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ABSTRACT

Modern time scales introduced since about 1950 and revised formulae for the 
mean lunar and solar longitudes are defined and compared with the formulae of 
N e w c o m b  (1895) and B r o w n  (1919), which still form the basis of current tide 
prediction practice. Changes in tidal arguments of order 0°.02 are identified, with 
a tendency to increase towards the 21st century. Small changes in potential 
amplitude and speed of some leading harmonic constituents from AD 1900 to 2000 
are also noted. While all changes are small by tidal standards, it is recommended 
that the modern formulae be adopted by tidal authorities before discrepancies 
become noticeable. The modern formulae require at least an approximate correc
tion for the difference between Dynamic or Ephemeris Time and Civil or Universal 
Time, which will probably exceed 1 minute before AD 2000.

INTRODUCTION

The majority o f tidal computations in current practice are based on astrono
mical formulae which date from the turn of the last century. Routines and 
techniques o f analysis have mostly been adapted to the modem computer, but the 
basic formulae refer back to the mean lunar and solar longitudes (s, h, p, N , p') 
as listed in say D o o d s o n  (1954) or S c h u r e m a n  (1976), both of which works are 
copied from much older texts. (Exceptions are DHI (**) (1967) and the author’s 
own programs described in C a r t w r i g h t  &  T a y l e r  (1971), based on formulae in 
‘Ephemeris Time’). The older formulae are derived from the classic works of 
N e w c o m b  (1895) and B r o w n  (1919), and were expressed in Universal Time (UT), 
equivalent to Greenwich Mean Time (GMT), which is geared to the Earth’s 
rotation, assumed in those days to be practically uniform.

(*) Institute of Oceanographic Sciences, Bidston Observatory, Birkenhead, Merseyside L43 7RA,
U.K.

(**) Deutsches Hydrographisches Institut.



Since the 1950’s, astronomers have radically revised their concepts of time, as 
everyone concerned with precise time-keeping will know. The Earth’s rotation 
having proved to be irregular and unpredictable, a new time-scale known as 
Ephemeris Time (ET), geared to the Earth’s orbit round the Sun, was defined as 
the basis for all astronomical calculations including the mean lunar and solar 
longitudes. UT was equal to ET about the year 1903 but has since increasingly 
lagged behind ET, currently by nearly a minute. In 1971 Ephemeris Time was itself 
replaced by International Atomic Time (TAI) as the standard time-scale for general 
scientific and technical purposes. At the beginning of 1972 the system of 
Coordinated Universal Time (UTC), which is the basis o f radio time signals, was 
modified so that it differs from TAI by an integral number of seconds and from 
UT by less than 1 second. Leap-seconds are inserted into UTC at roughly yearly 
intervals for this purpose, and so UTC provides an adequate basis for the 
computation o f hour angle o f celestial bodies for use in navigation and tidal 
computations.

In recent years the International Astronomical Union has introduced a whole 
new set of astronomical constants and new time systems that are appropriate for 
use with relativistic theories. (Ephemeris time is defined only for Newtonian 
theories). New ephemerides derived by numerical integration and using these new 
constants and time scales were introduced in the U SA /U K  Astronomical Almanac 
for 1984 (henceforward denoted here by AA84).

The lunar and solar ephemerides are no longer computed as harmonic 
perturbations about the mean longitudes. However, luckily for tidalists, newly 
revised formulae for the classical mean longitudes are given for the primary 
purpose o f calculating the Earth’s nutation. These formulae refer to the epoch 
2000.0 as time origin, whereas the older formulae refer to the epoch 1900.0.

Faced with all these changes, the tidal practitioner may well wonder how 
precise his old formulae in UT are in comparison with modem standards, and 
whether he ought to substitute new ones. The object of this paper is to set out the 
latest available formulae in a form useful to the tidal practitioner and with his 
required level o f precision in mind; also, to compare numerical values for the mean 
longitudes as derived from the old and new formulae, and to note any systematic 
secular changes in the amplitudes and speeds of the major tidal harmonic 
constituents.

THE MODERN TIME SCALES

It is necessary to define the new concepts o f the time and their terminology, 
as a basis for precise discussion. The following definitions are essentially derived 
from the “Supplement” pages in AA84.

International Atomic Time (TAI) is the uniform standard to which all other time 
scales are related. It is derived, in arrears, by the Bureau International de 1’Heure 
(BIH) in Paris from data supplied by many national time services.



