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AUTOMATIC POSITIONING
BY REDUNDANT MEASUREMENTS

by Prof. Johann F. BOHME ©

ABSTRACT

The paper investigates a short-range positioning system, e.g. for surveying
of rivers, using electromagnetic phase measurements. The system consists of a
transmitter on a ship and three shore based transponders. For computing the
initial position for a calibration, differences of ranges to four successive transmit-
ter positions are measured. The differences yield an overdetermined hyperbolic
equations system for the unknown coordinates of the transmitter positions. The
redundant measurements are used to get a unique solution of the equations
system in almost all situations. The equations system is well adapted for an
iterative, numerical solution by means of the secant method. The algorithm of an
automatic positioning system is developed which calls the radio link for suitable
measurements, computes the above indicated hyperbolic method for a calibration,
uses only two transponders and computes the classic range-range method if the
last position is known, checks periodically the result of the range-range method
by means of two redundant measurements from the third transponder, restarts
the hyperbolic method in the case of an error, and informs the operator when
the course should be altered. Some results of numerical experiments and some
properties of the algorithm are reported which show that the proposed hyperbolic
method can be advantageous in application.

INTRODUCTION

Positioning systems for application to hydrography primarily use electro-
magnetic distance measuring [3]. We are interested in very short range systems,
especially for surveying of rivers, harbors, etc., which use shore-based transpon-

(*) Lehrstuhl fiir Signaltheorie der Ruhr-Universitat, 4630 Bochum, Fed. Rep. of
Germany.
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ders and a transmitter, for example, on a ship. Exact positioning is required for
precise coordination between the depth value measured and the ship position (e.g.
for suitable paper transport of a survey sounder or for a bottom chart recorder).

Robert C. MUNSON presented in 1977 a report[5] on positioning systems of
potential application to hydrography. He investigated two types of electromagne-
tic distance measuring systems, short range systems using microwaves from a
mobile transmitter to a pair of fixed transponders, and medium range systems
using three or more shore-based transmitters at about 2 MHz and passive recei-
vers. The former systems fall into three classes: pulse systems, CW systems using
phase measurements on modulation frequencies, and systems using long coded
pulses on a CW signal. He concluded that the phase measuring systems in
general have lower accuracy specifications than the pulse systems, and also carry
a higher price tag. However, this is not correct for very short range systems
which are of inieresi in (his paper.

Our investigations are related to experiments with the distance measuring
system ATLAS RALOG 22 of Krupp Atlas-Elektronik [4]. It is a range-range system
with a mobile transmitter and two fixed shore stations not applying the pulse
mode of operation like the Mini-Ranger [l of Motorola[5] which directly obtains
the ranges to the stations, but using phase measurements to get the difference of
ranges from a station to pairs of transmitter positions. In other words, the
system measures ranges that have an unknown fixed bias, for each station, but
range differences between successive observation points are correct. Knowing, for
example, the initial position of the ship, the following positions can be computed
by the differences from both stations using the known simple formulas.

The ATLAS RALOG 22 was developed especially for river and harbour sur-
veying and the chosen frequency of 34 MH:z (about 8 m wavelength) is a good
compromise, keeping position errors due to reflections and phase anomalies low,
while maintaining a sufficient range of more than 10 km. It could be demonstra-
ted that at this wavelength the transmitted signal “jumps” over smaller obstacles
rather than being totally shadowed, and stable operation could be achieved, even
in unfavourable areas like harbours, across forest-covered islands, or in the vici-
nity of iron bridges. While all microwave systems are bothered by Fresnel zone
interference, at least at distances below 1 km the 34 MHz propagation is stable in
this respect and the minimum distance between transmitters can be less than
10 m. The RALOG system is coupled to intelligent data-processing equipment
called Susy, which is well able to run the mathematical procedure described
later. Although the following investigation was made with the RALOG 22 system
in mind, the general method seems to be applicable to other short range systems
which cannot be replaced by satellite systems, and can be used for both electro-
magnetic and acoustic systems.

