
International Hydrographie Review , Monaco, LVII (2), July 1980

SOME NOTES ON SIMPLIFYING THE HSWC METHOD 
OF TIDAL ANALYSIS

by M. AMIN and J. GRAFF 
Institute of Oceanographic Sciences,

Bidston Observatory, Merseyside, U.K.

SUMMARY

The method of least squares, as used in the Harmonic Shallow Water 
Correction (HSWC) technique by A min (1977), is adapted under restrictions 
of fixed data length and specified constituents, imposed by D o o d so n ’ s 
(1957) method. It is shown that the technique provides a quick and simple 
method of computing HSWC coefficients. A lso some simple graphic ex
planation of the criteria for selection of data length, essential to resolve 
constituents having given speeds, is provided.

INTRODUCTION

The HSWC method of analysis and prediction of tides was developed 
by D oodson  to overcome the inadequacies of the harmonic method of 
analysis which then (1950’s) could not cope with the large number of 
shallow water constituents generated by tidal interaction and bottom 
friction. The HSWC method is designed to compute an improved quality 
of predicted high and low water turning points. The method assumes that 
the M2 constituent is wholly dominant, and therefore high and low waters 
will occur close to the maxima and minima of the M2 tide.

In principle, if
6 =  n ~vp

where tj is the level of observed tide (high or low water) and r/p is the 
associated predicted level based on a few principal constituents from the 
same, or a close by location, is computed for a shallow tide, then the-series 
8 can be analysed to provide terms which can be used in combination 
with -rjp to obtain substantially improved predictions. The series of residuals 
(or differences) 8 are functions of residuals of standard constituents, which 
are grouped together to form a small number of constituents known as



HSWC constituents (see Table 1), brought about by the effects of aliasing 
on the time interval of half a lunar day. The method lends itself to treat
ing separately both the heights and times of high or low water.

TABLE 1
HSWC constituent names are as given by  D oodson

No. Speed
(deg/HLD)

HSWC
cons.
names

Constituents

1 0.0 C (00) M4 , M6 , Mg ................................................
2 0.5100967 C(01) Sa , MA2 , Ma2 ...........................
3 1.0201934 C (02) Ssa , MKS, , MSK, , O P ,..............................
4 5.8565756 C (11) SN4 , MSN6 , 2MSNg , SNM2 , Mv4 ..............
5 6.7614611 C (13) N2 , L2 , 2MN2 , MN4 , ML4 , 2MN6 , 3MN8

+ 6 12.1079635 t 2 ................................................................
7 12.6180366 C (25) S2 , 2MS2 , MS4 , 2MS6 , 3MSg ..................

+ 8 13.1281333 r 2 ................................................................
9 13.6382313 C (27) 2MK2 , MK4 , 2MK6 .....................................

10 18.4746122 C (36) 2SN6 , 2SMN8 , M̂ S2 ..................................
11 19.3794977 C (38) MSN2 , MNS2 , 2MSN4 , 2MNS4 ..................
12 25.2360732 C (50) 2SM2 , S4 , 2SM6 , 2(MS)8 , 3M2S2 ............
13 26.2562679 C (52) SK4 , MSK6 , 2MSK8 , SKM2 , 3M(SK)2 . . .

+ 14 27.2764626 2KM2 ,K4 ..................................................
15 159.5426537 C'(40) OOj , k o3 ..................................................
16 160.5628484 C'(38) S O ,, SK, .....................................................
17 161.5830418 C'(36) sp3 ..............................................................
18 166,4194239 C'(27) J, ,Q l ,MJ3 , MQ3 .....................................
19 173.1808850 C'(13) Kj , Ot , MK3 , M03 , 2MK3 , 2M03 .........

*20 173.6909817 C'O 2) S, ,M S ,.......................................................
21 174.2010784 C '(ll) Pj , MP„ , S03 ..............................................

+ * 22 180.0

+ These constituents were not included b y  D o o d s o n .
* These constituents are not considered in the matrix computations given here.

A min [1 ] in his further developm ent o f  D oo d so n ’s [2] HSWC tech
n ique has show n that each set o f  d ifferences 8 can be represented in the 
form  o f  a d iscrete series.

s , = s  K ^ o V k  + wk r - * k > + n « !  o )k
w here sum m ation  is over all residual lines o f the spectrum , and

H is the am plitude
W  is initial phase lag

tjj an arbitrary phase lag
co speed in d eg rees /h a lf lunar day, and

n (r )  is noise in the series.



r =  0, 1, 2, . . . N relate to the HSWC constituents. The computation of 
the initial phase lag W  has been fully described by A min [1].

