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NOTE ON AMPHIDROMIC SYSTEMS

by R. DORRESTEIN ¥

ABSTRACT

Some simple theoretical relations are given for the water motion around
amphidromic points in the sea. The relations are based on the local approximation
of the sea surface as the superposition of two sloping plane surfaces each uniformly
rotating around a vertical axis, one in anti-clockwise direction and the other in
clockwise direction. The simple relationship between current velocities and eleva-
tions is only valid in co-oscitlating tides. The theoretical relations were tested for a
few actual situations, with satisfactory results.

List of symbols

(Only real quantities have been used)

r, 0

X,y
u, v
U, Vi
t

¢

-

Ay

A, B

horizontal polar coordinates around a given point in the sea. # increasing in
anti-clockwise direction.

horizontal orthogonal coordinates. x =r cos 6, y =r sin 6.

components of velocity {depth-averaged) in x and y directions, respectively.
defined by eq. (7).

time.

water surface elevation with respect to its time average.

tidal amplitude, positive or zero.

a constant, positive or zero (dimension : length).

constants, positive or zero (dimensionless, i.e. slopes).

angular frequency of tidal constituent considered, positive.

coriolis parameter (or “inertial frequency™) = 2 2 sin @ where £ is angular
velocity of earth = 7.29x107°s™', & is geographic latitude, positive if
North, negative if South.

(*) Royal Netherlands Meteorological Institute, Division of Oceanography. De Bilt,
The Netherlands (retired).
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a = f/w frequency ratio.

y = (A-B)Y (A+B), -l <y<I.
8 = Vm/um, with sign.

by, &, @_,, ... phase angles.

g constant of gravity.

H water depth.

INTRODUCTION

Points in the sea where the (vertical) amplitude of a certain tidal constituent
vanishes are called amphidromes (also : amphidromies) or amphidromic poinis. This
name was first introduced by R.A. HARRIS (1904) [4]; it is derived from the (ancient)
Greek words amphi (around) and dromas (running), and expresses the property that
the tidal wave in the neighbourhood of such a point is always found to rotate
around that point. In the German literature one also finds the words “Drehtiden”
and "Drehwellen™.

According to the many tidal analyses made, such amphidromes occur in
various places in the open oceans, as well as in marginal seas. A good review,
mainly on the Ma,-tides in marginal seas, was given in the book of DEFANT
(1961)[1]. A recent compilation for the oceans and for 7 tidal constituents, based on
extensive numerical calculations supplemented by tidal observations of coastal and
island stations. was published by SCHWIDERSKI (1978-1981){13][14].

As far as known, all observed or analysed amphidromes in marginal seas with
“co-oscillating tides™ in the northern hemisphere have anti-clockwise rotation of the
co-tidal lines. It may be expected that in marginal seas in the southern hemisphere
this rotation will always be in a clockwise direction but no examples are known to
the author. In the open oceans north of the equator 4 out of 6 amphidromes rotate
anti-clockwise (2 others are very close to the equator) and south of the equator 4
out of 7 amphidromes rotate clockwise.

A special type of amphidrome occurs in relatively smail enclosed (or almost
enclosed) seas, like the Black Sea or the Caspian Sea. Such amphidromes can be
readily explained from the direct action of the tidal forces : the eigenperiod of these
seas 1S much smaller than the tidal period and the water ievels approximate the
“equilibrium tide"; see DOODSON and WARBURG (1941) (3], DEFANT (1961) [1].

More generally, the tidal force locally plays a subordinate role in most cases,
especially so in marginal seas (“co-oscillating tides”). The occurrence and the
properties of amphidromes, therefore, are usually explained by considering one of
various models : two crossing standing waves with equal period differing in phase
(for instance 90°), see, e.g., THORADE (1931) [15], KRauSs (1973) [7], DIETRICH et al.
(1975) [2]; or one standing wave affected by the gyration of the earth, see, e.g.,
DoODSON and WARBURG (1941) {3]; or two superposed Kelvin waves of equal
period travelling in opposite directions, see, e.g., THORADE (1931) [15]. DEFANT
(1961) [1]. Krauss (1973) [7], DIETRICH et al. (1975) {2]. In nature, however, pure
standing waves, pure Kelvin waves, or other theoretical wave modes do not exist.
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It is the purpose of this note to demonstrate that the typical properties of the
various kinds of amphidromic systems can be described in a more general and
unified way, by considering the following simple general approximate expression
for the water surface elevation of a tidal consituent in and near any point in the sea
off the coast, in terms of suitably defined horizontal polar coordinates around that
point :

C(r.0) = Ay cos (wt — &)+ Ar cos (wt — )+ Br cos (wt+ 6) )
In fact, the right hand side of (1) represents the first few terms of a Taylor-like
series in powers of the radius r expressing any non-singular solution of the
linearized equation for frictionless long waves in water of constant depth (up to and
including the first power of r). This is explained in the appendix. If Ay is taken as
zero, the origin (r=0) is an amphidrome by definition.