Terrestrial Dynamical Time (TDT) is the equivalent o f Ephemeris Time in respect 
of observations made from the Earth; it is defined in such a way that for practical 
purposes

TDT =  ET = TAI + 32.184 s 
TDT is the time scale used for all ephemerides of phenomena observed from the 
Earth.

Barycentric Dynamic Time (TDB) is a recent concept for motions referred to the 
barycentre of the Solar System. It differs from TDT only by quasi-periodic terms 
of amplitude less than 0.002 s.

Universal Time (UT or UT1) is determined retrospectively from observations o f the 
Earth’s rotation, in such a way that Oh UT always coincides with transits of the 
“apparent mean Sun” over the 180° meridian. Its variable offset from TDT

A T =  TDT -  UT1
is recorded to 10~4s at 5-day intervals in the Annual Reports of the BIH, and at 
lower precision and frequency in the USA /UK  Astronomical Almanacs. AA84 
(page K7) lists values o f  A T back to AD 1621. Values from 1900 to the present are 
plotted in Figure 1 herewith. UT2 (now rarely used) is a smoothed version of UT1, 
formed by subtracting an annually varying term of amplitude 0.03 s. UT is 
important in the present context because it provides the basis for civil time-keeping, 
including the setting o f tide-gauges.

Coordinated Universal Time (UTC) is an arbitrary approximation to UT which 
(since 1972) is constrained to differ from TAI by an integral number of seconds and 
to be always within ±  0.7 s o f UT1. Leap-seconds are introduced when required 
on January 1 or July 1. The offsets of UTC and UT from TAI from 1972.0 to 1982.0 
are shown in Figure 2. (Offsets from TDT or ET may o f course be obtained by 
adding 32.184 s to the ordinate). UTC is precisely the basis for all radio time- 
signals.

Greenwich Mean Sidereal Time (GMST), alternatively described as “Greenwich 
hour angle of the mean equinox of date”, is the sidereal equivalent of UT1. The 
current formula (AA84) for the GMST of Oh UT1 in seconds,

24110.54841 +  8640184.812866 Tu +  0.093104 Tu2 -  6.2 x 10“6 Tu3, (1) 
where Tu is the Universal Time in units of 36525 days from the epoch 2000 Jan 1.5, 
essentially defines the right ascension o f the Greenwich meridian in this time scale.

THE MEAN LUNAR AND SOLAR LONGITUDES

The mean longitudes customarily used in the Darwinian harmonic expansion 
of the tide-generating potential, namely



F i g . 1. — Smoothed curve of (Ephemeris T im e — Universal Time) in seconds for 20th century, 
reflecting the variability of the Earth's rotation.

F ig . 2. — (Smooth line) : Smoothed curve of (Atomic Time — Universal Time (UT2)) for the decade 
1972-1982. (Stepped line) : The same for Coordinated Universal Time, showing “leap-seconds”.



s : the mean longitude of the Moon, 
h : the mean longitude of the Sun, 
p : the mean longitude o f lunar perigee,
N : the mean longitude of the lunar node, 
p' : the mean longitude of perihelion, 

have for many decades been expressed in the form
a + bT + cT2 + dT3 (2)

where a, b, c, d are specified constants for each element, and T is the time in units 
of a Julian century (36525 days) from a standard epoch.

In the early formulae of N e w c o m b  (1895) and B r o w n  (1919), T was reckoned 
in UT, and the standard Epoch was 1900 January 0.5, that is 1899 December 31 
noon, or Julian Day 2415020.0. D o o d s o n  (1954) quoted practically the same 
formulae with the Epoch advanced by 12h to January 1.0. Another version of the 
same formulae in terms o f year- and day-numbers is given in D o o d s o n  (1928); 
F r a n c o  (1981) gives yet another variant.

The first radical change to the formulae came with the introduction of 
Ephemeris Time and other improvements described in the U SA/U K  publication of 
1954, “Improved Lunar Ephemeris 1952-59” (henceforth abbreviated to ILE 
(1954)). The revised formulae for the above longitudes and several others are given 
on page 288 o f ILE, with T expressed in days o f  ET, still from the 1900 Epoch of 
n e w c o m b . ILE (1954) also makes extensive use of Brown’s arguments 

I =  s — p, the lunar anomaly,
/' =  h — p', the solar anomaly,
F  =  s — N, mean lunar extension from the node,
D =  s — h, mean lunar extension from the mean Sun, 

which with N, (Q in Brown’s notation), occur naturally in analytical expansions of 
the Moon’s motion and of the Earth’s nutation.

