for frictional loss 
of energy. Given any distribution of tidal elevation and current along RR', 
P r o u d m a n  (1946) derived explicit formulae for the tides in the interior, 
including the other boundary SS'. He went on to apply this formalism to 
the central Atlantic Ocean between 35° S and 45° N, by dividing the whole 
area between the two continents into 5° strips, each of appropriate depth 
topography. Starting with an arbitrary functional form for the tides along 
the southern boundary, he calculated its effect propagating through each 
successive strip to the northern boundary. He did this for a range of 
starting functions, and then found a linear combination which best fitted 
the known tidal elevations along the continental edges. As related in his



George Darwin Lecture ( P r o u d m a n , 1944) (*) the result was only partly 
successful, but could have been improved by taking a longer series of 
boundary functions which were essentially a series of free Kelvin and 
Poincaré wave forms, with an added wave forced by the generating poten
tial. However, it would appear that the promise of the computer-based 
solutions produced soon after by H a n s e n  (1949) discouraged P r o u d m a n  
from pursuing his more analytical method any further.

P r o u d m a n  would have been more successful if he had had some direct 
measurements along his initial boundary. More recently M u n k  et al (1970) 
have used a method related to P r o u d m a n ’ s (1944) to rationalize the tidal 
system in the Pacific Ocean off California using deep-ocean tidal measure
ments (see § 9) as well as those from ordinary coastal tide gauges. They 
treated the coastline as straight (the x  axis) and the ocean as semi-infinite 
with a uniform underwater profile independent of x, stretching in uie 
y  direction from a narrow shelf structure to a uniformly deep region some 
distance from the coast. The effect of varying latitude on the vertical com
ponent of the Earth’s rotation Cl' was ignored. Over this simplified topo
graphy they considered all possible wave forms :

/ 0 )  exP [i(/3x -  cor)]

which satisfy Laplace’s tidal equations. The frequency co w7as taken as 
positive, so positive values of /3 represent waves travelling along the coast 
with shallow water on their left, and vice versa. The principal solutions 
divide into two groups according to whether f(y) behaves at a distance like 
exp (—  fiy) or like exp (ifxy). The first case represents ‘trapped’ waves, 
of which the ‘Kelvin’ wave, for which /j, =  2CI' (gh)~w~, is a classic example 
( L a m b , 1932) and these, like the Kelvin wave, are associated with a unique 
wavenumber /3 for a given frequency &>. If the frequency is less than the 
inertial frequency (e.g. the diurnal tides polewards of 30° latitude), then /3 
must be negative to maintain geostrophic balance in the northern hemi
sphere (positive in the southern). At higher frequencies, positive but 
numerically smaller wavenumbers J3 are also possible.

The other principal family of waves is oscillatory in the offshore direc
tion and represents the ieaky’ modes, of which the classic example is the 
‘Poincaré’ wave ( L a m b , 1932). These waves exist only at frequencies a> 
higher than the inertial frequency 2Cl' and their wavenumbers, positive or 
negative, are generally lower than the trapped waves at the same fre
quency. Also, since ji is arbitrary in this case, the wavenumbers /3 may 
take any value between certain limits for a given frequency. There is 
thus a ‘continuum’ region of permissible leaky wave modes in the (/3, a>) 
plane.

The complete range of solutions for the shelf geometry considered by 
M u n k  et al is represented in figure 6, in which /3 is scaled to L ~ 1 where L 
is the shelf width, and the vertical &> axis is scaled to the inertial frequency 
2Cl'. The trapped waves as described above are represented by the loci 
named ‘discrete edge waves, n =  O’ . Similar loci for n =  1 and 2 are higher 
mode trapped waves possessing oscillations in f(y) between the shelf edge

(*) This paper logically follows P rocdman  (1946), which was actually presented 
in 1942.



and the coast. The leaky mode ‘continuum’ is shown bounded by a hyper
bola with apex at <d/2 Q '  =  1. W ithin this continuum, the authors identified 
certain discrete waves for which the amplitudes near the coast are magni
fied (full circles) or reduced (open circles). The former are considered to 
be more likely to represent the observed tidal conditions. From these free- 
wave solutions, to which they added a waveform directly forced by the 
generating potential, the authors managed to select a combination which 
convincingly fitted a number of onshore and offshore tidal measurements 
in amplitude and phase. Both diurnal and semi-diurnal tides were treated. 
The semi-diurnal tidal waveform indicated an amphidrome (node) about 
2 000 km offshore, which was later confirmed by supplementary measure
ments.

F ig. 6. Dispersion diagram fo r  long waves off a model oceanic shelf. The abscissa 
represents long-shore wavenumber with positive values progressing with shallow water to 
the left (northern hemisphere). The ordinate represents frequency in units o f  the local 
inertial frequency 2n'. Full curves denote permissible (trapped) modes whose amplitude 
decreases exponentially  towards the deep ocean. Waves o f  Poincaré-type (periodic in 
all directions) are possible anywhere inside the inner hyperbola but are likely 

to be large near the coast at the full circles, small at the open circles 
(from Munk  et al., 1970).

At the bottom left of figure 6, another species of freewave is described 
as a ‘ discrete shelf w ave’ . This is otherwise named a ‘ continental shelf 
wave ’ or ‘ topographical Rossby wave ’ , and was referred to in § 4 as a 
newly discovered ( R o b i n s o n , 1964) example of H o u g h ’ s ‘class II’ waves, 
consisting principally of currents. As figure 6 suggests, shelf waves exist 
only at frequencies below the inertial, and travel only with shallow water



on their right (northern hemisphere). Although M u n k  et al measured tidal 
currents at their pelagic sites, they did not find any evidence for the 
existence of such waves at tidal frequencies off California. C a r t w r i g h t  
(1969, 1974), however, found that their properties matched those of some 
unusually strong diurnal tidal currents off the west of Scotland, a pheno
menon which had been virtually forgotten since first publicized in an early 
volume of the Royal Society’s transactions by Sir Robert Moray. H u t h - 
n a n c e  (1974) has also examined some enhanced diurnal currents on Rockall 
Bank in terms of shelf wave theory. In both areas mentioned the semi
diurnal tidal frequency is higher than 2Cl', so cannot include continental 
shelf waves or leaky modes of Poincaré-type. They appear to have the pro
perties of a trapped Kelvin-like wave, although the complicated form of 
the coast prevents any simple interpretation.

The development of automatic computers in the 1950s at last opened 
up the possibility of finding realistic solutions of Laplace’s tidal equations 
over all oceans and seas without any idealization of geometry. In principle, 
the procedure is straightforward. One divides the ocean by a network of 
elementary areas, small enough to define the tidal structure. In each area 
specified by (/, j) (figure 7) the depth hif is specified from a good bathy
metric chart, depth-mean current üijt are assumed at the central point 
(cross), and elevation £i+1 /2 j and £,jJ + i/2 at the edges. In the continuity 
equation (4.2), d(hli)/dx is approximated by :

where A(j is the mesh length and is associated with 3 (£ ,_1/2. f)/dt. In the 
acceleration equation (4.9), 9£/9.r is approximated by :

and associated with d(u())/dt  and 2 the frequency 2fl' being defined of 
course by the latitude, as is the generating potential g£. At land boundaries

6. MODERN G LO B A L SOLUTIONS 
AN D  ATTEM PTS TO  MODEL DISSIPATION
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Fig. 7. —  Basic network com m only  used for  finite-difference tidal models, with 

elevations calculated at the circles and current components at crosses.



the component of velocity normal to the coast (not necessarily parallel to 
a mesh side) is equated to zero. At open sea boundaries, either £ or some 
linear combination of v and £ must be specified by empirical data.

If the linearized form of the equations is used, as in (4.2) and (4.9), a 
common time factor exp (— ia>t) may be removed, and the problem is 
expressed as an array of ordinary linear equations determined by the 
boundary conditions (a ‘boundary-value problem’ ). Such a method was 
followed by P e k e r i s  & A c c a d  (1969). More usually, the time factor is 
retained and the solution approached by time-stepping from an assumed 
condition of rest everywhere until a steady state of oscillation is reached. 
This enables non-linear terms, such as a quadratic friction law, to be 
retained ( Z a h e l , 1970). There are also questions of numerical stability, 
choice of time increment, etc, which are outside the scope of this review.

