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by Vice Admiral A. dos Santos FRANCO 
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ABSTRACT

This is an investigation of the physical law governing the interaction 
of the astronomical tidal constituents which generates the shallow-water 
tidal constituents, for the simple case of a narrow channel. The solution 
for both progressive and standing waves, up to the fifth order, is presented. 
The fluid is supposed non-viscous, and the flow frictionless.

1. INTRODUCTION

The problem of generation of shallow-water constituents is a diffi
cult one. Many scientists have tried to find the law of interaction between 
purely astronomical constituents in shallow water, but the known simple 
solutions, based on hydrodynamical equations, yield very few terms (A m in , 
1977). It is interesting to note that D o o d s o n ’ s simple geometrical solution 
permitted him to use all the shallow water constituents included in his 
analysis method. The relative amplitudes of these constituents, derived 
according to D o o d s o n ’ s own theory on propagation, led him to such a 
choice ( D o o d s o n  &  W a r b u r g ,  1941 and D o o d s o n ,  1947).

Since D o o d s o n  started with a formula expressing the celerity of the 
progressive tidal wave, the present author had the idea of also starting 
with the celerity, but deriving the theory analytically ( F r a n c o , 1956). 
However, theory to be useful, must start with an accurate formula for the 
celerity. Such a formula was derived by De S a in t  V e n a n t  in 1871 ( L e v y , 
1898). Let me quote what L e v y  said : “ ...W e emphasized, as a result of 
both the first and the second approximation, that the speed of the current 
in a considered section of the channels depends upon the water height 
only. It is logical to wonder if this law is accurate or approximate. The 
solution given by De S a in t  V e n a n t  shows that the latter is the answer to 
the question” .



De Saint V enant arrived at his solution by considering a rectilinear 
channel with constant depth and indefinite length, and ignoring friction. 
He started with the Lagrangian equations, and also found the celerity of 
the wave travelling through the channel. It is surprising that such a 
solution is not in more common use among oceanographers. The derivation 
of the celerity expression due to De Saint V enant was presented by L evy 
(op. cit.) in his interesting and rare book. Since this paper is based on 
the celerity, it seems useful to give here a new derivation of the above- 
mentioned expression, based on Euler equations, for water motion in a 
channel, as envisaged by De Saint  V enant. Such an equation for a channel 
in which there is no lateral velocity is :

du du d?
— + u —  = - g —  ( la) dt dx dx

and it must be associated with the equation of continuity which is express
ed by :

— + u— = - ( h +r >—  (lb)
dt dx dx

where in equations (la) and (lb) :
£ = height of the tide referred to mean sea level; 
u = velocity of the tidal current along the channel; 
t = time;
h = mean depth of the channel; 
g = acceleration due to gravity.

Since the length of the channel is not considered, De Saint  V enant 
assumed that it would be sufficient to adopt :

u = A V g(h +  0 +  C

as a particular solution to equations (la) and (lb), in such a way that 
A and C are the constants to be computed. If we start from a still condition 
we must have £ = 0 for u = 0. Thus : ... .  ̂ f  J

K c — A v a r  O
and consequently : --,  ̂ j

u = A [g (h + r )p -A (g h )î  (lc)
The derivatives of u with respect to x and ! are :

du Ag J.
—  =  ^ [ 8 0 1 + o r *  (Id)ox 2 dx

3u Ag i
5 7 = r l8(h + f ) ] " 5 F  ( l t)

From equations (11>). ( lc )  and (ld> we obtain



Substituting for 3£/3t into equation (le), and introducing the resulting 
3u/3t as well as equations (lc) and (Id) into equation (la) we find :

/ A 2 *

( - —  + 1 ) - = 0V 4 /3x
Since 3£/3x ^  0, except for maxima and minima, we must equate its 

coefficient with zero, in order to solve for A. The result for such a solution 
is A =  ±  2. This positive value expresses conveniently the physical con
ditions; thus from equation (lc) we have :

i  i
u = 2 [g(h + f)]2 — 2 (gh)2 (lg)