The most recent formulae appear in AA84, as part o f another extensive 
revision of astronomical constants. The coefficients appear on page S 26 and refer 
to Julian Centuries of TDT from Epoch 2000 January 1.5. The new epoch is exactly 
one Julian Century after N e w c o m b ’s 1900 Epoch, so T =  0 in the new formulae 
refers to the same (Ephemeris) time as T =  1 in the old formulae. Only Brown’s 
arguments are given, but the Darwinian longitudes may be derived from them, if 
required, by simple addition or subtraction.

The new formulae, originally based on some extensive work by Van Flandern, 
were first published by Se id e l m a n n  (1982), where they are stated to represent the 
best currently available values consistent with the 1976 astronomical constants 
agreed by the International Astronomical Union <+) and with the latest celestial 
reference frame known as FK5. Although the formulae were derived primarily for 
the purpose of calculating the Earth’s nutation, there is no doubt that their 
precision is more than adequate for the most advanced calculations o f tides. 
S e id e l m a n n  (1982, p. 98) warns that there may be applications to very precise solar 
or lunar theories for which other expressions should be used, but it is certain that 
the most rigorous applications to ocean tides do not approach this category.

(*) The 1976 1AU system of constants are tabulated in the “Supplement” pages of AA84.
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TABLE 1 

Coefficients of the mean longitudes and of obliquity 

Brown Darwin - a b c 106b' 

I 296.1094 477198.8598 0.0129 -
I s-p 2 296.1046 .8491 0.0092 151 

3 134.9630 .8674 0.0087 151 

I 358.4758 35999.0498 0.0003 -
I' h - p' 2 358.4758 .0498 0.0003 11 

3 357.5277 .0503 - 0.0002 11 

I 011.2549 483202.0344 0.0004 -
F s - N 2 011.2509 .0252 - 0.0032 153 

3 093.2719 .0175 - 0.0037 153 

1 350.7407 445267.1231 0.0022 -
D s - h 2 350.7375 .1142 - 0.0014 141 

3 297.8504 .1115 - 0.0019 141 

1 259.1825 -1934.1424 0.0021 -
n N 2 259.1833 .1420 0.0021 -1 

3 125.0445 .1363 0.0021 -I 

I 279.6967 36000.7689 0.0003 -
E h 2 279.6967 .7689 0.0003 11 

3 280.4661 .7698 0.0003 11 

E ro 2 23.4523 -0.0130 
3 23.4393 -0.0130 

Table I summarises the leading constants, a, band c (equation 2) for the three 
generations of formulae : 

(I) NEWCOMB (1895), as quoted by ScHUREMAN (1976) 
(2) Ephemeris Time, as given in ILE (1954) 
(3) Terrestrial Dynamic Time, as given in AA84. 

Units are degrees of arc to 4 decimals, as befits tidal work, and the mean longitudes 
listed are Brown's four principal arguments, /, I', F. D. and the nodal longitude n 
or N. The sixth longitude, L' or h, is strictly redundant, since it is derivable from 
the identity 

h=E=F-D+n, (3) 

but I have included its constants because of its frequent occurrence in tidal 
formulae as an independent variable. The quantity listed in the bottom two rows 
of Table I is the obliquity of the ecliptic, e or ro. The two formulae for e are 
essentially identical to the present level of accuracy, but the two values of "a" allow 
a direct comparison of the total change in obliquity from 1900 to 2000. All values 
of "d", (the coefficient of T3 in equation 2), are negligible for our purpose. 

Since time-scales (I) and (2) both refer to epoch 1900 (Jan 0.5), values of "a" 
in these two cases are fairly close, and small changes reflect genuine changes in the 
best estimates for the longitudes concerned. The generally large changes in "a" for 



time-scale (3) are due to the change o f epoch to 2000 (Jan 1.5), but values of
[a (2) +  b (2)] mod (360°) 

are again o f course close to values o f a (3), with small differences due to revised 
constants.