If we exclude various attempted solutions for individual oceans, 
which invariably suffer from lack of reliable data along the open boundaries, 
at least five independent global solutions have been proposed for the M., 
tide alone during the last decade. To these we should add the very credit
able empirically drawn cotidal maps by D i e t r i c h  (1944), later modified by 
V i l l a i n  (1952), which are still invoked in comparisons with pelagic measu
rements ( Z e t l e r  et al, 1975). H e n d e r s h o t t  (1973) is an excellent compa
rative review : see also Z a h e l  (1977). Unfortunately, the solutions differ 
considerably from each other and from the measured tides in various parts 
of the ocean. It is therefore a matter of considerable importance to try to 
understand where each method has gone wrong. In the first place, the 
methods and types of solution can be divided into two classes, according 
to whether the solution is derived solely from the tide-generating potential 
and oceanic topography, or whether it is constrained to agree with tidal 
measurements along the coastal boundaries. The maps of P e k e r i s  & A c c a d  
(1969) and Z a h e l  (1970, 1977) are of the former class : those of B o g d a n o v

& M a g a r i k  (1967), T i r o n  et al (1967) and H e n d e r s h o t t  (1972) are of the 
latter class. A  typical example from each class is shown in figures 8 and 9.

A ‘ cotidal map ’ as exhibited here defines the oceanic loci of equal 
phase lag (co-phase lines), here typically in steps of ,30°, and the loci of 
equal amplitude (co-amplitude lines) of a harmonic constituent of the tide, 
in this case M.,. The nodal points, traditionally known as ‘ amphidromes ’, 
stand out as centres of zero amplitude round which the co-phase lines 
rotate, usually but not invariably clockwise in the southern hemisphere 
and anticlockwise in the northern hemisphere. Less obvious, but perhaps 
more important, are the ‘anti-amphidromes’, zones of locally maximum  
amplitude with little change of phase, such as shown in both figures 8 
and 9 south of India, though with different amplitude. The two maps agree 
roughly in some other gross features ; the amphidromes of the North 
Atlantic and Central Pacific, and anti-amphidromes somewhere in the 
equatorial Pacific, and the rotatory system (‘virtual amphidrome’ ) centred 
on New Zealand. But the resemblances are clearly outnumbered by the 
many differences, some quite radical. The two amphidromes west of the 
North American continent in figure 8 rotate in opposite direction from  
those in figure 9, although both contrive to show7 a northward progression 
of phases along the Californian coast. (The map of P e k e r i s  & A c c a d





(1969) gives a southward propagation there, contrary to observation). 
Figure 8 agrees with P e k e r i s  & A c c a d  in placing a prominent anti
clockwise amphidrome in the central south Atlantic, which is absent from  
figure 9 and from all maps constrained to agree with coastal observations. 
P e k e r i s  i'’' A c c a d  (1969) showed that this interpretation was consistent 
with data from the four islands in this ocean area —  a point further inves
tigated by C a r t w h i g h t  (1971) —  but it is difficult to reconcile it with the 
observed northward progression of phase along the Brazilian coast.

Comparing free and coastally constrained tidal solutions naturally 
tends to emphasize differences, although it is unfortunate that such differ
ences even exist. But the constrained solutions also differ from each other, 
indicating errors in physical representation. In fact, all the authors men
tioned differ in their treatment of friction, which is a factor of fundamental 
importance as shown in § 7. Basically, the force per unit mass due to 
friction may be added to equation (4.9) in the form :

— cü)ui/h (6.1)
where c is a non-dimensional constant known from direct measurement in 
shallow water to be about 0.0025 ( B o w d e n  & F a i r b a i r n ,  1956). v should 
properly represent a velocity about 1 m above the bottom though the depth- 
mean velocity v is often assumed. The direct effects of (6.1) are therefore 
practically confined to the shallow seas, where v is large and h is small. 
However, global tidal computations are mostly confined to deep-water zones 
for practical reasons (e.g. shallow-water tides require a much finer mesh 
owing to their smaller scale of horizontal variation), and so dissipation can 
only be properly represented by radiation of energy out of the model into 
bounding seas.

The importance of boundary radiation was first pointed out seriously 
by P r o u d m a n  (1941) when he showed that the analytical solution for a 
frictionless hemispherical ocean was radically altered when the usual 
boundary condition of zero normal velocity was replaced by a radiation 
condition. In essence, if a tidal wave of elevation £ and mean normal 
velocity vn propagates from an ocean of depth h to a shelf of depth h' where 
its energy is completely absorbed by friction, the following relations hold at 
the shelf edge :

Ç = ï  hvn =  h'vn' =  (6.2)
that is :

h v j s  =  (gh’y i 2 (6.3)

where the prime denotes the wave parameters on the shelf. Thus (6.3) is 
the appropriate boundary relation instead of vn =  0. It implies normal 
velocity in phase with the tidal elevation. In general, not all the energy 
propagated across a given stretch of boundary is absorbed, so a relation 
like :

hvn =  X£ (6.4)

where X is a complex parameter, is appropriate. In the real ocean, X can 
usually only be assigned empirically.

Figure 9 was computed by H e n d e r s h o t t  (1972) with boundary rela
tions like (6.4) where possible, the body of the ocean being assumed friction-
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less. A. =  0 was, of course, assumed round continents like Africa whose 
shelf zone is very narrow. Figure 8  was computed by Z a h e l  (1977) using 
direct friction ( 6 . 1 )  in the field equations which, unlike H e n d e r s h o t t ’ s , 
extended to depths as small as 50 m. Most dissipation occurs in seas much 
shallower than 50 m, but following T r e p k a  (1967), Z a h e l  added an arbit
rary term representing horizontal shear stress, approximately :

A d 2v/dx2 (6-5)

The physical significance of such a term as (6.5) is hardly known from  
oceanographic measurements, but it serves as a stabilizing parameter which 
also accounts for a good deal of dissipation not directly represented in the 
numerical model. In fact, the arbitrary factor A was adjusted so that the 
cotidal map agreed as nearly as possible with coastal data.

P e k e r i s  &  A c c a d  (1969) restricted their area of computation to depths 
of a kilometre or more and, like Z a h e l , used reflecting boundaries. Some 
dissipation had to be introduced artificially, and since they had an interest 
in keeping the equations linear, they adopted a form — a.ctiv(h{Jh)-  where 
h0 =  1 km, and a took a sequence of trial values in the range 0.1-0.5. 
Physically, this frictional term was much greater than the true frictional 
stress at any given point of the ocean, but was intended to compensate for 
the lack of genuine shallow-water friction. The resulting cotidal maps were 
only qualitatively successful, but from P e k e r i s  &  A c c a o ’ s  account, it 
appears that they regarded this work as a pioneering exercise, to be im
proved later.

The earlier published global maps by B o g d a n o v  &  M a g a r i k  (1967) and 
by T i r o n  et at. (1967) apparently were derived from frictionless equations, 
on the assumption that the effects of friction are incorporated in the 
empirical boundary data to which their solutions were constrained. This 
assumption is partly true, but with later knowledge one sees that the use of 
reflective boundary conditions everywhere makes for solutions which fall 
short of realism. Their results agree with neither figure 8 nor figure 9. 
However, both groups of Russian authors also give cotidal maps for S2, 
K, and Oj. Otherwise only Z a h e l  (1973) has computed for a constituent 
(K ,) other than M^.

Apart from this troublesome question of friction, the diversity of results 
has led some scientists to investigate other neglected physical factors which 
might prove surprisingly important on a global scale. One such factor 
whose importance has recently been demonstrated is the elastic yielding of 
the Earth’s crust to tidal loading. This introduces the Earth tide into our 
discussion and requires a separate sectional heading.

6.1 The Earth tide

It has long been known from precise measurements of gravity (still 
longer in theory) that the Earth’s crust itself yields elastically to the tidal 
forces of the Moon and Sun. The normal modes of oscillation of the Earth, 
unlike those of the ocean, have frequencies at least an order of magnitude 
higher than the tidal frequencies, so the response is virtually static. If £,.



is the tidal elevation of a portion of the Earth’s crust above its mean posi
tion, due to direct yielding :

Se(6 =  h j ( 0  ,\ , t )  (6.6)

where £ is Ibe ‘ equilibrium tide ’ defined in g 2 and h., is the elastic constant 
( ‘ Love number ’) now known to have the value 0.61. Further, as a result 
of this yielding the tidal potential on the Earth’s surface is increased by 
k2g£, where k 2 =  0.30 is another Love number.

£,, as defined by (6.6) is known as the ‘ body tide ’, the rise and fall of 
the Earth’s crust which would occur in the absence of the oceans. Since the 
equilibrium tide due to the Moon has an average amplitude near the equator 
of about 0.24 in, the corresponding amplitude of the body tide is about 
0.15 m. The actual rise and fall is, however, considerably modified by the 
variable loading of the oceanic tide, which produces additional vertical 
crustal movements of typical amplitude 0.05 m, as discussed below. Such 
movements are sensed by gravimeters, the amplitudes of the change in 
gravity associated with the last two figures being 45 and 15 ^iGals, respect
ively. The tilt and strain of the Earth’s crust associated with these com
ponents of the Earth tide are also of interest, but these cannot be pursued 
in the present context.