The RALOG 22 has a high accuracy; there are, however, two disadvantages.
First, operator intervention may be needed to suppress ambiguities, and second,
more important, the system has to be zero set. Inshore position fixing is done by
means of a laser. The differences have to be continuously monitored. A signal
loss results in a loss of differences, and a new calibration is necessary.

The problem was to avoid both the system’s zero set by optical means and
the possible ambiguities when only phase measurements with a similar system
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are possible. The idea for a solution is summarized as follows. A third land
station is introduced and redundant measurements to successive transmitter posi-
tions are executed. Measurements to three stations supply one redundant range
difference, so at least three ships’ positions are required to solve for three fixed
biases. We take four positions and get redundancy which is used to avoid
ambiguities in solving a set of hyperbolic equations. In this way, which we call
the hyperbolic method, a calibration without optical means is achieved.

After calibration, the following positions can be computed as in the range-
range system without the third land station. For quality control, however, it is
recommended to check the computed positions periodically by use of additional
measurements from the third station. If there is disagreement, one has to calibrate
with the hyperbolic method once again. Since the hyperbolic method does not
work in the case of a straight course, the helmsman must know that a restart is
being effected and should alter the course. Based on these ideas, an automatic
computer-controlled positioning system was designed. The system works automa-
tically in that all necessary activities of the radio system are called, for example
“switch on the third station” and “difference measurements from three land
stations™; in that it calls for such measurements until the hyperbolic method is
successful; and in that it checks the last computed position as explained above.

The next chapter discusses the geometry of the hyperbolic positioning pro-
blem in the plane. A suitable system of linear and non-linear equations for the
unknown coordinates of the successive positions of the ship is constructed. The
use of the differences from three stations and four positions yields more indepen-
dent equations than unknown coordinates. An iterative solution of the complete
system avoids the generation of ghost positions, i.e. computes the unique solu-
tion. The. following chapter describes an algorithm for the automatic positioning
system which executes the iterations for the hyperbolic and the calculations for
the range-range method and all the things already mentioned. Finally, some
remarks on numerical experiments, on properties of the algorithm, and on possi-
bilities for handling noise problems and continuous quality control are added.

This work was supported by Krupp Atlas-Elektronik, Bremen,
W.Germany. I thank Mr. GERLACH and Mr. STEDTNITZ of KAE who suggested
the investigations for many discussions and Mr. HENRICI for the programming
and the execution of the experiments.

I gratefully acknowledge the fact that the Editor of this Journal called the
author’s attention to Mr. RIEMERSMA'S paper|{7] and inspired the detailed com-
ments of Mr. SLUITER. 1 thank Mr. SLUITER for the critical review of this paper,

especially for his statements on problems in connection with disturbed measure-
ments.

GEOMETRY OF THE POSITIONING PROBLEM

Let us assume that we have two land stations at locations A and B and a
third at A" which is not on the straight line matching A and B. Four successive
positions of the transmitter on the ship are called P,, P,, P,, P,. The following
sketch illustrates the geometry and defines the vectors of interest.
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Al

We are given the points A, B and A" and then the vectors ¢ and d. These
vectors define the base of the coordinate system. The other vectors are assumed
to be unknown. The problem is to find the inner products of these vectors with
c and d, for example Ic and Id. As known, the vector | can be expressed by:

d?lc—cd Id clld—cd Ic

() 1= E c+ = d

where d?= dd, etc., and
2) E = c¥d?- (cd)?
is a constant greater than zero since ¢ and d are linearly independent.
The phase measurements by the radio link give us the following differences
of ranges
(3) Ibi+ ||— Ibi|=ﬂi'|ai+ ||— |ai| = in'a,i+||_ |a’i|= Yi for i=1 s 2, 3.
Herein, the range is the length of a vector, e.g. |b,/=(bp)"%
We find some elementary vector identities from the sketch. To simplify
matters, we omit the subscript 2 of b,.
b,=b-k, b,=b, b;=b+1,b,=b+1+m,
) a,=c+b-k,a,=c+b,a;=c+b+1l,a,=c+b+1+m,
aj=d+b-k,a,=d+b,a,=d+b+],a,=d+b+1+m.