There is however a fundamental change in values o f “b” from time-scale (1) 
to time-scales (2) or (3), due to the growing difference between UT and ET (or 
TDT). Tidalists will always want to refer to Universal Time, because this, (or more 
strictly UTC), is the time-scale on which tide-gauges are ideally maintained. 
Newcomb’s formulae (1) purported to give UT directly, but scales (2) or (3) require 
correcting to

a +  bT + cT2 +  b' A T (4)
to give the exact value in UT, where b' =  0.317 b x 10-9 and A T is in seconds. 
Numerical values o f b' are tabulated in the last column o f Table 1. For example, 
by the year 2000 the value of A T  is reasonably expected to be about 65 s, 
(Figure 1), for which the corresponding increment in the Moon’s anomaly / for 
prediction in Universal Time is

151 x 65 x 10“6 =  0°.0098

CHANGES IN TIDAL ARGUMENTS

The arguments of the principal harmonic tidal constituents are simple linear 
combinations o f the basic longitudes detailed in Table 1. In order to assess 
numerically the changes in the tidal arguments resulting from the new formula
tions, Table 2 shows, for 7 major diurnal tides and 9 major semi-diurnal tides, 
values in degrees to 4 decimals of their angular arguments at January 1 at Oh UT 
of the years 1980 and 2000, as computed from the old formulation (1) — upper 
figure, and from the most recent formulation (3) — lower figure. Integral degrees 
are omitted from the lower figures, for convenience.

The first columns o f Table 2 give the common Darwinian symbol o f each tidal 
constituent and the coefficients of the Brownian arguments which define its 
argument at Oh. In some cases, the latter combinations are simpler than the more 
familiar expressions in Darwinian arguments. For example,

M2 : — 2D  instead of — 2s -I- 2h,
N 2 : — 2D — I instead of — 3s +  2h +  p.

The 5th column indicates whether ±  cos or ±  sin is applied to the argument, 
according to the convention based on the harmonic expansion o f the tide- 
generating potential. If one wishes to convert to the common convention in which 
only cosines are used, then —cos, -l-sin, —sin in column 5 are equivalent to 
addition o f 180°, 270°, 90° to the argument, respectively. D o o d s o n  (1928) adds these 
angles, and also a constant angle covering the occasional references to perihelion 
p', where necessary. In the latter case he assumed p' =  282°, which was adequate 
for say 1930-1970, but for 1980-2020 p' =  283° is more nearly correct. In the present 
context, p' is accommodated by reference to the solar anomaly /'.

The angular arguments in the final columns correspond to the central 
argument, E in the notation of the Admiralty Tide Tables, V0 in the notation of



DHI (1967). The Admiralty Tide Tables list daily values of (E +  u) to the nearest 
degree, where u is an increment which varies periodically, usually with the 18.6y 
period of the lunar node N. I have made no allowance for u in Table 2; its values 
will not be substantially altered by the new formulation. DHI (1967) lists values of 
v, equal to the average yalue of u for each year, but it also lists VQ +  v to the nearest 
0°.l, from which values of VG at January 1.0 may be deduced for direct comparison 
with Table 2, at least for 1980.0.

TABLE 2
Tidal arguments from formulae (1) and (3)

D h / V sin 1980.0 2000.0
rv iV 1 -- £ --  1 — i + 034.8174

.8335
088.0361

.0573
Ol -  2 -  1 0 + 123.4904

.5005
216.4857

.4976
*M1 -  1 0 0 + 201.6548

.6602
068.2294

.2358
PI 0 — 1 0 + 080.1808

.1801
080.0269

.0260
K1 0 1 0 — 279.8192

.8199
279.9731

.9740
v i 0 1 0 1 — 277.0422

.0453
277.0062

.0096
J1 0 1 1

cos

008.4922
.4849

048.4227
.4143

2N2 -  2 0 -  2 + 225.9636
.9904

239.5596
.5910

n2 — 4 0 0 + 086.6192
.6408

272.9176
.9432

N2 — 2 0 -  1 + 314.6366
.6554

008.0092
.0313

i)2 — 4 0 1 + 175.2922
.3058

041.3672
.3835

M2 -  2 0 0 + 043.3096
.3204

136.4588
.4716

L2 -  2 0 1 — 131.9826
.9854

264.9804
.9119

T2 0 0 0 — 1 + 002.7770
.7746

002.9669
.9644

S2 0 0 0 + 000.0000
.0000

000.0000
.0000

K2 0 2 0 + 199.6384
.6398

199.9462
.9480

* The argument assigned to Ml is that used by Doodson (1928); see text.