The expression (1) has been simplified as much as possible, by choosing the
orientation of the line §=0 such that the terms with A and B are in phase there, and
by choosing the zero point of the time scale such that both these terms have their
maxima at t=0. For another choice of the line =90, e.g. along the W-E direction,
and for another time scale, two phase angles should be included in the arguments
of the cosines in these two terms.

The terms with A and B represent two sloping plane surfaces both rotating
around a vertical axis through the origin, the first one (with A) anti-clockwise, or
positive (by the usual definition), the second one (with B) clockwise, or negative. It
will be clear that (1) represents the plane that is tangential in the origin to the actual
sea surface.

Note that expression (1), after introduction of local orthogonal coordinates x.
y. with x along the line #=0 and y along the line #=90° can be written in the
form :

Xy, 0= Aq cos (wt— @9)+ (A +B)x cos wt+(A—B)y sin wt (1a)
This expression is fully equivalent with (1). The last two terms in (la) are also a
local approximation of two crossing standing waves differing 90° in phase.

In the following we consider the case Ay =0, unless stated otherwise.

CO-TIDAL LINES

High water (or low water) will be given by 3£/9t=0, or in a point close to the
amphidrome, from (1) with A, =0, by :
A sin (wt— )+ B sin (wt+ H=0,
or from (la) with Ag=0 by :
(A +B)x sin wt—(A -B)y cos wt=0.
From this, defining
y def (A ~B)/(A +B), —-1<y<I 2)

we find (unless coswt or cosé is zero) :

tan 0, =7 tan wt,
or

S0 =arc tan (y~' tan wt) (3)
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where the subscript h stands for high water.

The radius r has vanished : the co-tidal lines. in this approximation. are
straight lines. If B<A. y>0. the tidal wave rotates anti-clockwise and the
amphidrome is usually called positive. If B> A, y<0, the wave rotates clockwise
and the amphidrome is usually called negative. [T B and A happen to be equal, y=0,
expressions (1) and (la) with A, =0 degenerate into a standing wave with a nodal
line along 8=90° and 270°, or the y-axis.

The angular speed with which the wave rotates varies when both A and B are
non-zero. From (3) by differentiation :
dé,
dt
this expression, which is proportional to the angular spacing between two
ncighbouring co-tidal lines with a fixed (small) time interval, varies periodically with
frequency 2w, between maxima. y 'w, for sin 4, =0 and minima, yw, for cos & =0.
This means that the co-tidal lines are most crowded near 8= 90° and 270°.

=wly ' cos’fy +y sin’é) (4)

CO-RANGE LINES

The tidal amplitude (or half the range), §,. as function of r and @ near an
amphidrome, is given by the maximum value of the sum of the last two terms of
(1) or of {la). We find :

S [(A +BY cos’d+ (A - BY s'mzf)]
=(A +BFx*+(A - B)y’ )

If [, is kept constant this is the equation for an ellipse with its major principal
axis along #=90°, or the y-axis, magnitude 2,|A —B|™', and its minor principal
axis along =0, or the x-axis, magnitude 2, (A + B)"'. The axis ratio, with sign, of
these co-range ellipses is thus given by (A — B)/(A + B) =1y, as defined above.

A comparison of (5) with (4), and (2), shows that the angular speed of the
wave is inversely proportional to the square of the radius of a co-range ellipse .

TIDAL VELOCITIES

It is only in connection with the velocities that the coriolis parameter f comes
into play. This parameter may be positive (northern hemisphere), negative (southern
hemisphere)., or zero {equator).

As will be explained in the appendix, the velocity field associated with the

simple elevation field according to (1) or (l1a) is independent of r and 6, or of x and
y, to this order of approximation. It is then most convenient to use the orthogonal
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coordinates X and V. and the components of the velocity field are given by (see
appendix) :
u= - glAlw+)"+Blw-1"] sin «t
v= gl|Alw+ )" =Blw—1)""] cos wt
The velocity components u and v are understood to be depth-averaged
velocity components; all “baroclinic” effects are neglected throughout.

provided w#f (6)

It should be stressed here that the relationship (6) between velocities and
elevations is only valid for “co-oscillating tides”. ie.. with negligible local tidal
forcing.