Thus, the unknown vectors are b, k, 1, m, and the variables bc, bd, kc, kd,
Ic, Id, mc, md have to be determined.

From (3), we have nine independent, nonlinear equations for eight variables,
i.e. the equations system is overdetermined.
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If we did not use measurements to the fourth position of the transmitter,
we would have six corresponding equations for six variables. Since the equations
could be stated as polynomial equations, cf. the arguments below, a large num-
ber of solutions would exist in general. The overdetermination reduces this num-
ber to one in almost all situations. We remark that working with only two land
stations gives too few equations: the use of n positions results in 2n— 2 equations
for 2n variables.

The next problem is the construction of an equations system equivalent to
(3) which is well suited for an iterative numerical solution. When the equations
of (3) are written |b,,,I= Ib|+f, etc., they can be squared without loss of
information. Suitable differences of the squared equations and substitutions result
in
1) ke=(@i—al+2a,lb+cl—-28,bl)/2
2) kd= (@~ y2+2y,lb+d!—28,b))/2
3) le=(ai- B3+ 2a,lb+cl—-2p,bl)/2
4) Id= (21— B2+ 2y,lb+dl~ 28,b))/2
5) mc=(a?- B+ 2afa,+ b+c)—26,8,+ b))/2
6) md=(y3- B+ 2y (y,+ b+d)-26,8,+ bD)/2.

From (1) and (2) we obtain :

7) k?=(d¥kec)?+ cAkd)?- 2cd kc kd)/E
8) 12=(d¥c)*+ cH1id)*— 2cd Ic Id)/E
9) m?2=(d¥mc)? + c{md)’ - 2cd mc md)/E

and the inner product
10) Im=(d¥c mc + ¢?ld md — ¢d (Ic md + 1d mc))/E.

Two of the squared equations of (3) give

11) bl= (82— 12+ 24,Ib)/2
12a) bk=(k2— 2+ 28,1o))/2.

Like 10), we can write
12) bk =(d%c kc+ c?d kd — ed (bc kd + bd kc) )/E.

The vectors k and | are linearly independent if, and only if,
) F=kcld—-kdIc

is not equal to zero. Presuming the latter, we can write bk and bl as 10), solve
for bc and bd, and obtain equations 13a) and 14a). If we interchange the role of
k, | and F with that of I, m and

6) G =lc md- ld mc

respectively, we get 13b) and 14b).

13a) bec=1(c? (bk Id— bl kd) - cd (bk Ic— bl kc))/F

13b) be=(c? (bl md— bm 1d)- cd (bl mc— bm Ic))/G

14a) bd=(d? (bl kc— bk Ic)—cd (bl kd— bk 1d))/F

14b) bd=(d? (bm lc— bl mc)-cd (bm 1d— bl md)/G.

We have, similar to 7),
15) [bl=((d*(bc)*+ c2(bd)*— 2cd bec bd)/E)'/?
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The overdetermination gives additional equations for |bl. First, expressions
for bm are found as 10) or from squared equations of (3),

16a) bm = (d?bc mc+ c! bd md — cd (bc md+ mc bd))/E
16b) bm= @2+ 28, (B,+ [bl)— m?-21m)/2.

The last equation re-arranged yields

[7a) Ibl=(m2+ 2bm+ 2lm— 83— 28,8,)/Q28), if §,=0.
We have from 12a)

17b) Ibl= (83— x?+ 2bk)/(28)), if B,=0.
Finally, we write

19) b+ ci=(b2+ c?+ 2bc)!’?
20) b+ ci=(bZ+ d?+ 2bd)/?