It is worth mentioning that the argument given for M] in Table 2 is that of  
the exact subharmonic of M2, as adopted by D o o d s o n  (1928). In reality, the group 
of lines vaguely named Mi contains two principal component lines at (K, — I)  and 
(0 , +  /), separated in frequency by 2 p, that is (4.4y)_1. According to the common 
convention about harmonic “constituents”, definition of the central frequency is 
arbitrary and different choices are associated with different modulating functions. 
Sc h u r e m a n ’s definition o f M, would be (h -  /)  in the scheme o f  Table 2. 
C a r t w r i g h t  (1975, 1976) showed that at some parts of the Atlantic Ocean, the true 
subharmonic frequency as adopted here is actually dominant in the observed tide, 
owing to local relative magnification of the 3rd degree spherical harmonic in the 
tidal potential. However, the 3rd degree effect would strictly have a cosine 
argument. The negative sine noted in Table 2 is again arbitrarily consistent with 
D o o d s o n ’s (1928) definition.

The mean longitudes involved were computed from the coefficients (1) and
(3) in Table 1, using the appropriate time scale. Thus for 1980.0,

36525 T = 29219.5 for scale (1), — 7305.5 for scale (3), 
while for 2000.0,

36525 T =  36524.5 for scale (1), — 0.5 for scale (3).
Scale (3) required the increments for A T  as in equation (4). For 1980.0, A T  is 
known to have been 50.5 s (AA84, p. K 9), and this value was used in Table 2, while 
for 2000.0, a predicted value of 65.0 s was assumed. An error of 1 s or so in A T  
clearly affects only the 4th decimal place in these results.

Differences between corresponding arguments computed from the old and 
new formulae vary from small quantities of order 0°.001 for Ki and K2 to 
0°.02 — 0°.03 for the lower frequency tides o f species 2. The phase of S2 is always 
exactly zero, by definition of UT. The phase o f the most important tidal constituent 
M2 has changed by 0°.0108 in the year 1980 to 0°.0128 for the year 2000. Here, as 
in all cases the discrepancy between arguments from the new and the old formulae 
increases from 1980.0 to 2000.0, as would be expected.

CHANGES IN AMPLITUDE AND SPEED

This subject has little to do with the changes in time-scale, but it is 
appropriate here to take stock o f other, albeit slight, changes in the tide-generating 
potential over the 20th century. Changes in the harmonic amplitudes are princi
pally due to the steady decrease in the obliquity of the ecliptic from 23°.452 in 1900 
to 23°.439 in 2000. D o o d s o n ’s (1954) harmonic expansion used the 1900 value of 
the obliquity and perhaps gave an illusion o f constancy o f amplitude, although the 
algebraic dependence was implicit in his formulae. C a r t w r i g h t  &  T a y l e r  (1971) 
re-computed the amplitudes from the revised formulae for Brown’s lunar theory 
given in ILE (1954), using the full expressions for every element o f time-depen- 
dsr.ce at three different epochs, namely 1870, 1924 and 1960. Slight secular drifts 
in many of the harmonic amplitudes were apparent, some positive, some negative. 
There is every reason to suppose that these drifts can be treated as linear in time 
over a period of a few centuries. Hence it is easy to interpolate or extrapolate



between the tabulated values at say 1870 and 1960 to give amplitudes appropriate 
to the standard epochs of 1900.0 and 2000.0.

The amplitudes of two leading diurnal constituents and three leading 
semi-diurnal constituents for the above two century years are given in the fourth 
column o f Table 3, under the heading C T E  (C a r t w r ig h t -T a y l e r -E d d e n ). They 
were derived from the tables of C a r t w r ig h t  & E d d e n  (1973) which result from a 
small correction to the computing procedure of C a r t w r ig h t  &  T a y l e r  (1971). A s 
one would expect from a decrease in obliquity, the diurnal amplitudes for AD 2000 
are reduced and the semi-diurnal amplitudes are increased, although the rates of 
increase for N 2 and S2 are extremely small. Units are 10-5 m in “equilibrium 
amplitude”. Note that greater proportional changes in amplitude and phase may 
be observed in very long data series, due to slow changes in oceanic admittance 
and local estuarine effects, (C a r t w r ig h t , 1972; A m in , 1983).