Consider now the effect of the body tide on Laplace’s tidal equations 
for the ocean ( (4.2) and (4.9) ), remembering that the water elevation £ is 
strictly the relative elevation of the surface with respect to the local Earth’s 
crust if theory is to be compared with conventional measurements (*). The 
equation of cpntinuity (4.2) is unaltered but since the horizontal gradient 
of pressure is strictly referred to geocentric elevation (£ +  £,.) and the 
potential is increased by the factor k.,. the right-hand side of (4.9) should 
now read :

-  g grad [r + r e - ( 1  + * 2) ? ] =  - f  grad K - ( 1  +  k2 -  h2) f ] .  (6.7)

Thus, from mere consideration of the body tide, the oceanic tide- 
generating potential should be multiplied by (1 +  k.2 —  h2) =  0.69 in solving 
Laplace’s equations. This adjustment was first applied practically by G r a c e  
(1930), who attempted to estimate the elastic constant from an analysis of 
the tides in the Red Sea. It was also used in the calculations of Munk 
et al. (1970) and of C a r t w r i g h t  (1971). Surprisingly, it seems to have been 
ignored by all computers of global tides considered in § 6 prior to 1972. 
Presumably the constraints to fit boundary data and the adjustment of 
arbitrary parameters have to some extent compensated for the error.

H e n d e r s h o t t  (1972), however, went further than the body-tide adjust
ment (6.7) ; he allowed also for the ‘loading tide’. This is the additional 
yielding of the Earth’s crust due to the direct loading of the ocean tide 
itself. The deformation of the sea floor due to elastic yielding to a point 
load £S ( # — 0', \ —  A') at (0', A') can be expressed as :

f e'(0 ,X )  =  rCW) (6.8)

where G is a function only of the angular distance (/} between (0, A) and

(*) Satellite altimeters in troduce  the poss ib i l i ty  o f  d irectly  m easuring  geocentric  
t idal e levations,  (Ç +  Ç. +  see §9.



{O', A/)- G depends on the elastic structure of the Earth, but F a r r e l l  
(1972) has shown that several plausible models based on seismic observa
tions yield approximately the same function, at least for values of greater 
than a few degrees. By applying certain harmonic integrals to G (<f>) one 
can equivalently express the Earth deformation to a spherical harmonic in 
ocean elevation of degree n, namely £n as :

where an is a normalized density ratio (water/earth), and hn’ is a ‘loading 
Love number’ ( L a m b , 1932). The combination of loading harmonic and 
corresponding crustal deformation also increase the effective potential by :

The quantities hn', kn\ a n have been evaluated to high order and may 
be found listed for example in H e n d e r s h o t t  (1972). Since positive sea 
elevation depresses the crust in the main, hn' and kn' are negative.

W ith both body tide and loading included, the equation for horizontal 
acceleration now becomes :

dxïdt +  2 lÎA ÿ =  -  g grad [f  - ( 1  +  k2 -  h2) f  +  £  (i +  kn’ -  hn')an f  J  (6.11)

Since the expansion of £ into spherical harmonic coefficients £„ implies 
an integral process, this is an integro-differential equation. H e n d e r s h o t t  
(1972) attempted to solve it by iteration, starting with the straightforward 
solution which ignores the loading tide (as represented in figure 9), using 
this to evaluate the spherical harmonic series £„, then re-solving (6.11 ) with 
this value of £„. The loading tide has amplitudes of several centimetres so 
the correction is not entirely trivial. Unfortunately, H e n d e r s h o t t  found 
that the second solution to (4.2) and (6.11) differs considerably from the 
first, suggesting that an iterative procedure on the same lines would not 
converge. At a symposium on ‘ Tidal Interactions ’ held during the IUGG 
General Assembly at Grenoble in 1975, H e n d e r s h o t t  reported some further 
investigations of iterative procedures for solving these equations but 
without a wholly satisfactory result (*).

Thus, no solution has yet been found to the equations which most 
completely represent the physical mechanism of the global oceanic tides. 
All we have is a number of differing solutions to sets of equations which 
only partially represent the physical mechanism. In § 9 we shall consider 
other possible approaches for the future, involving a more coordinated 
approach to computation combined with direct measurement of tides in the 
open sea. W hile still under the heading ‘ Earth tides mention should also 
be made of some recent attempts by Kuo & J a c h e n s  (1977) to deduce the 
ocean tides in limited areas entirely from land-based measurements of the 
loading tide. Given sufficiently wide coverage of accurate measurements of 
tidal gravity and tilt over the world’s continents, the loading tide may be de
duced by subtraction of the known body tide. In principle it may be possible 
to deduce £(0, \, t) from £/(6, \, t) by inverting an integral equation derived

(*) P ekebis  ( ]977, lecture )  has recently  so lved  ( 6 .1 1 )  w h en  u n con stra in ed  b y  
b o u n d a r y  data.

(6.9)

(1 + k„')ganÇn (6.10)
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from (6.8), and a similar one involving erustal tilt. There are, however, 
problems of precision of measurement, especially tilt ( B a k e r  & L e n n o n ,  
1973) and the influence of near-shore tidal systems. Some of the results 
reported by Kuo & J a c h e n s  (1977) for the north-eastern Pacific appear 
promising, but the possibility of global coverage is highly controversial.

In the previous section much was made of the way friction has been 
represented in various global tidal models. This is not merely a matter of 
computational technique : ultimately it has a bearing on a fundamental 
geophysical quantity, the total rate of dissipation of energy by the oceanic 
tides. In this and the following section we shall consider present know
ledge of total dissipation and its bearing on the celestial mechanics of the 
Earth-Moon system.

Viewing the oceans as a mechanical entity, the first energetic quantity 
which deserves attention is the total (mean) energy of the tidal system, 
evidently ‘ constant’ on the time scale of a century or so (*). Calling this 
Eo, wTe have :

Here the symbols < . . .>  denote time averages of the enclosed quantities and 
the integrals are supposed taken over the surface of the ocean. Curiously 
few authors have carried out these integrals. H e n d e r s h o t t ’ s  (1972) values 
for the Mo tide, namely 2.1, 5.2, 7.3 X  1017 J for PEo, KEo and Eo 
respectively, must be taken as the standard estimates (calculations based 
on the equilibrium tide give about an order of magnitude less).

More important are the rates at which the gravitational forces feed 
energy into the tidal system and at which energy is lost from it through 
friction. These must of course be equal but we have to distinguish at least 
three types of estimate of power transfer which unfortunately do not 
agree, owing to the inadequacy of our knowledge of the mechanical sys
tem. These are represented by P u P., and P :i in figure 10.

P, is the power input from the Moon and the Sun and from the 
Earth-tidal movement of the sea bed. The input from the Earth tide is 
ignored by all authors except H e n d e r s h o t t  (1972), who shows that it con
tributes about 30 % of the total ; authors of rigid-Earth calculations may, 
however, compensate by some artificial means of dissipation. It may be 
shown to be expressible as :

7. POW ER BUDGETS AND INTERNAL TIDES

Eo =  Potential Energy (PEo) +  Kinetic Energy (KEo)
where

PEo

(*) C^nTwitJtfHT fo u n d  the a m p l i tu d e  o f  M., at Bresl to l u a c  decreased b y
1 %  per cen tu ry  ov e r  about 240 years .



For the M 2 tide, H e n d e r s h o t t  (1972) derived P l =  3.0 X  1012 W , while 
from simpler but roughly equivalent expressions M u n k  & M a c D o n a l d  
(1960) derived 3.2 from D i e t r i c h ’ s  (1944) cotidal m a p ,  P e k e r i s  &  A c c a d  
(1969) derived 6.3 and Z a h e l  (1977) 3.8 X  1012 W . W e should n o t  place 
too much weight o n  P e k e r i s  &  A c c a d ’ s  figure since their model lacks 
realism, so a  fair average for P 1 is 3.5 ±  0.5 X  1012 W  from the M ., tide 
only. A n  estimate including M a, S2 a n d  other tidal constituents is 5 ±  1 X  
1012 W . The M ,  tide thus has its mean energy replaced in E „ /P x =  
(7 X  1017)/(3 .5  X  1012) =  2.0 X  10r> s =  2.3 d. The corresponding ‘ Q fac
tor’ for the ocean tides is Q ~  a)E0/ P , =  28.

SHALLOW SEAS 
AND ESTUARIES

P ir.. 10. —  Diagram of pow er  input to the o c e a n ? ,  from .M oon anti S u n  and output 
across the con tin enta l  shelf  boundaries  to the  sha l low -w ater  d iss ipat ion  areas.