We can assume the constants ¢?, d?, cd and E and the measured values a,
B, v, (i=1, 2, 3) are known. An equations system for the unknowns b}, |b+c]
and b+ d| with known coefficients was constructed since all other variables of
interest can be expressed as functions of only these variables by means of sub-
stitutions. For a numerical solution of the system, suitable subsets of equations
have to be chosen. Three cases are discriminated. If |F| is not small against c¢*d?,
i.e. k and 1 are not parallel, then we use the equations 1) to 20) except for those
additionally marked by b). If |F| is small and |G| not small against ¢’d?, i.e. | and
m are not parallel, we exclude the equations marked by a). If both, |F| and|G|
are small, i.e. the ship is on a straight course, we cannot solve in the above
manner. The overdetermination for |b| is handled by mixing the right hand sides
of 15) and 17) with weights 4 and | — 1, respectively, where O<A1=1 and 1=1,
if B, or @, are relatively small. The mixture which we call 18) makes sense since
bl is greater than zero. If we call the input values for |b], b+ c| and b+ d| in
1), 2), etc., by u,, u, and u,, respectively, and the output values of 18), 19) and
20) by v,, v, and v,, we have the desired equations system of the hyperbolic
method:

5) fiu, u,,up=v,—u=00G=1, 2, 3).

For completeness, we note the equations systems for the range-range method if
the initial position is known, for example the vector b,. We first assume that
there are differences from land stations A and B. We find from (3) that

21) |b,I= Ib,|+ B,
22) |by,+cl= b, +cl+q
and like 19) and 7)

25a) b,c=((b,+ c)?~c)/2
bi=(d? (bc)?* + ¢? (b,d?) - 2cd by b,d)/E.
Solving for b,d results in
26a) b,d = (cd b= (Elcbi- (b)) ct
Because of (b,+ d)*= d’+ b3+ 2b,d, the plus sign is correct if A" and P, are
on opposite sides of the vector ¢ and, if not, the minus sign. The sigh cannot be

concluded from the measurements. This is in contrast to the case in which we
have additional measurements from the third station A". We would have 21), 22)
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23) b, +di=(b}+ d?+ 2b,d}!/?
24) |b,+di=|b,+ d|+ v,

and from b,=b,+k, 1), and 2) the unique assignments

25b) bec=bc+ (Bi- al+ 2a,lb,+ ¢l —28,1b,1)
26b) b,d=b,d+ (B~ yi+ 2y, by, + di—28,Ib,.

Storing the values |b,|, |b,+ c| and in case b,c and b,d, the start values for
the computation of a succeeding position are prepared.

ALGORITHM FOR AN AUTOMATIC
POSITIONING SYSTEM

The problem of the preceding chapter was the statement of a suitable
hyperbolic equations system. We now indicate a method for a numerical solution
in connection with a description of an automatic positioning system. We formu-
late an algorithm in an ALGOL-like programming language, explain a running
example of the positioning system, and describe the subprograms which do the
computations.

The programming language we use is PIDGIN ALGOL which was introduced
in [1]. PIDGIN ALGOL is a high-level language and is unlike any conventional
programming language in that it allows one to use any type of mathematical
statement as long as its meaning is clear and the translation into a machine
language is evident. The language does not need data declaration if the meaning
of the variables is obvious. The language uses expressions, conditions, statements
and procedures as ALGOL. The variables are universal and can be used in all
procedures. The procedures we apply usually contain, in the parameter list, only
the variables which describe the results of a computation. If necessary, we add
comments in the program to explain the activities called or the next steps.
Statements not of interest or realizations of formulas of the last chapter are only
indicated by a verbal description.