[t may also be noted that (6) holds in the neighbourhood of any point in a sea
with “co-oscillating tide™ as long as the approximations (1) and (la) apply. i.., with
any vertical tidal amplitude Ao, since the term with A, in (1) or (1a) is of zero order
in r and therefore is not associated with a current.

The terms with A in (6) represent a velocity vector with constant magnitude
rotating anti-clockwise (positive) and the terms with B represent a velocity vector
with constant magnitude rotating clockwise (negative). If both A and B are
non-zero (positive) the end-point of the total velocity vector describes an ellipse with
principal axes along x and y.

If either B or A is zero. eq. (6) shows that the end-point of the velocity vector
describes a circle. This vector then rotates uniformly with the same speed as the
water surface does, such that the velocity is directed along the zero line of the water
surface (given by y/x= —cotan wt, or = +cotan wt, respectively — see (la) with
Ao =0). In a real sea. though. locations where B or A in (1) vanishes will not
coincide in general with locations where A, vanishes. Points in the sea with
uniformly rotating velocity vectors of constant magnitude (B or A in (1) being zero)
were denoted by SAGER (1963) [11] as “current amphidromes™ (“Stromamphidro-
mien”). 1t will be obvious that in general there is no direct relation between these
“current amphidromes™ and the (vertical) amphidromes as considered in this note.

Returning to (6) in the general case with both A and B positive, if we define :

Un def glAGw+ )" +Blw-1)""] 7
and v, def glA(w+ )" =Blw-1)""]
(un and v, may have either sign), we can abbreviate (6) to :
U= — Upsin wl, V= v,Cos wt (6a)
Fig. 1. — Example of co-tidal lines and co-range ellipse (left upper corner) and velocity

vectors near an amphidrome.

The “co-range ratio™ y (eq. (2)) was taken + 0.8 in all cases, or B/A=0.111.

The frequency ratio a = f/ w was varied; the “velocity ratio” §(eq. (9)) follows from eq. (10).

The figures 0, 45, 90, etc., give the phase «t for high water and for the velocity,
respectively.

Eq. (7) for B/A =0.111 gives up=gAw [l +a '+0111 U -]
and vm=gAw ' [(1 +2) ' =0.111 (1 — @~ ']. The lengths of the arrows along the axes in the
figure are proportional to the expressions inside the square brackets.

Remember that the local x and y axes were chosen such that high water at time zero
occurs along the positive x-axis.

Note that values 1.1 and higher for a are possible for diurnal tides but not so for
semi-diurnal tides.

—_
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Co-tidal lines and co-range ellipse
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As to the sense of rotation of the velocity vector, if we now define ¢ as the

angle between this vector and the positive y — direction (measured in anti-clock-
wise direction) we have from (6a):
tan ¢= —u/v= +u,/v,) tan ot (8)

which is a formula analogous to formula (3) for the co-tidal lines, showing that we
have anti-clockwise (positive) rotation if u, and v, have the same sign and
clockwise (negative) rotation if u,, and v,, have different signs.

Figure 1 illustrates the large variation in current behaviour near a positive
amphidrome if the value of the frequency ratio f/w=a is varied. even if the
“co-range ratio” y is kept constant.

It appears that in the northern hemisphere (f positive) amphidromes (B <A)
can be associated with both positive and negative senses of rotation of the velocity
vector, but negative amphidromes (B > A) can be associated only with negative
senses of rotation of the velocity vector.

If Alw+f) '"=B(lw—f])"", the velocity vector does not rotate. This is
the special case occurring theoretically near the nodal points in two superposed Kelvin
waves travelling in opposite directions in a straight channel. The amphidromes in this
case can be positive (B < A) only if fis positive and negative (B > A) only if f is negative.
dromes in this case can be positive (B <A) only if f is positive and negative (B > A)
only if f is negative.