At this point, mention should be made of a loose relationship between 
the ocean’ s Q factor and the ‘age’ of the tide. Age is a 19th century term 
for the time lag of the peak of spring tides after the peak of the generating 
forces at Full and New Moons. In most parts of the ocean it is 1-2 d, 
although a few places have much larger or negative ages. It is easily seen 
that positive age implies an increase in phase lag with frequency from the 
lunar Mj constituent to the higher frequency solar constituent. P h o u d -  
m a n  (1941) showed analytically that energy dissipation in coastal seas was 
necessary to produce predominantly positive age in a hemispherical fric- 
tionless ocean. G a r r e t t  &  M u n k  (1971) showed how the phase gradient 
could be roughly related to the response curve of the normal modes of the 
ocean near resonance, the gradient being proportional to Q. They deduced 
from a worldwide survey of tidal ages that Q must be greater than 15, an 
interesting result to obtain from such simple observations. Using an esti
mate for P l somewhat lower than that quoted in the previous paragraph, 
and a value of E 0 for the equilibrium tide of 3 X  101(Î J, they also deduced 
that the spatial coupling between the tidal forcing function and the domi
nant normal mode must be rather weak, a fact which is qualitatively 
evident from figures 8  or 9. W e b b  (1937 b) is also interested by the Q /age  
relationship and points out that the parts of the oceans where the tidal age 
is large are also those w'here dissipation is known to be concentrated ( M i l 
l e r , 1966) and in some cases local resonance is suspected (e.g. Gulf of 
Patagonia, Coral Sea, Hudson Bay). Because of this localized nature of the 
strongly resonating areas, W e b b  criticizes G a r r e t t  &  M u n k ’ s (1971) use 
of an overall Q factor. He prefers to discuss the mechanics of ocean tides 
in terms of ‘decay times’, roughly equal to the age, and the time needed 
for the energy fed into mid-ocean to be transported to the dissipating areas 
of resonance. But this is a controversial subject to which it is difficult to 
apply precise arguments.



Returning again to figure 10, P3 and P2 are respectively the power 
dissipated directly by friction on the bottom of the shallow seas and the 
power transmitted across their boundaries with the ocean. They are given

where F  is the frictional stress, integrated over shallow seas, and vn is the 
inward normal component of mean velocity across their oceanic boundaries. 
Since F =  —  cp | v 12/h ,  the integral for Pa involves the cube of the current 
speed which is certainly not known to any precision over most of the 
world’s seas. T a y l o r  (1919), who was the first to examine these relations 
seriously, showed that P 2 and P 3 were fairly comparable in the isolated case 
of the Irish Sea, for which the total P., principally from the southern 
entrance, was 6.4 X  1010 W , for Spring tides. Reduced to the power 
dissipated by the M2 tide alone, this comes to 5 X  1010 W , about a hun
dredth of the total astronomical input to the oceans.

Soon after T a y l o r ' s  ( 1 9 1 9 )  paper, two geophysicists independently 
estimated the total dissipation in all the world’s shallow seas —  essentially 
by P3 calculations using the known areas and depths of such seas and 
what figures were available for the strength of their tidal currents. J e f 
f r e y s  ( 1 9 2 0 )  obtained 1 .1  and H e i s k a n e n  ( 1 9 2 1 )  1 .9  X  1 0 12 W  for the M 2 
tide. But the dependence of these estimates on the cube of roughly known 
current speeds made them appear dubious. M i l l e r  ( 1 9 6 6 )  repeated the 
calculation using the more reliable P2 integral and up-to-date information 
on the amplitudes and phases of currents and elevations, and obtained 
1 . 7  X  1 0 12 W . He showed that about two-thirds of this total comes from 
the Bering Sea, the Okhotsk Sea, the seas north of Australia, the seas 
surrounding the British Isles, the Patagonian Shelf, and Hudson Bay, in 
order of importance, while the narrow shelves surrounding most of Africa 
and along the west coast of the Americas south of Canada dissipate hardly 
any power at all. ( J e f f r e y s  and H e i s k a n e n  had named mostly the same 
important seas as M i l l e r , but differed greatly in their individual contribu
tions ).

M i l l e r ’ s  estimate for P., seems fairly reliable, although the data on 
which the dissipation rates for individual seas are based are very variable 
in quality and quantity. Figure 11 shows a detailed distribution of the P3 
dissipation over the various parts of the seas surrounding the British Isles 
and the corresponding P., power transfers from a recent computational 
model by F l a t h e r  (1975). The tidal elevations and currents are known 
in great detail over most of this sea area, and the major dissipation figures 
are corroborated by other estimates. The total P 2 input is 20.5 X  1010 W> 
whereas M i l l e r  (1966) assumed 17.3, no great difference. On the other 
hand, M i l l e r ’ s figure of 13 X  1010 W  for the Patagonian Shelf was based 
on very sparse current data. W e b b  (1976) suggests by a simplified model 
that the Patagonian Shelf may be a very strong absorber of tidal energy. 
This region therefore seems to merit a thorough investigation based on 
measurement and computation. The result may (or may not) add signi
ficantly to M i l l e r ’ s total P 2, and incidentally may shed some light on the 
problem of the existence or non-existence of a M ^  amphidrome in the South 
Atlantic Ocean (cf. figures 8 and 9).
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At all events, the salient point in all this is that the current estimate 
of about 1.7 X  1012 W  for shallow-sea dissipation falls short of the esti
mated input power, Plt from the gravitational forces by 50 % . This is a 
very puzzling gap in the power budget, for which neither oceanographers 
nor solid-Earth geophysicists can at present suggest a likely explanation. 
From a certain point of view it may be seen as the principal motivation for 
continuing the study of oceanic tides. The problem has been appreciated 
for several years and was discussed at length by M u n k  & M a c D o n a l d  
(1960) and by M u n k  (1968). Their discussions are, however, based on an 
estimate of P, of only 2.7 X  1012 W  derived from observations of the 
angular deceleration of the Moon’s orbit. Recent advances by astronomers 
(see § 8) now suggest a figure for P j which is even larger than the estimate 
of 3.5 X  1012 W  suggested earlier in this section. The gap in the budget is 
therefore even more serious than when discussed by M u n k  and his 
colleagues.

W here else is tidal energy being dissipated ? There are of course many 
hundreds of coral atolls and other island features where large tidal currents 
are set up, which could cause dissipation on a localized scale. M i l l e r  
(1966) considered these in a general way but did not think they could contri
bute significantly. He also estimated that the tidal currents of the order of 
1 cm s_1 in the deep oceans would contribute less than 10!) W  despite their 
large area. J e f f r e y s  (1968) seems to be alone in considering the tides as 
setting up a small perturbation to ordinary sea waves which is dissipated 
as those waves break on a coastline in the usual way. No rigorous calcula
tions have been carried out, but intuitively it would seem to be a minor 
effect. Another possible sink is in the internal viscosity of the ocean-loading 
Earth tide (for dissipation in the Earth as a whole the viscous dissipation 
in the body tide also has to be included, but the results for both are small). 
This is discussed by M u n k  &  M a c D o n a l d  (1960) and by J e f f r e y s  (1976 and 
earlier editions). From arguments based on the Q of the 14-month ‘ Chand
ler wobble ’ of the North Pole, M u n k  & M a c D o N A L D  (1960) deduce
0.3-0.6 X  1012 W  from the total Earth tide, which is about 100 times greater 
than J e f f r e y s ’  estimate. Allowing 0.3 X  1012 W  for the loading tide may 
bring the ocean dissipation up to 2 X  1012 W , but this is still a long way 
short of the accepted P t figure. There does, however, remain one plausible 
but as yet uncertain mechanism, the conversion of ordinary ocean tides to 
‘ internal tides ’ in the density layering of the ocean. An account of this 
mechanism requires a separate subsection.

7.1 Internal tides

Continuous measurements of temperature at fixed depths in the interior 
of the ocean show wave motions of large vertical amplitude (tens of metres) 
known as internal waves. These waves cover a wide spectrum of frequen
cies, mostly between the frequencies of ordinary surface waves and the 
tides. But peaks do occur at the tidal frequencies, characterizing ‘ internal 
tides Records of current in the deep ocean also show tidal components 
much larger than the few cm s—1 associated with the barotropic tide, and 
these too are due to the internal tides. Internal tides generally have much



lower signal/noise ratio than the ordinary barotropic or surface tides, and 
their phases are not so closely locked to the tide-generating potential. The 
random element in their phases,, which can also be described as ‘ line 
broadening is caused by the dependence of internal tidal mechanics on 
the density structure of the ocean which varies with the large-scale structure 
of oceanic currents. A comprehensive review of the internal tides has 
recently been made by W u n s c h  (1975). Here I review briefly only those 
features which are relevant to the global tidal energetics.