Algorithm of the positioning system

begin;

compute constants ¢?, d?, c¢d, ... parameters n, &, ...;

FINIS : = false;

comment : FINIS is boolian and is set « true » if the operator wants to
stop the computations;

ONA’;

comment : ONA’ switches on station A'; it is assumed that A and B
are already on;

start : MABA'4 (a,, a,, a3, f, B By 745 Y2 ¥
comment : measures differences from stations A, B, A’ to four succes-
sive positions for the hyperbolic method called by SECANT;
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hyperb : SECANT (bc, bd, ke, kd, Ic, Id, mc, md, u,, u,, u,, i);

run:

comment : if i=0, solution with u,= [bl, u,=b+cl|, u,=b+dl; if
i=1, restart with new random start values, otherwise restart
with more recent measurements;

if i=0 then goto «run »;

if FINIS then goto stop;

si i=1 then goto hyperb;

FLAG (“alter the course — restart”);

for n:=2, 3 do begin

Ayt =ayy B =By Ve =y, end;

MABA’l (a,, 8, 73);

comment : measures differences from stations A, B, A’ between the
latest and one new position;

goto hyperb;

comment : now the (c, d)-coordinates of the last four successive posi-
tions are put out to the link of interest;

OUTPUT (bc— k¢, bd— kd); OUTPUT (be, bd);

OUTPUT (bc+ Ic, bd+ td);

b,c:=bc+Ic+ mc; bd:=bd+1d+ md;

OUTPUT (b, b,d);

r:=u+ g+ r,i=u,ta,tag;
comment : r;= |b,J, r,=|b,+cl, now iy:=1 if A" and the course are
on opposite sides of ¢, and i,: = — | otherwise, must be put in if

c and b, are parallel, e.g. e= 10 ~%c’d?;

q:=ciri- (b,

if q< & then INPUT (i) else

ig:=sgn {c’b,d—cd b,e);

comment : now ng-times range-range method with stations A, B, posi-
tion P, is interpreted as P;

range : OFFA’;

stop : end

if FINIS then goto stop;

for n:=1, step | until n, do begin;

MAB | (a,, §,; TWOP (b, bd, r,, ry);

comment : differences from stations A and B are measured between
the latest and one new position, TWOP computes the coordinates
and the ranges of the new position which then is interpreted as
P

QUTPUT (b, b,d); if FINIS then goto stop end;

comment : now for checking two additional measurements from A’ are
required;

ONA’

MABA'l (a,, 8, 7);

comment : vy, may not be used at this time;

TWOP (b,c, b d, r,, r;); OUTPUT (b,c, b,d);

MABA’l (a,, 8,, v); THREEP (b,c, bd, r,, r, iJ;

comment : if i.# 0, error;

if i.=0 then begin OUTPUT (b,c, b,d); goto range end;