If we define the axis ratio for the velocity ellipse [see (6) and (7)] by :

5 def vim/unm )
with sign. not necessarily [§|< 1, a theoretical relation bctween this ratio, the
“co-range ratio” vy defined by (2) and the frequency ratio a={/w can be readily
found from (7):

6=(y—a)-ay)"' (10)
or alternatively :
y=(a+ &l + ad)' (10a)

Equations (10) and (10a) have the property that, in order to have |y|< |, for
lal <1, |8] should be <1 and for |a|>1. || should be >1. This means that for
la] <1 the major axis of the co-range ellipses [y, according to (5)] coincides with the
minor axis of the velocity ellipse [according to (9)]: for |a| > 1 the major axis of both
ellipses coincide. This is illustrated by figure 1.

conclusion so far

According to the simple theory as given above, all relevant parameters of an
amphidromic system in a co-oscillating tide, with given tidal frequency w and
cariolis parameter f, can be derived:

— either from the surface slopes A and B, given by the shape of the co-range
ellipses together with the sense of rotation:

— or from the velocity amplitudes u, and v, given by the shape of the local
current ellipse together with its sense of rotation.

Such amphidromes have only two “degrees of freedom”, apart from their
orientation.
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Examples of amphidromes

In an attempt to test the theory in really occurring situations I have analysed
a few amphidromic systems for which both elevation and current data could be
found in published charts. The current velocities were supposed to approximate the
depth-averaged velocities.

Three tests were made for each amphidrome :

1) the velocity ratio §=vm/u, was read, or computed. from current charts and the
validity of equation (10a) was tested by comparing the ratio y from « and ¢
according to (10a) and the axis ratio y as derived from the co-range ellipses:

2) the relative orientation of the major axes of velocity and co-range ellipses was
checked — this should be 90° if « > [f| and 0° if « <If|;

3) the relation between surface slopes and velocities was tested by comparing the
“mean velocity amplitude”, 1/2 - Juy, + v |, as found from the current data, and
the quantity gA/(w+ f) derived from the mean slope amplitude A [see (7) and
(6a)).

The results have been compiled in the table below. All examples refer to
positive amphidromes (thus A >B, y positive) in the northern hemisphere {f positive)
of the M, constituent (angular frequency w=1.4052x10"*s"'). Orientations are
given in degrees clockwise from north. Estimated standard errors are given in
parentheses.

Explanations and comments on the table:

North Sea

Sources : UK. Ministry of Agriculture, Fisheries and Food (1981){16], SAGER
and SAMMLER (1968)[12]. Origin of data: partly direct observations, partly
numerical calculations, perhaps partly some intuition of the chart maker. Most of
the data refers to mean spring tide, which means that at least the S, constituent is
included, for which the frequency ratio « is about 3 percent Jower than that for M.
This small complication is ignored here.

The results of the tests are satisfactory to good, except for the relative
orientation of the ellipses for the Southern Bight amphidrome. The value 010° for
the velocity ellipse should be nearly correct. Now, the co-ridal lines in the charts
appear to be most crowded along the directions east and west, indicating that the
major axis of the co-range ellipses has about this orientation. This would be in
accordance with the orientation 010° for the velocity ellipse.

For the second amphidrome, the co-range lines in the charts hardly allow a
reasonable estimation of A, B or y, due to the low tidal surface slopes in the area.
Apparently the test for this case is less conclusive butl there are, at least, no
inconsistencies.
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Arctic

Sources : KOWALIK and UNTERSTEINER (1978)[5], KowaLik (1979}{6]. Origin
of data : numerical calculation for the whole Arctic, with mesh size 75 km.

The frequency ratio in this case is close to unity, which means that the
“co-range ratio” vy, close to unity too, is very insensitive to large variations in the
velocity ratio & [as can be directly seen from (10a)). There is some disagreement for
the velocity amplitudes but the reading from the chart was very inaccurate.

The direct tidal forcing was neglected in the calculations in [5][6], but the table
shows that the tide-generating force near the amphidrome is about 30 percent of
the surface slope force. This means that in reality the Arctic M:-tide cannot be
considered as merely co-oscillating.

Pacific

Sources: MUNK, SNODGRASS and WIMBUSH (1970){10] and various later
reviews on ocean tides. Origin of data: analytical calculation for a simplified
topography, with tidal forcing.

The results of two of the tests are good but the agreement between both
y-values is only moderate. Maybe this is due to the relative magnitude of the direct
tidal force, about 25 percent of the surface slope force.

The general conclusions of the analysis of the examples presented in the table
are 1) that the linear approximation (1), (1a) of the water elevation around an
amphidrome is a fair one over an area including, at least, the nearest drawn
co-range contour, or contours, around the amphidrome: and 2) that the theory
based on this approximation is well confirmed, at least for co-oscillating tides.