Equation (1) can be rewritten as:

w h e r e  • 5r =  2  0*k cos r  +  b k  sin r) +  n (r) (2)
k

a k =  H k c ° s  ( w k -  ^ k )

bk = -  Hk sin (wk -  !//k)

METHOD OF LEAST SQUARES

Solution of the redundant system of equation (2) for all ak, bk can be 
obtained by using the method of least squares in a normal fashion, by 
minimising the expression

N

£
0

M T
ôr — (ak cos ojk r + bk sin cok r) r

k=i J
(3)

In this manner the above N + 1 expressions are differentiated partially 
with respect to the coefficients ak, bk and equated to zero to obtain a linear 
set of 2M equations which can be written : 
where

PX = Y (4)

A, B, Yc and Y8 being vectors of length M where
N N

y® =  2  5r cos r and : y? =  2  5r sin C0j r (5)
r =  0 r= 0

The elements of the matrix P in equation (4) are simply

(6 .1) 

(6.2)

(6.3)

(6.4)

It is readily seen that matrix P is symmetric. Considerable simplifi
cation of the system of equations (4) can be made if the central point of 
the time series is chosen as the time origin, such that r =  — N/2, — N/2 +1, 
. . . 0 . . . N/2 whereby the matrix P reduces to :

N
Py =  ^  cos cjj r cos ojj r 1 < i < M . 1 < j < M

r= 0 
N

V  cos cjj r sin to. r 1 < i < M . M <  j <  2M
r= 0 

N
^  sin coj r cos co, r M <  i <  2M . l < j < M
r= o 

N
V  sin co, r sin a): rémJ ‘ J M < i < 2 M . M <  j <  2M

f= o



N/2
Py = 1 + 2 ^  cos cjj r cos coj r 1 < i  <  M . 1 <  j <  M

r =  i
=  0 
=  0

N/2
=  2 ^  sin coj r sin ojj r

r -  1

and is simply represented as

1 < i < M . M < j < 2 M  

M < i < 2 M .  1 < j < M  

M <  i <  2M . M <  j <  2M

.0

(7.1)

(7.2)

(7.3)

(7.4)

(8)

The matrix is symmetrically partitioned, and (7.1) to (7.4) show that 
the square sub matrices C and S are also symmetric.

A solution to equation (4) can be written as :

A = C-1 Yc 
B = S-1 Y* 

with the further simplification that :
N/2

yi = 6o + £  Fr coscj jr
N/2 

t  Gr
r -  1

Gr = Sr - 5 .

(9.1)
(9.2)

(10.1)

(10.2)

SOLUTION OF EQUATIONS

The stability of equations (9.1) and (9.2) depends upon the condition
ing of matrices C and S and any perturbations in vectors Yc and Ys arising 
from non tidal effects and noise. Equations (7.1) and (7.4) show that the 
diagonal elements of C and S increase with r, and the off-diagonal ele
ments oscillate in the range :

0, ^  { cos (coj — cjj) r + cos (ojj + ojj) r} 
r =  o

( 11)
where r* is some optimal value.

Referring back to matrix P, in the final form (8) it is easy to under
stand the development of its elements from  the graphical representation 
in figure 1.

For a continuous function (viz. 8 in (2) ) the matrix elements p  ̂ are 
simply given as the sum of the areas enclosed by the function and the 
time axis, with associated proper signs. If the function is discrete, as in 
the case discussed here, then the magnitude of the elements is given by 
the sum of values of the function at discrete points of given interval. In





general (<Wi — coj) < (cüi +  o>j) and the contribution from the second term 
under the summation sign in (11) is negligible compared with that of the 
first term. With a suitable choice of N =  NR according to Rayleigh’s cri
teria, the off-diagonal elements diminish in size and the matrix P becomes 
highly diagonal dominant, and also positive definite. This provides a suffi
cient condition for direct and iterative methods of solution of (4) to be 
convergent. With increased N, any error in Y will be reduced to improve 
the solution X.

G o d in ’ s (1970) criterion of N = 0.8 NR is such that the matrix P is 
diagonally dominant, but the off-diagonal elements can be of significant 
magnitude (see figure 1A, (v) (vi) ). This makes application of only direct 
methods, for solution of the system of linear equations, safe and simple 
because the process of positioning of pivotal elements is eliminated and 
the chance of developing round-off errors is substantially reduced. How
ever because the system is not necessarily positive definite, the convergence 
of any iterative scheme of solution is not guaranteed. In the format pre
sented here it is sufficient to compute the inverse of the final simple matrix 
form P, indicated in (8), since this will remain invariant for the further 
solution of any HSWC coefficients. Two such inverted matrices for 365 
days (N = 705) and 355 days (N =  685) are given in the Appendix.

CONCLUSION

Although the method as adapted and discussed here does not converge 
exactly to D o o d s o n ’ s method, it is a parallel process. Once the inverse 
of P (viz. C and S) is computed the vector Y (.viz. Yc and Ys) is found and 
the coefficient vectors A, B are simply obtained by multiplication (viz. C-1 A 
and S~1B). The overall process is simple, but requires marginally more 
arithmetic procedures than the D o o d s o n  method. It can easily be adapted 
for hand calculators with the advantage that it can be programmed for 
small desk computers with only a few instructions. With a selected span 
of data (365 or 355 days) and a given number of coefficients (M = 20), 
the inverted P matrix and its sub matrices (C and S) are diagonally domi
nant. Thus any constituent (coefficient ak or bt) which is expected to be 
small can be left unresolved by deleting corresponding rows and columns 
from C_1 and S_1, as well as associated elements of Yc and Ys, without 
adverse effects on the solution. Although the time series length can be 
selected according to G o d i n ’ s criterion (N = 0.8 NR) it will be suitable only 
when data are of good quality, otherwise any error in Y is transmitted 
into the system and may have adverse effects in the solution procedure.
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