We derive also from equation (If) :
ax i  i
—  = - 3 [ g (h + r)]2 + 2 (gh)2ot

If we consider that x = 0 at the entrance of the channel and that it 
corresponds to instant t, then a point of the wave surface at distance £ 
from the mean sea level will arrive at a section of the channel at distance 
x from the entrance at instant tx. Thus we can integrate the above expres
sion from 0 to x or from t to tt which gives :

x = { -  3 [g(h + f)]* +2(gh)2 } (t, -  t)
or if we put :

I I
c = 3 [g(h + f ) ]2 — 2 (gh)2 (lh)

it follows that
tj — t = — x/c

which means that the height £ will arrive at section x with a time lag x/c. 
Thus, c is the wave celerity. It is interesting to note that both the celerity 
c and the velocity of the current u are functions solely of £. It can be 
seen that the particular solution of De S a in t  V e n a n t  is a rigorous one for 
the assumed physical conditions.

Further developments need to have 1/c expanded according to the 
increasing powers of £/h, up to the fifth power. Thus it is convenient to 
write equation (lh) as :

c = (gh)T [3 ( l+ ? /h )* -2 ]  (li)
If we make

VIh = c0 Oj)
the desired development yields :

3 21 „ 75 , 1 077 , 3 877
(lk)

/ 3 21 ,  75 , 1 077 . 3 877 /
1/c = ( 1 ---- p + — p2 ------ p3 + ------- p4 ---------- p5 ) /  c

where V 2 8 16 128 256 )/

P =  f/h (11)
The test for convergence showed that we must have p <  0.555 (recurring).

If the tidal range is 10 m in a channel with h =  20 m, from equation
(11) we have p =  0.25. Hence, in the usual applications, £ seldom reaches 
the value of p  given.



2. TIDAL HEIGHT IN SHALLOW WATER

The complex expression for tidal height may be taken as :
Q

f  (0 =  £  aj exP 0 t) (2a)
j = - Q

where Q is the number of constituents involved, and

^ = 6; Rj exp ( -  iij) 6j = j 1,2 j J JJ (2b)

Rj and being respectively the amplitude and phase of the constituent 
of order j. The following conditions must be observed :

rj >  0 , a>j >  0 for j >  0
rj = 0 , Wj = 0 for j = 0 (2c)
Tj <  0 , cOj <  0 for j <  0

Equation (2a) represents the height of a point on the progressive wave 
profile travelling along the channel referred to the mean level (ac — 0). 
Thus if c is the celerity at that point, it can be seen that the same height 
will occur at distance x from the channel entrance with a time lag x/c. 
Hence, from equation (2a), for such a point we have :

Q
? (t) = X  aj exP [icjj (1 “  x/c)] (2d)

j  =  - Q
But we can write equation (lk) as follows :

l / c = l / c 0 + A (2e)
where A is the algebraic sum of all the pa terms. Thus from equations (2d) 
and (2e) we have :

o
f  (0  = Z  exp [icoj (t -  x/c0)] exp [ -  icoj xA] (20

j =—Q
The second exponential in equation (2f) was expanded according to the 
powers of &>jA. Afterwards, A was replaced by the sum of the terms in p 
taken from equation (lh). For powers of p up to the fifth, the result is :

5
1+ I (A'„ + iB'n)p n (2g)

Q
f (t) =  £  aj exP [i0Jj (t -  x/co>]

j =  — Q |_ n = 1
But equation (11) shows that p is a function of ¢, and another expansion 
( F r a n c o , 1976) is necessary to eliminate £ from the second member, by 
expressing p in terms of

Po =  U h (2h)where
Q

fo 0) = Z  aj exP fiwj 0  -  x/c0)] (2i)
j = -Q



Then we find :
Q V 5 1

f ( t )=  £  aj exp [iojj (t — x/c0)] I 1 + V  (Znj/hn)^ (t )  (2j)
j = —Q L n = I J

where
V h "  =  A  n j  +  i B n j = Z ' nj  ( 2 k )