FINAL REMARKS

The explanation of the pronounced preference for anti-clockwise rotation of
the co-tidal lines in amphidromes in marginal seas for the northern hemisphere is
obviously the fact that the tidal energy enters these seas mainly as a wave more or
less resembling a Kelvin wave, the entering wave being modified and distorted
within the marginal sea by diffraction. reflection and dissipation. But also in the
open oceans, where there is tidal forcing (which, for semi-diurnal tides, by itself
would lead to clockwise rotating amphidromes in the northern hemisphere), there
is a preference for anti-clockwise amphidromes in the northern hemisphere,
probably caused by the fact that also here the propagation of tidal energy mainly
occurs in a Kelvin-wave-like fashion.
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APPENDIX

The simplified equations for co-oscillating tidal motion, or for free long wave
motion in general, in orthogonal coordinates x and y (if x is east, y is north) are the
equations of motion in x- and y-direction and the mass balance equation. They can
be written as follows (see list of symbols at the beginning of this note).

Jdu ¢
——fv+g—=0
at 9

) )

at ay

) d a¢
= (Hu) + — (Hv) +— =
3x( ») dy (HV) ot

Assumptions and simplifications made are : constant water density, curvature
of earth neglected, constant coriolis parameter f and gravity constant g, all
quadratic terms neglected (implying, inter alia, || < <H), friction neglected, depth H
varying slowly with position.

If we eliminate the velocity components u and v from (Al) we can obtain a
linear differential equation for the elevation { alone, which reads, with H taken
constant :

a2§+a2; 1 32
ax2  ay? gH\ at?

+12) ¢=0 (A2)

or after introduction of polar coordinates r, :

it SR S ( +£) ¢=0 (A2
or2 r ar r?® 26? —gH ot? B 2)

This differential equation has solutions, bounded for r=0, of the form, see,
e.g., LAMB (1945) [8]:
= anJumKr).cos (mf— it = Pn) if o > 1,
K(pos) def («? — 12); (gH) 2 :
{= amlm(K'r).cos (mb— wt ~ P if o <T°,
K'(pos) def (f’ - &’) (gH)2
where m is a positive or negative integer or zero, w is an angular frequency, to be
chosen freely provided it differs from f, the coefficients a, and the phase angles @,
are constants, ], is the Bessel function of the first kind and order m, I, is the
modified Besse!l function of the first kind and order m.
We avoid the use of complex notations, so that all quantities are real.

(A3)

The function J.(§) can be expanded in a power series in ¢ (see e.g.
McLACHLAN, 1934 [9]; for positive m :

£ £ 4
e mtam {1 N A
In®=@m.2")" ") (1 4(m+1)+32(m+1)(m+2) ) (49
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and for negative m :
Il = (= 1™ 1,0 (&) (Ada)

The modified Bessel functions I,,(&) similarly, for positive m :

= 2myim( e —E £ ) o
m T 4(m+ 1) 32(m+ Dm+2)

and for negative m :

In(&) = [ (&) (ASa)
Substituting m=0, 1 and - |, respectively, in (A4 ... AS5a) we get:
JoH=1-57 317:4—...
Io(&)=1 +—§‘ 32 £+
W= -1 (D=5 ¢ —%g‘+...

l.(€):17.(§)=§§+§§3+
The fact that the leading terms in the development of J(£) and 1,.(£) are those
with ¢" suggest that any solution of the wave equation (A2a), non-singular near a
given point, can be expanded, after introduction of local polar coordinates, in a
series with terms as given by (A3), for «’ > :
(= CoJo(Kr) . cos (et — @)+

+Ji(Kr)!C\ cos (wt— — @)+ C_y cos (et + §— D_ )|+ (A6)
+ J5(Kr) ICs cos (wt — 20— @:) + C_5 cos {wt + 20— d_,)]
+ ...

or a similar series if « < f°, where the C's are non-negative constants.

A proof of the existence of a series expansion similar to (A6) for any
non-singular solution of the rhreedimensional wave equation with prescribed
frequency « was given in 1903 by WHITTAKER, see e.g. WATSON (1952) {17] or
WHITTAKER and WATSON (1935) [18])). (In this threedimensional case, spherical
harmonics appear in the series, instead of trigonometrical functions). That proof
starts from the general solution of the wave equation expressed as a superposition
of an infinite number of plane waves propagating in all directions, and it can readily
be extended to any number of dimensions.

A rather simpler proof for the general non-singular solution of the wave
equation in two dimensions with prescribed frequency is possible if we start from
an old theorem of C. NEUMANN (1867), see again [17], [18], stating that an arbitrary
{complex) function f(z), analytic in a domain of the complex z-plane including the
origin, can be expanded in a series of the form:

f(z)= apJo(z) + ] (@) + e Ja(Z) + ...
where o, o, o... are independent of z.