FLAG (“‘error — restart”); gofo start;
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Let us assume the operator starts the program. The program first determi-
nes the constants and parameters where the vectors ¢ and d must be put in. The
land station A’ is switched on by the procedure ONA’. The call of MABA’4 has
the effect that, corresponding to a fixed program, difference measurements from
the stations A, B, A’ to four successive positions of the transmitter are executed
by the radio link. The succeeding differences are assigned to the variables a, f,,
y, (n=1, 2, 3). Then, the procedure SECANT is called. This program tries to
solve the hyperbolic equations(5) by means of the secant method which is
described below. After returning, the main program branches depending on the
index i. If i is equal to zero, the procedure has been successful and the program
jumps to run. In the other case, FINIS is checked to stop the program when the
operator likes it. If i equals 1. the random start values of the secant method have
been unsuitable and must be generated again. The program goes back to the label
hyperb. For other values of i, SECANT could not find a solution since, for
example, it is suspected that the ship was on a straight course. FLAG indicates to
the operator that the course should be altered. The oldest differences are cleared,
and new differences from stations A, B, A’ between the latest position and one
new position are measured by calling of MABA’l. Having now more recent
differences, the method is tried once again by jumping back to hyperb. We now
assume i=0 and the program continues at run. The (¢, d)-coordinates of the
positions P, P,, P,, and P, are put out to a bottom chart recorder for example.
The coordinates b,c and b,d of P, and the ranges r,= |b,|] and r,= |b,+ c| are
stored. We need them e.g. for checking if b, and ¢ are parallel by means of q. If
they are approximately parallel, the operator has to put in whether the next
position of interest is on the same side of ¢ as station A’ or not by setting the
indicator i, equal to — 1 or 1 respectively. In the other case, 26a) implies the
formula for i, The value of i, is required in the range-range method with only
stations A and B. Station A’ is switched off. If not interrupted by the operator,
the range-range method is applied n,times. By calling of MABI, differences from
A and B between the latest position now called P, and one new position are
measured. TWOP uses the old ranges r, and r, realizes 21) and 22) by
r,:=r,+f, and r,:=r,+a, to get the new ranges as well as 25a) and 26a),
where « + » is used if i,= +1 and « — » otherwise, for the coordinates of the
new position which are now b,c and b,d. These coordinates are put out. In the
next steps, the results are checked. Station A’ is switched on, and one measure-
ment from three stations is executed. Since the difference y, from A’ is not
correct at this time, we once more proceed as with two stations. The second
measurement from A' gives a correct difference. THREEP first computes the new
coordinates as TWOP, then the new coordinates by 23), 24), 25b) and 26b) and
compares the results. If there is a significant deviation, THREEP assigns i.:=1,
and i.:= 0 otherwise. In the latter case, the coordinates of the new position are
put out, and the program continues with the range-range method at label range.
If i, equals 1, the operator is informed that there are errors and the program
jumps back to a new start with the hyperbolic method.

The next point of interest is how the SECANT procedure realizes the
hyperbolic method. We have to solve numerically the equations system (5) and
we do it iteratively by means of the secant method [6]. First, a procedure is
required which computes the differences §,=f, (u,, u,, u)=v,—y, (=1, 2, 3)
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for any input values u,, u,, u,:
procedure FCT (u,, u,, u,, §,, 8,, 6, i);
begin
FO=u,and lu,—lcl|Zu,=u,+ icland Ju,— ld||=u,=u, + |d
then i:=0 else begin i:=1; goto out end;
comment : input values should satisfy triangular equations; now the
eqs. 1) to 20) are used as assignments in a suitable sequence, e.g.
€, =10 "3%¢3d?, &=10 " lcl;
compute 1) to 11) and (5) where |bl, Ib+c¢|, b+ d| are replaced by u,,
u,, U,;
if IFI<e, then goto change;
compute 12a), 13a), 14a), 16a), assign right hand side of 15) to v,;
if 16,1> €, then assign mixture of v, and the right hand side of 17a) to
Vs
goto finish;
change : compute (6);
if IGI<e&, then begin i:=2; goto out end;
compute 16b), 13b), 14b), assign right hand side of 15) to v,;
if 18,1> ¢, then compute 12b), assign the mixture of v, and the right
hand side of 17b) to v,;
finish : &, :=v,—u;
8,:=(vi+cl+ 2bc)2— u,;
8, =i+ d?+2bc)!/?— uy;

out: end.

The idea of the secant method is to approximate the functions f; in (5) by
linear functions 4, so that f=2 (=1, 2, 3) for four points in general position.
The solution of A1,=4,=1,=0 is used as an approximate solution of
f,=f,=f,=0, which is called secant approximation. Iterative computations of
such solutions are done by the SECANT procedure.

procedure SECANT (bc, bd, ke, kd, Ic, Id, m¢, md, u,, u,, u,, i);

begin

RANDOM ((u,));

comment : generates non-negative random numbers in the 4 X 3 matrix
(um.);

for n:=1, 2, 3, 4 do begin

FCT (u,,, u,, U5 8, 8np S 13 if i =0 then goto return;

S, = 5nf+ 5n§+ 5,,% end;

comment : the elements of (u,) are the start values of the secant
method in the Wolfe formulation, now the rows of (u,) are
iteratively corrected until a sum s, of squared differences ¢, is
less than a parameter;

for p:=1, step 1 until 100 do begin

solve the linear equations system :