The basic dynamical equations for internal tides have already been 
given in § 4 in connection with Laplace’s tidal equations. In the simplified 
case of a constant (exponential) density gradient, and hence constant 
buoyancy-frequency N and constant depth h, it may be simply shown that 
the vertical dependence of w and the other variables of the internal waves 
are defined by the functions :

sin Nyn (z + h) 7„ ^  nn/Nh n =  1 , 2 , 3 , . . .

which, it will be seen, give zero vertical velocity at the bottom and the 
surface of the sea, and rt —  1 reversals of sign in between. In fact, it is 
found that internal tides, unlike internal waves of high frequency, are 
concentrated in the first few vertical modes (low values of n). Further, the 
horizontal velocities and pressure gradients are governed by equations 
identical in form to the barotropic (Laplace’s) tidal equations but with 
equivalent depths d„ =  (hN/mr)2/g ,  which are very much smaller than the 
actual depth h. For example, with typical values N =  0.002 s —1, ft =  4 000 m, 
we have dx =  0.64 m, d.> =  0.16 m. W hile a surface tide of ‘ Kelvin ’ type 
travels with a natural speed (gh)A/2 =  200 m s_1, the first mode of the 
internal tide of similar form travels with speed (gdi)1/2 =  2.5 m s-1 .

W e  thus have at first sight a complete mismatching in both vertical 
waveform and speed of the internal tides on one hand, the surface tide and 
the tide-generating stress on the other, both the latter being essentially con
stant over the water depth. From this point of view it is hard to see how  
the observed internal tides are generated at all. However, it is now well 
established that the irregularities in the ocean bottom permit a transference 
of energy from the surface tides to the internal tides, and hence providing a 
source of generation for the latter and of energy loss to the former. The 
gradient of the bottom imparts a vertical component on the otherwise 
uniformly horizontal motion of the surface tide. This deflects the surfaces 
of constant density and hence internal waves are generated of tidal period, 
but with wavelength determined by the bottom topography.

In mathematical terms, suppose for simplicity that the bottom irregu
larity is small compared with the general depth of water and that it is 
uniform in the y  direction (geographically arbitrary). If ü exp (— icot) is 
the horizontal velocity due to the surface tide, assumed uniform on the 
length scale of the irregularities, and h is the mean depth, then ü exp 
(— iojf) dh/dx must equal w  (— ft), the vertical velocity at the bottom. 
Dropping the time factor, the last expression may be expanded in a Fourier 
series in x :

/* oo
udh/dx =  j ^ A(Jc) exp (\kx) dk



The vertical velocity field w (x , z), which essentially defines the internal 
tide, is then given by :

< x /* "  , /)N sin [Nkz(cj2 — 4f2,2)-1 2̂l
w (x,z) A(k) - — ------ — - — -----  ;2 - . , ,  exp (ikx) d£

sin [ — Nkh (co2 — 4£2 ) ^ ]

This integral is dominated by the values of the bottom spectrum .4 (A) for 
which :

k2 =  (w2 -  4n.'2)[gd„

dn being the equivalent depth for the internal wave of nth-order mode in a 
constant depth h, as previously defined.

The full linearized theory of internal tide generation by bottom scatter
ing was first expounded by Cox & S a n d s t r o m  (1962), who calculated A (A) 
for typical sections of the Atlantic Ocean, üy a similar calculation, M u n k  
(1966) estimated the rate of energy transfer from the M 2 tide into the first 
20 internal modes in the global ocean to be 0.5 X  1012 W . This is by no 
means negligible, but it is only some 30 %  of the gap in the power budget 
discussed in the main part of § 7.

The restriction to small irregularities compared with h in the theory 
discussed above eliminates many major features such as seamounts and 
the edges of continental shelves. Strong local generation of internal tides 
near such features is confirmed by measurement, but theoretical assessment 
of their rate of transfer is more difficult. The most amenable theories for 
finite topography ( R a t t r a y  et al., 1969, B a i n e s , 1974) treat the internal 
motion not as a superposition of modes with continuous vertical waveforms 
but as a series of beams of concentrated energy whose direction in the 
vertical may be calculated for a given density structure and frequency by 
the method of characteristics. Energy transfer occurs most intensively at 
those points of the topography where its slope coincides with the direction 
of a characteristic. However, the beam theory is strictly two-dimensional 
(horizontal and vertical) and it is not clear how a general three-dimensional 
shelf edge will reflect. Observational evidence for the existence of such 
beams is controversial ( W u n s c h , 1975), and a modal decomposition is 
usually more meaningful.

W hat is needed from the point of view of energetics is either a tractable 
means of calculating the energy transfer to internal motions at all the shelf 
boundaries and other large topographical features in the ocean, or else an 
estimate of the rate at which observed internal tides lose their energy by 
turbulent viscosity. The transfer rate was estimated by W u n s c h  & H e n d r y  
(1972) at the intensively measured ‘ site D ’ off the New England shelf, but 
worldwide extrapolation of the result gave only about 10° W .  S c h o t t  (1977) 
also arrives at an insignificantly small figure compared to the known loss 
to the surface tide. The weakness of any such extrapolation is the sensiti
vity of any tractable solution to the detailed density structure. S a n d e r s t r o m

(1976) has, however, recently suggested that the shelf profile is not a 
sensitive factor and that a worldwide calculation based only on figures for 
stratification and using vertical-wall shelf edges would be viable.

Calculations of the dissipation rate of internal tides are even more 
controversial, and probably involve the full non-linear theory of interactions



between the whole continuum of internal waves in the ocean. Some appr
oaches are discussed briefly by W u n s c h  (1975) ; on the whole they seem 
to point again to a rather low figure, of the order of 10-1  of the required 
power loss.

Yet another possible mechanism for internal tidal generation is at the 
critical latitudes where a tidal frequency equals the inertial frequency 2ft'. 
Here, theory tells us that the wavelengths of internal tides become ‘ infi
nite ’ and the possibility of direct coupling with the surface tide becomes 
more plausible. M i l e s  (1974) has further shown that such coupling takes 
place at the critical latitudes through the terms involving the horizontal 
component ft "  of the Earth’s rotation, usually neglected in the full dyna
mical equations for the tides. This possibility requires further investigation, 
but if it were important we should expect significant generation of diurnal 
internal tides near 30° latitude, at least in the Pacific Ocean where the 
diurnal surface tides are fairly large. However, observations of internal 
tides in such regions do not differ greatly from observations elsewhere. The 
problem remains open, but without any hopeful pointers towards a likely 
sink of the required magnitude.

8. THE MOON’S ORBIT AND THE EARTH’S ROTATION

The emphasis on energy dissipation in §§ 6 and 7 may seem exaggerated 
to the uninvolved reader in view of the more obvious controversial features 
of tidal definition in particular oceans. Nevertheless, we have to pursue the 
implications of global tidal friction still further in order to explain its 
importance to our understanding of the history of the Moon’s orbit and of 
astronomical time. In the briefest terms, the average bulge of the tide 
(strictly, its P 2 (cos a) harmonic) is retarded by terrestrial friction so that 
its mean axis points some tens of degrees east of the Moon (*). The gravita
tional forces acting on this displaced second-harmonic bulge constitute a 
couple in opposite sense to the Earth’s rotation, so the day lengthens. But 
the total angular momentum of the Earth-Moon system must be constant, 
so the decrease in the Earth’s rotation is accompanied by an increase in the 
momentum of the Moon’s orbit. From Kepler’s third law this can only be 
brought about by a steady increase in the Moon’s mean distance combined 
with a related deceleration in the mean angular motion of its longitude.

The deceleration of the Moon’s longitude, originally estimated at 
about 10" century-2 , was first detected by Hailey in comparing records of 
ancient eclipses with contemporary observations of the Moon’s orbit. About 
a century later Laplace, in his one negative contribution to tidal theory, 
thought he had explained it in terms of planetary perturbations. Adams 
showed that Laplace’s calculations were inaccurate and that the full calcu
lation gave only 5 "  century-2, thus re-opening the suggestion that tidal 
friction was an important factor, first made apparently by the philosopher

(*) The usual d iagram  o f th is s itu ation  (M unk & M a cD on a ld  1960, p 199, J e f f r e y s  
1976, p 316) can  g ive th e m islea d in g  im p ress ion  o f  a s lig h tly  m o d ifie d  e q u ilib r iu m  
tide  th eory .



Kant. The role of tidal friction in the evolution of the lunar orbit was taken 
up seriously by Kelvin and more notably by G.H. Darwin ; details of its 
magnitude have been a subject of active discussion to the present day 
(references to the earlier literature may be found in M vnk & MacDoNALD 
(1960) —  see also Munk (1968) for a somewhat later assessment).