The third column of Tabie 3 gives for comparison the corresponding values 
for A D  1900 in the scale used by D o o d s o n  (1954). They differ from the CTE figures 
by a constant factor of 1.43712, (C a r t w r ig h t  &  T a y l e r , 1971, Table 2), with a 
change in sign for diurnal constituents, owing to a different normalisation for the 
spherical harmonics. (There is a further slight difference in the ratio for the solar 
tides, since the CTE calculations used revised values for the Sun : Moon mass ratio 
and the Sun’s mean parallax — Doodson’s computations originated in 1921).

The last two columns of Table 3 define the “speed” in degrees, h _l of the 
same constituents at the two epochs. These are computed from the derivatives of 
equations o f type (4), using the latest (AA84) coefficients and a simple addition for 
the Earth’s rotation. The speeds are given in two parts, the first, labelled o, being 
the main increment due to the speed

b +  2cT (5)
o f the orbital longitudes, and the second, labelled Act, being the variable increment

b' d(A T)/dT (6)

TABLE 3
S e c u la r  ch an g es  in  p o te n t ia l  a m p litu d e  an d  speed

Amplitude Speed

Year Doodson CTE CT 10'°Aa

01 1900 37694 -  26229 13.94303 55923 — 382
2000 -  26216 56003 -  291

K1 1900 — 53011 36887 15.04106 86393 11
2000 36872 86400 15

N2 1900 17386 12098 28.43972 95453 — 563
2000 12099 95342 -  430

M2 1900 90809 63188 28.98410 42316 -  367
2000 63194 42403 -  280

S2 1900 42248 29398 30.00000 00000 0
2000 29401 00000 0



due to the changes in the Earth’s speed o f rotation. The actual speed o f each 
constituent is a  +  Act. For example, in the case of M2,

a  +  Act =  30 -  2 (b +  2cT) -  2b'd (A T)/dT, 
where the coefficients b, b', c are those pertaining to the variable D.

Values of ct are given to 10 decimals, only the last 5 o f which are printed for 
the year 2000. Equivalent figures for the years 1900, 1950 and 2000 are quoted on 
pp. 7-8 of DHI (1967), based on the Ephemeris Time formulae (2). The DHI figures 
are very close to those in Table 3 for AD 2000 but differ in the 9th decimal for 
AD 1900. However, DHI (1967) ignores the Earth rotation variability, Act, which 
evidently affects the 7th or 8th decimals in some cases.

The figures for Act in the last column o f Table 3 depend on estimates for the 
rate o f  change of A T, that is, of ( — UT) relative to the atomic standard. An average 
value for the present century would be about 0.7 s.y-1 (Figure 1), but values 
appropriate to individual years vary between about 0 and 2 s.y-1. For the year 1900 
I used 1.14 s.y-1 which is fairly precise, and for 2000 a predicted estimate of
0.87 s.y-1 which is in fact the recorded value for 1980. The numerical values given 
for Act, in units o f the last decimal of the previous column, are evidently too small 
to be o f any consequence in practical calculations involving constituent speeds, but 
they serve to show the magnitude of the correction.

CONCLUDING REMARKS

The changes recorded in Tables 1-3 are small by the normal standards of tidal 
practitioners. Some authorities may take this as an excuse to retain their antique 
formulae. On the other hand, the discrepancies are increasing, as the vagaries in 
Earth rotation accumulate and large values of T2 and T3 in Newcomb’s formulae 
begin to take importance. A wiser view would therefore be to change to the modern 
system now, while the discontinuity is negligible, rather than be forced to do so at 
a later date by noticeable errors.

Use of the essentially unpredictable A T values to compute tidal predictions 
will be novel to most tidalists. However, the correction to UT is easy enough to 
make in analysing records from past years, and the computations presented here 
show that an error o f a second or two in predicting A T a few years into the future 
is negligible for ordinary' tidal calculations. Many cases of tide-gauge records being 
maintained with errors estimated in minutes rather than seconds will be cited to 
belittle the importance of these small corrections, but average errors over an 
analysed record are much smaller that the individual extremes, and instrumental 
precision is steadily increasing with the use of crystal timing mechanisms. Finally, 
with the growth of libraries of tide-gauge data going back to the beginning of the 
century or beyond, new possibilities for high precision tidal analyses are opened 
up, some involving the identification of small secular trends. For such analysis only 
the very best astronomical formulae should be employed.
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