§ t,=0, § t,d
n=| n=1
if insolvable then begin i:=3; goto return end,

=0 (=1, 2, 3)for t,, t., t,, t,;

o
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Sor j:=1,2,3dou;:= ﬁl tu
n-—

comment : u,, u,, u, are the secant approximation;

FCT (u,, u,, u,, 8,, 8,, 8,, 1); if i= 0 then goto return;

s:= 41+ o3+ 8%

if s> max (s, s,, s;, s,) then begin i:=4, goto return end;

assign u,, U,, u,, &, &, &, s to those u,, U, U, S, 0,0 San S, fOr
which s, is maximum;

comment : if s is small enough, u,, u, u, are solution of (5); e.g.
;=10 "%c| [dl;

if s<e, then goto return; end;

i.=5;

comment : error messages i=10, solution, i=1, wrong start values,
i= 2, probable straight course; i= 3, linear equations system in-
solvable; i=4, 5, no convergence;

return : end

REMARKS

Some numerical experiments were carried out with a simplified version of
the program and with artificial data generated from typical transponder locations
and randomly chosen courses of the ship. SECANT computed a solution with
four ship positions in almost all situations. In every case of a solution, it was
correct. No ghost positions were generated, in contrast to experiments where we
used measurements from only three ship positions.

In connection with the algorithmic description of the solution method for
the equations (5), some remarks about the numerical behavior apply. The critical
points are, of course, the divisions in 13), 14), and 17). In the algorithm, we
branch if the dividents are relatively small and we therefore expect some numeri-
cal stability. The secant method itself has good properties; for example, compu-
ting in floating point gives high accuracy to the solution. However, the speed of
convergence could be faster by use of other methods[6].

A simple check of the algorithm and the observed fast convergence of the
calibration method show that implementation of the automatic positioning system
either by one of the more powerful table computers having an interrupt system
or by one of the inexpensive process computers with a floating point processor
would suffice for the real-time requirements in the surveying problems concerned.

In his review, Mr. SLUITER pointed out the problem of the distribution of
the four ship positions for a calibration which is indeed of importance if the
measurements are disturbed. In this paper, we assumed good conditions for
measurements with a low noise level except for occasional, short distortions
resuiting in a signal loss or similar things. For a calibration, we have assumed
weak measurement noise at most. Then, the hyperbolic method works if the last
four ship positions are not on a straight course and there is a sufficient distance
between succeeding ship positions. The latter means that the differences a, £, v,
are not all small in magnitude against the distances between the land stations.
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Finally, let us touch on the problem of disturbed measurements caused by
instrumentation noise, propagation conditions, etc. Continuous quality control is
required for a positioning method as stated in [7] and [2]. A careful investigation
in this direction has still to be accomplished. Statistical modelling of noise can
help to find statistical methods for estimating the positions. In the application of
this paper a quality control after a calibration could be effected as follows. The
third transponder {(and maybe a fourth if there are no problems with frequency
licensing and prices) is continuously used, and a linear least square estimation [2]
is substituted for the simple range-range method. More difficult is the calibration
with disturbed measurements. As stated by Sluiter, working with three transpon-
ders and four measurements with moderate noise can result in alternative hypo-
theses for the ship positions. There are some possibilities of addressing this
problem with redundant measurements from additional ship positions. Since the
hyperboiic method is comparatively fast, we use it, for example, recursively.
Beginning with four measurements, the method computes four points. One new
measurement and the last three measurements are taken, and the hyperbolic
method is executed again. The latter is done in a loop. In the sequence, we
obtain, for each position, three points regarded as rough data. By means of a
tracking algorithm similar to those applied by radar people, the ship positions are
estimated. From a statistical viewpoint, it is better to use the differences directly
as input data for an estimation procedure. Then, we have to solve a non-linear
stochastic equations system. However, we do not anticipate future developments.
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