As mentioned in § 7, the subject has taken a new turn in the 1970s 
with the agreement among several independent astronomers on a radically 
increased figure for the longitudinal deceleration of about 4 0 " century- 2 . 
Discussions earlier than 1970 usually accept a figure of 22" .4  century- - 
derived by S p e n c e r  J o n e s  in 1939 from an apparently exhaustive study of 
‘ modern ’ (1670-1930) astronomical observations of the Moon. S p e n c e r  
J o n e s ’  figure could not be reconciled with records of solar eclipses going 
back to 1000 b c , but there was so much scatter and uncertainty in inter- 
p r ê t ü î î '  t ï i é  m i C i c i i l  tfcLuicts t l i â l  t l i i s  W a s  n u t  i ' ê g a r u c d  a s  i i i i p u r l a i x l .  ï l  
would be beyond the scope of this review and the author’s experience to 
give an extended account of the astronomy, but a brief summary of the 
main concepts which are involved seems worthwhile.

If T  represents astronomical time in centuries from a certain epoch of 
origin, the mean longitude of the Moon (that is, the observed longitude 
with removal of all periodic terms) can be expressed as :

= *0 + 11 T  + « 2  l^ T 3 (8 .1)

where the ln are established partly by observation and partly (in particular
l2 and /s) by calculation from the Newtonian theory of rigid gravitational 
bodies. In the absence of planetary and tidal perturbations, only the uni
form motion described by the first two terms would apply. Planetary 
perturbations supply the small accelerative terms L and /3. ii, to use the 
invariable notation of the literature, is the non-Newtonian acceleration 
(numerically negative) caused by tidal deformation with friction, and is 
one of the quantities which concern us. However, if T is expressed in the 
so-called ‘Universal Time’ system, as is effectively the case for all observ
ations before very recent times, T  itself is subject to the rotation of the 
Earth, which also accelerates negatively.

The difference between T and the strictly uniform ‘ Ephemeris Time 
which is based on the Earth’s orbit round the Sun, may be expressed as :

A T = r 0 + r l T + ^  ÙT2 +  /(71  (8.2)

where the coefficients are here entirely based on observation of stellar 
transits, and f(T) is an apparently random function with variations in a 
time scale of less than a century. As in (8.1), the first two terms describe 
the uniform motion which was unquestioned until the late 19th century, 
while the last two terms, whose causes are still only partially understood, 
represent the mean acceleration and its fluctuations observed in modern 
precise measurements and by their comparison with ancient records. As 
will be shown later, Ù is partly related to n by conservation of angular 
momentum : the two quantities are rather difficult to separate from each 
other from purely astronomical observations. The effect of the Earth’s 
acceleration Ù on estimates of ri when L M is measured from, say, times of 
occultations of stars by the Moon may be removed by comparing with



observations of the longitude of the Sun or of an inner planet, which are 
affected in a similar way, proportionally to the mean motions of the Moon 
and Sun respectively. But solar eclipses of mediaeval and ancient times 
were not accurately timed : when correctly identified, the only usable 
information from them is the geographical position of the place of observ
ation. This depends on both ri and Ù.

M u l l e r  & S t e p h e n s o n  (1975) seem to have cleared up a long history 
of research and controversy about interpretation of historical solar eclipses 
in which the most notable authority had previously been Fotheringham. 
They introduced newly translated Chinese records to the Babylonian and 
European eclipses used by others, and applied rigorous tests for reliability 
before any record would be included in calculations. Out of more than 
1000 historical accounts of eclipses, only 28 passed these tests, ranging 
from 1375 b c  at Ugarib to some observations organized by Hailey himself 
in 1715. Adding the ‘ m odern’ observations of lunar phenomena from 1650 
to 1970, M u l l e r  & S t e p h e n s o n  evaluated all the variables r0, r,, n , n inde
pendently, with the final result :

ft =  — 37.5 ± 5" century-2  =  — 91.6 ± 10 s century-2 ,

where the tolerances quoted are actual bounds to the data, not standard 
deviations. The figure for fi can also be expressed as an increase in the 
length of the day by 2.4 ±  0.3 ms century- 1 . N e w t o n  (1970) obtained
2.1 ±  0.3, re-interpreted by M u l l e r  &  S t e p h e n s o n  as 2.3 ±  0.3. The figures 
for n, the acceleration in lunar longitude, compare well with — 41.5 ±  4.3 
( N e w t o n , 1970 ; ancient eclipses), — 38 ±  8 ( O e s t e r w i n t e r  & C o h e n , 1972; 
20th century data), and other modern results.

The corresponding value of h, the rate of change of the semi-major axis 
of the Moon’s orbit, is, by differentiating Kepler’s law :

à =  — 2ahj3n =  0.058 m yr_1 (8.3)

Theories of the implied state of affairs some 10!! yr ago, when the Moon may 
have been drastically closer to the Earth and the tides enormous, are outside 
the scope of this review. They are discussed by M u n k  (1968) but with some
what different numerical parameters.

How far do the new estimates of the angular accelerations tie up 
with oceanographic estimates of the oceanic tides discussed in earlier sec
tions ? L a m b e c k  (1975) has outlined a direct method of calculating d from  
the perturbing gravitational potential corresponding to a given global cotidal 
map. The tidal elevation for a given harmonic constituent, s, is expanded in 
spherical harmonics (as in the elastic Earth problem discussed in § 6.1) 
to give :

r,(0 , x )  =  X  pnm{ COS 6) Cm „ (s) cos (cos t  +  m X - e ra „ « )  (8.4)
m , n ’ ’

By using an expression due to K a u l a  (1964) for the perturbing potential 
due to £„ applying it to the dynamical equations for the orbit, and extracting 
terms of zero frequency, the secular rate of increase of the semi-major 
axis can be expressed in the form :

à =  Ka 5>2(l +  k2') Y , A s(a ,e ,i)  sin emJ s)
S

(8.5)



where A' is a combination of physical constants, k,' is the loading Love 
number (§ 6.1) for the Earth tide, and A,  is a rational function of a, and 
the eccentricity e and inclination i of the orbit. Expressions similar in form 
to (8.5) can also be written for d e /d t and dr/d<. For the semi-diurnal tides, 
only the second-order harmonic m =  n =  2 need be considered. M2 is the 
principal contributor to à, but the function A s and analogous functions 
E s and I8 in the expressions for d e /d f,-d i/d f vary considerably for different 
major tidal constituents, so that for example N2 has the major influence on 
e, and K 2 on di/dt.

L a m b e c k  (1975) applied these calculations to the cotidal maps of H e n -  
d e r s h o t t  (1972), P e k e r i s  &  A c c a d  (1969) and B o g d a n o v  & M a g a r i k  (1967), 
with the following numerical results for n, derived from à through equa- 
lions (8.3) :

C(s> *<*> h

PEKERIS & ACCAD (1969)......... 0.044 m 70° -  33" century-2
HENDERSHOTT (1972).............. 0.051 m 46° -  29" century-2
BOGDANOV & MAGARIK (1967) 0.043 m 48° -  26'' century-2
Average h for M2 ........................
Addition for S2, etc...................

— 29" century —2_2-  6 century

Total........................................... -  35'' century- 2 (*)

The values listed as C<s), z<‘> are the arguments in equation (8.4) for 
M 2, m =  n =  2. The agreement between the three values of n from three 
very different looking cotidal maps is remarkable, suggesting that the 
details of such maps are not really very important in their effect on the 
second harmonic. Equally remarkable is the very good agreement between 
the final result and M u l l e r  & S t e p h e n s o n ’ s  estimate for n quoted earlier, 
derived independently from entirely different data and procedures. The 
agreement greatly strengthens one’s confidence in both schemes of 
reasoning.

Having established that the observed acceleration in longitude is 
accounted for by the observed ocean tides, we may proceed to calculate the 
corresponding rate of change of the Earth’s rotation by using the momen
tum equation. The angular momentum of the Moon’s orbit resolved in the 
plane of the Earth’s equator is :

=  ME(M +  E )~l c2 n( 1 — e2) ‘/2 cos i (8.6)

where M  and E  are the masses of Moon and Earth respectively (to use the 
notation of § 2). A similar expression HE gives the momentum of the 
Earth’s orbit about the Sun, and we must have :

Hm =  Hf +  CCI =  constant (8.7)

(*) K. L ambeck (1977, private communication) says that h is figures and the a stro 
n om ica l estim ate fo r  ri have since been  reduced to  about 28" cen tu ry—2. P4 (see 8.8) 
is a ffected  p rop ortion a te ly .



where C is the Earth’s principal moment of inertia. Differentiating
(8.7) with respect to time and taking C as constant (an assumption which 
is nowadays seriously questioned), we get a fairly simple relationship 
between ft and the time derivates of a (or n), e and i, which can be calcu
lated in terms of the tides as explained above. L a m b e c k  (1975) thus obtained 
the following components of — ft, expressed here in units of ms d—1 
century-1  ;

Mean of three solutions for M2 ............................................... 2.4
Estimates for N2, L 2, Oj, Kj ...................................................  0.4
From B o g d a n o v  &  M a g a r i k  (1967) for S2 ......................  0.5
Atmospheric S2 t i d e ....................................................................... —  0.1

Total increase in length of day per c e n tu r y ......................  3.2 ms

The negative increment for the atmospheric tide reflects the fact that its 
phase lead of 2 h causes a slight acceleration in the Earth’s rotation. 
However, the important fact which arises is that the final figure for the 
tidal effect, 3.2 ms, is significantly greater than the value 2.4 ±  0.3 ms 
observed by M u l l e r  & S t e p h e n s o n  (1975) or the similar figures from  
N e w t o n  (1970). This implies some geophysical factor which is positively 
increasing the Earth’s rotation, causing the day to decrease by some 0.8 ms 
century- 1 , in opposition to the stronger retarding effect of the tides.