The series (A6) can be written as a power series in Kr (or K'r), with
coefficients that are dependent on 6 Taking only the terms of zero and first power
in Kr (or K'r), we are left with an expression like (1). The coefficients A and B in
(1) then are

ke,

1
5KC1 and 3
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As explained in the main text, the phase angles & and @., have been
eliminated in (I) by an adequate choice of the line 9= 0 and of the zero point of the
time scale.

Note that the simple expressions (1) and (la) do nor exactly satisfy the
differential equations (A2) or (A2a). Expression (la) might be considered as a local
approximation of any non-singular solution, varying sinusoidally with t. of many
other linear second order partial differential equations.

The x and y components of the current velocity u and v can be found from
the first two equations of (Al) by eliminating v or u from them. This gives :

2%y +f2u=—g( 2% + f;—i)

ot? )
oxot (A7)
iv_+ f2y= (f_ai_azf )
2 B\ ox  ayet

Since it may be presumed that u and v, like {, vary sinusoidally with wt we can
replace —g? by — &’ Then using (1a) we obtain equation (6).

It may be interesting to comment on the typical difference, according to (6),
between the velocities associated with the A-term and with the B-term in (1). For
B =0 and f positive the current is always directed such that the water surface is
higher to the right (“quasi-geostrophic” motion); then the acceleration of the water
particles (directed to the left) is given by the difference between the surface slope
force (- g V) and the coriolis force. For A =0 however, with w>f >0, the current
is always directed such that the water surface is higher to the left; then the
acceleration (directed to the right in this case) is given by the sum of the surface
slope force and the coriolis force. Since, with « given, the acceleration is
proportional to the velocity, a given surface slope amplitude (A or B) in the second
case is associated with a larger velocity than it is in the first case. This may have
to do with the observed preference for positive amphidromes in the northern
hemisphere.

For completeness a small remark should be made on the case in which the
tidal frequence w and the local inertial frequency f (or — ) coincide. Equation (6)
indicates that in this case amphidromes are possible but only those with B=0 in the
northern hemisphere and only those with A =0 in the southern hemisphere.

Up to here the local tide-generating force was not taken into account. If this
is done, { in the first two equations of (A1) (but not in the third equation of (A1))
shouid be replaced by {— [ where ¢ (x.y.t) is the (known) equilibrium tide. Equation
(A2) and the solutions (A3) and (A6) no longer apply. Since the gradient of { varies
only slowly with x and y, { may be well approximated by a linear function
oscillating in time, like {, but with two phase angles included and with co-range
ellipses having their principal axes along the directions W-E and S-N. Thus linear
approximations for {,  as well as for {—~ { would be appropriate and the simple
relations between co-tidal lines and co-range lines near amphidromes remain valid.
But clearly the magnitude and orientation of the principal axes of the co-range
ellipses of -7 would differ from those of . Since the velocities are directly related
to {— T (by (A7) with ¢ replaced by ¢— 0, equation (6) is no more valid, nor are the
relations (10), (10a): the relationship between velocities and surface slopes becomes
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much more complicated. The relations (6), (10), (10a) can be expected to hold only
provided the gradients of the equilibrium tide are small as compared to the surface
gradients, i.e., for co-oscillating tides.

The maximum slope of the moon's semi-diurnal equilibrium tide in the table
was computed from: gradient of { (in W-E  direction)=55cm
6 370 km)™' cos @=0.086 x 107° cos @, where @ is the latitude.

The question remains how good are the approximations (1) and (6) in an
actual situation with co-oscillating tides. There are different causes of deviations :
1) the neglect in (1) of the terms with second and higher powers of r occurring in
the series (A6); 2) local variations in the depth H: 3) the neglect of various terms in
the simplified equations (A1).

The order of magnitude of the error made by neglecting in (1) the terms with
r’ can be esiimaied. From {A6), with Co =0, neglccting C-, and C_;, we arrive at
a relative error in {(r.6t) of order f KrC,C/', which is ﬁ Kr if C; and C, are 1of the
same order. K is kind of wave number, defined in (A3). Roughly, if («’ - flz)i is of
order 107 *s™' with g =10 m s~ 2, the relative error becomes of order 10" rH™2m?. For
H=100 m and r = 100 km this is 0.1, which is still rather small. The errors caused by

depth variations are probably more important.
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