Anj and Bnj being as shown in table 2-1. It follows from equations (2i) 
and (2j) that :

Q.
f (0  = J! aj exP tiwj ^ “  x/co)l +

J = —Q
5 /  Q  Q  Q

+ 1 2  2  . . .  S  Z'„j (aj ak . . . a ) exp [i(£j. +
n = l  ( j  =  - Q k  =  - Q  p =  — Q

n + 1 + cok + .. . + o>p) (t -  x/c0)] | (21)

This is the expression for the law of interaction between astronomical 
constituents in a shallow-water channel.

Table 2-1

n Anj B»J

1 0 3ojjX
2c0h

2 27 cojx2 21 cjjX
8 c2h2 8 c0h2

3
63 cojX2 
4 c2h3

75 cojx 144a>3x3 
16 cQh3 16 c3h3

4
6 705 co?x2 3 375 oof x4 
128 c2h4 ' 128 c4 h4

1 077 WjX 4 725 w fx3 
1 + ---------- 2----

128 cQh4 64 c3 h4

5 38 286 co2x2 40 824 t jf  x4 3 873 wsx 96 228 w fx3 6 561 cofx51
256 c2hs 128 c£h5 256 c0h5 256 c3hs 80 c*hs

According to equation (2b) :
1 

• • • aP (2 8j 8k . • •0p)(R j Rk . . .  R̂ ,) cxp [_  i (r. + rk + . . .  + rp)]

Consequently, since Sj = 8 k = ... =  ô„ =  1/2 for j. k, . .  . p 5* 0, and since no 
interaction exists for j = k  = . . .  =  p = 0 , it follows that :

1
^ - - - ^ = - ( 2  "R jRk . RpJexpt-iCrj + rk + . . .  + rp)] (2m)

which is the part of the complex amplitude of the compound constituent



that is independent from coefficient Z 'nj. This expression shows that if 

and if
1, =  0 , + u,

fj and Uj being respectively the lunar nodal factor and angle, then 

ajkj • • • ap = Fjk p | ” • (2-n H, Hk . . .  Hp) exp [ -  i (a, +  a k +  . . .  a p)]  j (2n)

where
Fik... p =  fk • • * fP) exP I - * +  uk + . . .  +  up>] (2o)

is the complex nodal factor. The signs of ujT ut. . .  . u„ are the same as 
those of j, k , .. . p, respectively.

From equations (21) and (2m) we take :

Q
f  (t) = V, a, exp [iw, (t -  x/c0)] +

J = - Q  q

+ t  \ £  S  . . .  I  Z ^ ( 2 - nRj Rk . . . R p)exp[i(coj +
n = l  / j =  - Q  k =  - Q  P =  Q

”  + 1 

+ cjk + . . ,cO p)(t-x /c0) - i ( r j + rk + . . .  rp)]|(2p)

This expression shows that many shallow-water constijuents are generated, 
with amplitudes proportional to :

. . .  p =  • • • Rp/2" (2q)
their frequencies being

^ ( 2. . .  =  ^  + ^  +  ^  (2r)
where a»„ and q have the same sign.

Since the angular frequency of M2 is approximately equal to 1/2 
rad/hour it is possible to make 1^1 =  s/4, where s =  1 for the diurnal 
constituents, and s =  2 for the semidiurnal constituents. Such an approxi
mation is used for n ^ 2 only. The multiple summations of equation (2p) 
show that according to equation (2r) we can have as many constituents 
with the same frequency as the number of possible permutations of cj}, &>k, 
etc. If we number the constituents as shown in table 2-II and desire to 
generate, say, the third order constituent MSNK4, the frequency of this 
constituent will be :

1234 =  U 1 + w 2 + w 4

where j = 1, k = 2, 1 =  3 and m = - 4 .  The same frequency will however 
be generated if

W4321 = - W 4 + W3 + W 2 + “ l

where j = — 4, k = 3, 1 = 2 and m = 1. The final constituents will be



2 - 3R1R2RsR4 multiplied by the algebraic sum of Z 'Dj shown in table 2-1, for 
n =  3 and |o>j( = s/4, where s =  2.