The non-tidal acceleration, as it is called, has been appreciated for 
several years, even when much lower figures were accepted for n and ft. 
It is extensively discussed by M u n k  & M a c D o n a l d  (1960) and by other 
authors since then. Several explanations have been suggested, too diverse 
to summarize here, but no one cause has yet been positively identified. 
Most probably, the acceleration is due to a steady decrease in the moment 
of inertia C, caused by some change in the distribution of the Earth’s mass. 
M u n k  & M a c D o n a l d  rule out the transfer of water between the oceans and 
polar ice, pointing out that there are large fluctuations in the length of day 
on a much shorter time scale, which are clearly not correlated with the 
known variations in mean sea level. The mass transfer process may be 
occurring in the atmosphere or in the liquid core (a popular hunting ground 
for theorists). W e cannot proceed further with this manifestly non-tidal 
subject here.

Finally, we may calculate the rate of energy dissipation corresponding 
to the tidally induced part of ft. The rate of loss of rotational energy due 
to both lunar and solar tides is —  Cftft, but the Moon’s orbit gains rota
tional energy to give a small correction. The correction may most simply 
be derived by observing that Cft must equal the total tidal couple acting 
on the Earth, and its rate of working is the product of this couple and 
the angular velocity of the Earth relative to the Moon, i.e. the total dissi
pation rate is :

PA =  -  Cft(ft -  « )  (8.8)

The tidal lengthening of the day of 3.2 ms century—1 is equivalent to 
ft =  —  8.9 X  1 0 - 22 rad s~ 2. W ith  (ft —  n) =  70 X  10~6 rad s -> , and C =  
81 X  1036k g m 2, (8.8) gives P4 =  5.0 X  1012 W . Alternatively, if we restrict 
the calculations to those terms which are due to the Moon only, with a



proportional allowance for the lunar part of K t, we get ftM =  —  7.6 X  10~22, 
P 4 —  4.3 X 1012 W . This last figure is comparable with the estimate of the 
work done by the Moon on the tides as derived by direct calculation (§7 ) ,  
namely P x =  3.5 X 1012 W , with an uncertainly of about 1 X 1012. This 
m ay be taken to confirm the validity of the rather roundabout chain of 
arguments used and suggests that no important factor has been omitted. 
The two major gaps in our understanding of this geophysical system are 
the cause of the non-tidal acceleration of the Earth and the missing sink 
of energy in the oceanic tidal dynamics.

9. N EW  R E S E A R C H  T E C H N IQ U E S  A N D  T H E  F U T U R E

I have now surveyed the principal areas of our knowledge about the 
oceanic tides and identified its shortcomings. It is appropriate to conclude 
with some speculations about the techniques which will probably be used 
in the future towards overcoming the present difficulties. This is not 
easy because, as I stated in the Introduction, the subject has entered a 
period of recession, following a wave o f renewed interest in the 1965-1975 
decade. The previous recession in oceanic tidal research, for which the 
definitive review paper was D o o d s o n  (1958), marked a feeling of exhaustion 
of the field of analytical tidal solutions, while the hope for the future was 
in numerical methods. Now numerical methods have been extensively 
explored and have been found to lack physical realism in one way or 
another. Coupling with the Earth tide has been shown to be an indis
pensable factor, raising the computational problem into a still higher class 
of difficulty. W e need to know more about tidal dissipation, internal tides, 
and the actual definition of the surface tide in regions remote from tho 
land. These call for a vigorous programme of tidal measurement on a 
worldwide scale. In my view, the next phase of progress will only come 
after such a programme.

At a few points in this review I have mentioned the recent facility for 
recording tides in the open sea —  the ‘pelagic tide recorder’ —  without 
describing any outstanding results from its use. In fact, the development 
of the pelagic tide recorder in the 1960s was a major ‘breakthrough’ in 
oceanographic technology, desired for decades by previous generations of 
researchers. It has not yet figured importantly in this review because the 
theoreticians have advanced too rapidly to allow any interaction with the 
technologists. Occasionally, a researcher computing the global tides has 
pointed to a few spots on the globe where some measurements would be 
useful for verification, usually zones of locally maximum amplitude. But 
none of the few laboratories equipped with the new tidal technology (in 
England, France and the USA) have felt justified in sending a ship thous
ands of miles for this express purpose. Rather, they have deployed their 
instruments where logistically feasible (usually not too far from home), 
or where research cruises were directed for other objectives. The experi
ments have sometimes provided interesting papers in their own right, but 
without any obvious impact on the global tidal scene (e.g. C o l l a r  & C a r t 
w r i g h t ,  1972 ; I r i s h  &  S n o d g r a s s ,  1972 ; F i l l o u x ,  1973 ; Z e t l e r  et al,



1975). Could a more globally oriented programme of measurements be 
mounted ? To answer this we must first consider what a pelagic tide 
recorder consists of and how it is deployed.

The principle is to record the variations of pressure at a capsule sitting 
on the sea bed for a period of the order of one month. A precision of 1 mm  
equivalent head of water at a depth of some kilometres is less than one 
part per million, while the capsule itself has to withstand an ambient pres
sure of the order 5 X  106 k g m ~ 2. Pressure sensors are inevitably sensitive 
also to temperature, which contains tidal variations, so this also has to be 
recorded and compensated for. Mechanical creep causes the pressure signal 
to drift, requiring another correction. Fused quartz crystals have the 
best all-round properties but are expensive. Good results have also been 
obtained from cheaper but carefully engineered metallic strain gauges. 
Some designs use a compressed nitrogen backing pressure, applied when 
the capsule reaches full depth and then held ‘ constant ’ , so that the 
sensor has only to deal with the small dynamic range of the tide itself, but 
this requires knowledge of the sensitivity of the compressed gas to temper
ature variations. The pressure is usually recorded as a total count of 
vibrations of a variable oscillator over a fixed period, of the order of 
102 —  103 s, and so a timing mechanism precise to about 1 in 10(i is also 
required. Low power consumption is obviously desirable, and the battery 
power supply, computing circuits and data logger, all inside the pressurized 
capsule (usually a metal sphere) have to be robust and reliable at temper
atures near 0 °C. Another important feature is the acoustic transponding 
system, used for interrogation, homing-in and releasing of ballast when the 
capsule is finally recalled to the surface.

Altogether, these requirements have been compared with those of an 
instrumented space satellite. The capsules are expensive and have to be 
tended by specialized scientists. Not least in cost is the ship itself, which 
either has to make two return journeys between home-port and recording 
site or have another research programme in the same sea area to occupy 
the month or so between laying and recovering the capsule(s). Obviously 
this activity is possible only to a scientifically developed nation with an 
interest in tidal research. The small number of deployments is therefore 
not surprising.

I have not quoted any references in the last two paragraphs because 
most of the instruments which have been developed since the first experi
ments in the early 1960s are summarized in an account of an intercalibra- 
tion experiment (Unesco, 1975) which was organized by the international
SCOR W orking Group No 27 in late 1973 in the North Biscay area. Seven 
capsules designed in various laboratories in Canada, France, UK and USA 
were laid in close proximity from the British RRS Discovery and their 
results compared. Out of a great variety of techniques and independent 
calibrations, estimates of the M2 tide were within ±  1 % in amplitude and
±  1" in phase. The experiment also brought out at least two other interest
ing facts. Nine different methods of analysing one-month tidal records, 
individually favoured by various authorities, were compared in application 
to a single record : their results differed by more than the various instru
ments. Tidal analysis is not such a perfected art as some authorities would



have us believe. The other interesting fact was that four out of the seven 
capsules submitted were restricted to shelf-sea depths (200 m or less). This 
emphasizes the somewhat easier technique required for shallow-water 
work, and a tendency for institutes concerned with tides to restrict their 
activity to their national continental shelf seas.