Table 2-U

Comp.

j
k
£

Linear part of the 
astronomic argument

Frequency in ra
dians per hour

, k , e ...

Relative
coefficient

Hj , k , 8 ...r s h p 90°

m 2 1 2 0 0 0 0 0.5058680 0.90805
S2 2 2 2 -  2 0 0 0.5235988 0.42248
n 2 3 2 -  1 0 1 0 0.4963669 0.17380
k 2 4 2 2 0 0 0 0.5250323 0.11495
V2 5 2 — 1 2 - 1 0 0.4976385 0.03301
l 2 6 2 1 0 - 1 2 0.5153692 0.02567

7 1 1 0 0 1 0.2625162 0.53009
Oj 8 1 — 1 0 0 — 1 0.2433519 0.37689
Pi 9 1 1 - 2 0 — 1 0.2610826 0.17546
Qi 10 1 -  2 0 1 — 1 0.2338507 0.07214
Jl 11 1 2 0 - 1 1 0.2720713 0.02963
M, 12 1 0 0 - 1 1 0.2530150 0.02963

In order to draw up tables covering constituents up to the fifth order, 
formulae based on combinatorial analysis were derived so as to facilitate 
the computation of the relative coefficients. Table 2-III is a sample of a 
more complete table.

The author ( F r a n c o , 1976) has studied the interaction which generates 
shallow-water constituents M2, S2, etc., for the second order terms. These 
constituents are large enough to modify the astronomical M2, S2, etc., and 
it is important to note that the nodal factors may not be the same.

3. STANDING WAVES

Let us suppose a narrow rectangular basin (fig. 1). If we imagine that 
an oscillation is generated at O, that such an oscillation propagates in a 
manner similar to a progressive wave, and that it travels up to F where it 
is reflected, then we may represent the resulting oscillation at O by :

Q Q
fo (0 =  £  aj exp (itOjt) + Y  ^ exp [icoj (t -  2L/c)] 

j = -Q  j = —Q
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F ig. 1. —  Rectangular basin.

If we develop the second summation in exactly the same way as described 
in section 2, we obtain :

Q
?o ( 0  =  £ .  2aj ex p  [ ioJj ~  L / ° o ) ]  cos  (w j L ĉo )  

j =  - Q  5 / Q Q Q

+ 2 2  2  . . .  2
n =  1 ( j =  — Q k =  - Q  p =  - Q

ap exp [i (ojj + cjk + . . . + wp) (t — 2L/c0)]
The first term in this expression corresponds to a typical standing wave 
for x = L. The second term will be reflected at O and will generate a new 
shallow-water progressive wave which will be treated as the main term, 
to give :

Q 5 Q Q
£0 (0 = £  2aj exp[iwj ( t - L /c 0)]cos(w j L/c0)+  Y, £  £

j =  —Q n =  1 j =  — Q k  =  — Q
Q

X  2 Z 'nj aj ak • • • ap exP [i(W j +  wk +  . .. cop (t -  3L/c0)] cos [cjj +  cok +
p =  - Q

+ wp)L /c0] (3a)
as the new shallow-water constituents. Such an iterative process should 
continue until the dynamical equilibrium is reached. However, since there 
are fewer shallow-water constituents than astronomical constituents, a 
second iteration may perhaps suffice.

To have a general expression for any section of the basin, it will suffice 
to change L into x in the cosine argument of equation (3a).

4. TESTING THE THEORY

In order to evaluate the theoretical convergence of the above develop
ment, the case of the port of Santana (154 km from the open sea, along 
the Amazon river) was considered. The general coefficients (table 2-III) 
are of the form JX + iY|. They were thus computed (table 4-1) for h =  18 m, 
|c0jj = 1/2, 1/4 and c0 = 3.6 Vgh km/h.



Table 4-1
General coefficients

c.p.d.
n

1 2 3 4 5

1 0.13413
2 0.13413 0.02734 0.00072
3 0.13413 0.02126
4 0.13413 0.00745 0.00093
5 0.02970 0.00925 0.00158
6 0.02997 0.00176
7 0.00913 0.00087
8 0.00868
9 0.00293

10 0.00285
11 0.00100
12 0.00093

A least squares analysis in the frequency domain for a 214 hours span 
( F r a n c o , 1978) showed a good convergence, since constituents of order 
higher than 3d were negligible. In order to have an idea of this convergence, 
we computed M4/M e and M4/M 8 using the amplitudes from the analysis 
and those given by the theoretical coefficients :

where =  0.13413 (as shown in table 4-1 for n =  1) and Cn are the other 
coefficients taken from the same table for each species. For M2 = 1.149 m, 
M4 = 0.213 m, M6 =  0.034 m and M8 = 0.011 m, we find :

M4/M6 Theoretical : 5.8 Observed : 6.3 

M4/Mg Theoretical : 23.4 Observed : 19.4
The above figures show that in this river situation there is fairly good 
agreement between observed and theoretical convergence. Thus it is seen 
that at Santana friction is not the main agent in the generation of 
shallow-water constituents.

Another test was made in order to verify the consistency of the 
relative values. If we represent the amplitudes of the constituents by their 
usual symbols, we obtain the following results :

M2 =1,149 M4 = (M|/2) =  0,213 
S2 =0,268 MS4 = (M2S2) = 0,101 
N2 = 0,239 MN4 = (M2N2) = 0,089



K2 = 0,076 MK4 = (M2K2) = 0,028
(Mf/4) = 0,034 Mg(M2/8) = 0,011

2MS6(3M*S2/4 =0,021 3MSg(4M2S2/8) = 0,010
2MN6 (3M*N2/4 = 0,025 3MNg (4M2N2/8) = 0,008
2MK6 (3M|N2/4) =0,004 2M2Ng (6M2S2/8) = 0,005
MSN (6M2S2N2/4) = 0,013 2M2Sg (6M2N2/8) = 0,008

Utilizing the formulae between brackets which are taken from the 
theory and the values from the analysis, the following relationshios are
obtained. M4/MS4 M4/MN4 M4/MK4

Theory 2.1 2.4 7.6
Analysis 2.1 2.4 7.6

M6/2MS6 M6/2MN6 M6/2MK6 M6/MSN6
Theory 1.4 1.6 5.0 3.4
Analysis 1.5 1.4 8.5 2.6

Mg/3MS8 Mg/3MNS Mg/2M2Sg Mg/2M2Ng

Theory 1.1 1.2 3.0 3.9
Analysis 1.1 1.3 2.2 1.3

It is seen from these values that there is agreement between theory
and analysis for the case of the larger constituents. However, it should 
be noted that the constituents T2 and v2 have amplitudes of 5.8 cm and
6.9 cm respectively, thus not much less than 7.6 cm which is the amplitude 
of K2. Constituents 2MTe, MKN6, 2M2K8 and 2M2j/8 should therefore be 
taken into account in order to improve results. Similarly, the sixth diurnal 
constituents should be improved by the introduction of shallow-water 
constituents containing T2 and v2-

It should be noted that the sixth and eighth diurnal constituents are 
small and have amplitudes less than some of the residuals computed in 
the analysis.

5. CONCLUSION

The present theory goes a long way to explain the generation of 
shallow-water constituents, but is far from being complete. Other approaches 
to include friction are considered necessary. Some research has already 
been done along these lines ( D r o n k e r s , 1964; G a l l a g h e r  and M u n k , 1971), 
but the results are only provisional. It seems likely that hydrodynamical 
numerical models will provide the best approach. However, even in this 
case the problem of linearizing hydrodynamical equations is a difficult one.

Accordingly it would appear useful to choose shallow-water con
stituents based on the principles presented in this paper.
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