The intercalibration experiment marked the culmination of activity of 
SCOR W orking Group No 27. It disbanded shortly after the publication. 
During its ten years of office it did much to encourage development of 
pelagic instruments and methods of analysis, and generally to re-awaken 
interest in ocean tides. Under its influence, more than 600 station-days 
of pelagic tidal records were made at places in the Atlantic, Pacific and 
Southern oceans where the tides were previously unknown. Yet it failed 
to stimulate a genuinely worldwide activity or to organize any campaign 
of measurement COOrdi*"!0*0*̂ r* t t h u+1» t* ncfin t i H rppr̂ rHiricf
remains the pursuit of three or four independent national groups, all in the 
northern hemisphere, and some expressly confined to national waters. The 
reasons are basically expense, slowness of the method to achieve significant 
results, and a shortage of oceanographers who are really dedicated to the 
study of tides.

The British (IOS) programme now seems to be the most active and 
deserves some description, since it represents the only attempt to simulate 
part of a plan suggested to SCOR W orking Group No 27 by H a n s e n  (1966) 
of Hamburg (a pioneer of numerical tidal modelling). The plan is to 
surround a sizeable area of ocean with a chain of tidal measurements, then 
compute the tides in the interior o f the area by one of the usual methods. 
By extending the chain across to important land boundaries, it can be 
slowly extended to cover whole oceans and eventually the globe. Concen
tration on a relatively small well-measured area enables one to test the 
various formulations and choose an optimum method in a way inaccessible 
to global tidal modellers. Processes at the shelf edge and internal tidal 
generation can be directly studied. The area chosen by IOS is bounded by 
the western European coastline and the mid-Atlantic Ridge between the 
latitudes of Iceland and the Azores, and measurements at about 500 km  
separation are now nearly complete. In addition, the tides along the edge 
of the continental shelf from Brittany to Norway have been measured 
with associated currents at 100 km  separation. The latter measurements 
have already provided the necessary input to a shelf-sea model (figure 11) 
and the direct evaluation of power loss over this important oceanic bound
ary. Tidal models corresponding to the entire oceanic area are being pre
pared at IOS. The completion of such an area may encourage others to 
extend it to the west as far as Canada and the USA, while the possibility of 
isolating the whole of the North Atlantic Ocean by measurements between 
the Guinea Coast and northern Brazil is now within reach.

Even so, the possibility of parcelling out all the world’s oceans by such 
combinations of pelagic measuring technology and computation looks rather 
remote. It would undoubtedly require generous cooperation from oceano
graphic institutes in the southern hemisphere and the countries bordering 
the Pacific Ocean. Perhaps equally important is to obtain reliable measure
ments of the major dissipating regions such as the Okhotsk Sea and the



shelf sea off Argentina. In these days of extended national maritime bound
aries this has to be left largely to the national authorities themselves and 
the hope that they are interested in tides.

The difficulties in the above scenario make one turn to other techno
logies than oceanographic which might be stretched to give useful meas
urements of ocean tides. The possibility of using widespread measurements 
of Earth-tidal gravity was mentioned in § 6.1 —  the inverse loading prob
lem. This may be reliable for areas of ocean well surrounded by points 
of land and islands, but the large tidal amplitudes localized in shallow seas 
tend to distort the loading picture. Large areas of the southern oceans are 
sparsely furnished with islands. If one has to put gravimeters on the ocean 
floor, one may as well use direct tide recorders as discussed previously.

A totally different technique, of tantalizing promise for the future, is 
the high-precision altimetry of the sea surface from Earth satellites. After 
several years’ focusing on meteorology and Earth imagery, instrumented 
satellites are becoming more oriented towards geophysical and geodetic 
measurements, particularly those designed in France and the USA. One 
of the latest developments in the USA is a compressed-pulse vertical radar 
which can time the reflection from the sea surface to nanosecond or better 
accuracy. W ith reasonably known corrections for atmospheric trans
mission properties and bias from surface waves, it can essentially measure 
the height of separation to 0.1 —  0.5 m precision. The basic principles of 
its use are discussed in G r e e n w o o d  et al (1969). Preliminary results from  
the radar altimeter mounted in the Skylab satellite are very promising 
( M c G o o g a n  et al, 1975) ; improved models are now in use in GEOS-3 and 
planned for SEASAT-A in 1978.

For the results to be useful for tidal and other studies, however, the 
absolute geocentric height of the orbit must also be known to decimetre 
accuracy. This is the more critical limitation at present. For accurate 
calculations of the orbit, the spacecraft must be well above the atmosphere 
to avoid drag and the smaller scale variations of the Earth’s gravitational 
field, but too great a height would strain the accuracy of the altimeter and 
increase the area of its ‘target’ on the ocean surface. 800 km above the 
mean surface is typical of current plans. In order to fix the orbit to the 
required precision, laser-ranging stations are set up at strategic points on 
the Earth’s surface, but it is not yet known whether this precision will 
extend more than 1 000 km or so from the ranging stations. At present 
the laser-ranging stations are concentrated near the USA, but a consortium  
of European laboratories is also planning a high-precision tracking exercise 
on their side of the Atlantic Ocean.

Given the altimeter data and adequate ranging —  and there are political 
difficulties even here —  extraction of tidal information is still far from  
straightforward. Ideally, one would like estimates of the height of each 
given portion of ocean surface, say a 500 km square, at 100 different times, 
effectively at random. But satellite tracks are never precisely repeated, and 
the mean geocentric height of the sea surface can vary spatially by several 
metres over such an area due to the shape of the geoid ( K i n g - H e l e , 1975). 
Indeed, the prime purpose of satellite altimetry to many scientists is the 
improved determination of the geoid, with the tides as a mere ‘noise factor’



to be removed by averaging. In any case, evaluation of the tidal signals 
will almost certainly have to be done in conjunction with computer models 
which aim to simulate the tides by the methods discussed earlier. Certainly, 
the disentanglement of the complex tissue of data in time, latitude and 
longitude which will arise from these altimeters will require the coopera
tion of experts from a range of scientific disciplines. It should also be 
noted that the altimeter detects the total tide, the sum of the oceanic tide 
as usually defined, the body tide, and the loading tide of the solid Earth. 
Separation of these components is a secondary problem ( C a r t w r i g h t , 1977).

Despite these difficulties, the prospect of nearly global coverage without 
the expense and logistics of research ships makes satellite altimetry, in the 
author’s opinion, the main hope for the eventual solution of the world’s 
cotidal map. Meanwhile a continuing programme of ship-based oceano- 
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associated with tidal dissipation.
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Postscript (February 1978)

The re-publication of this article by the International Hydrographic 
Organisation allows me to note some important developments during 1977.

According to recent lectures by the respective authors, both C. P e k e r i s  
and W . Z a h e l  have independently solved the global tidal equations (4.2), 
(6.11) which allow for elastic crustal yielding and self-attraction. See also 
G o r d e e v  et al (1977). The iteration processes apparently converge in the 
absence of constraints from boundary data, whereas they diverged in 
H e n d k r s h o t t ’ s  (1972) formulation. Z a h e l , using a 4° grid, obtains signifi
cantly closer agreement with observed coastal data than in his previous 
solution with the same grid size for a rigid Earth, ( Z a h e l , 1970), but the 
general pattern remains qualitatively similar to that of Figure 8.

K. L a m b i -x k  (1977) has published an extensive new review of tidal 
dissipation in the Earth-Moon system, demonstrating even better agreement 
between astronomically based estimates and those based on computed coti
dal maps than in the figures quoted in this article. A typical agreed



figure for the dissipation at the M., frequency is 3.20 ±  0.15 X  1012 W , a 
little lower than as quoted above. L a m b e c k  (1977) suggests that the Bering 
Sea has been grossly over-rated as a major sink of energy, and this is 
confirmed independently by a computer model of that sea by S i t n d e r m a n n

(1977). Removing most of the contribution from the Bering Sea reduces 
M i l l e r ’ s (1966) estimate of M ., bottom-frictional losses from 1.7 to 1.5 X  
1012 W atts, thus widening the gap still further.

As additional confirmation of the higher figure for total tidal dissipa
tion, L a m b e c k  (1977) discusses the important recent estimates from the 
perturbations of satellite orbits ( C a z e n a v e , D a i l l e t  & L a m b e c k , 1977). The 
tidal masses distort the gravitational field to give periodic perturbations 
to the inclination and nodal longitude of artificial satellites, with ampli
tudes of order 0 ".05 . These can now be detected with some accuracy, and 
give in effect independent estimates of (L ., and e..2 2 in (8.4), namely 0.031 m 
and 123° respectively. These and the equivalent dissipation of 2.7 X  
1012 W  are lower than the figures from cotidal maps, but there is some 
uncertainty associated with the influence of the C 4 u harmonic on the 
satellite results.
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