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ABSTRACT

In Part I o f this series, the authors discussed those issues which we feel are 
fundam entally im portant and which must be addressed by any m ethod which aims 
to mechanize the drawing of depth contours for hydrographic charts.

In this article we begin the discussion of the How o f contouring. In particular, 
we concentrate on some o f  the most common methods used in the interpolation of 
the synthetic surface upon which computed contours will lie.

INTRODUCTION

M athematical interpolation is the heart of machine contouring — the rest is 
purely cosmetic. This is the thesis we follow in this paper. Cosmetics are an 
im portant issue — but they are secondary in im portance. The interpolation 
algorithm will determine the shape and course o f the plotted contours and this is 
what we care about.
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Oceans, 615 Booth Street, O ttaw a, O ntario  K.1A OE6, Canada.
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Before becoming immersed in the details o f interpolation, let s examine the 
situation at a higher level. Figure 1 illustrates the main ideas behind interpolation. 
Figure la shows a sequence o f measured sounding profiles. This is the data from 
which we wish to draw our contour map. One can imagine the contours as a 
sequence o f shoreline snapshots — each one taken with the level at progressively 
lower elevations. Figure lb  shows the situation at a particular water level say 
10m below datum. The lower level problem is this — how do we connect-up the 
protuberances above each water level in a meaningful way ?

In order to draw contours we need to predict the behaviour of the contours 
between the survey lines. To do so we want depth estimates at regular intervals 
between the observations. The closer together the depth estimates, the sm oother the 
contours. Figure lc  illustrates one popular approach called gridding. In this 
method, one drops a uniform grid over the survey area and, at the grid intersections 
(called 'nodes’), estimates depths by using the observed depths. How these 
estimates are m ade is the crux o f the matter.

WHY GRID THE DATA ?

The threading of the individual contour lines through the survey area can be 
a straightforward procedure if  the data is established on a uniform  and tightly 
spaced sampling plan. Contouring a typical field sheet for instance, where the 
soundings are spaced every 5 mm at scale, is relatively straightforward and a set 
o f rules can be established to define the contouring procedure. W hen the data is 
sparse, however, the rules becom e less meaningful and, as a consequence, more and 
more judgem ent is called for. This becomes a case o f interpretation, not interpola-



tion. Such procedures cannot, in general, be mechanized. To overcome the problem 
of sparse or non-uniform  sampling, researchers have found it expeditious to re-cast 
the survey so that it would appear to have been sam pled in a more convenient 
manner. Density and uniformity are the two characteristics o f the data which make 
machine contouring more viable. The uniform grid is an obvious choice but others, 
including triangulation schemes, are used in practice. We concentrate on gridding 
because that is the technique with the widest usage and because, in the end, the 
differences between gridding and its alternatives are often academic.

The actual contouring itself is done by threading the individual contours 
through the grid. Once depth values have been established for each grid node, these 
grid nodes can be used as gate-posts, allowing or denying access to the interior of 
the grid box. If access is allowed, then progressively finer grids can be established 
inside the main box in order to guide the course o f the contour. In this way the 
contour’s apparent smoothness is governed by the fineness of the gridding. Finer 
gridding can improve the smoothness o f the contours and make them  appear more 

realistic . Appearances can be deceiving, however. The accuracy o f the contour 
position is governed by the survey sampling resolution — not by the resolution of 
the grid.

There are essentially two main methods for making these estimates : point 
models and area models. Point models estimate depths at fixed  points in the area 

such as at the grid nodes. Area models, on the other hand, estim ate surface 
continuously over an area. That is, a smooth m athematical function (often a 
polynomial in 2-dimensions) is fitted to the data points within an area. This 
estimated surface then defines depth estimates at every point within the region over 
which the surface is fitted. Thus the knowledge o f the contours’ location is 
continuous — resulting in very sm ooth contours. O f course, if the surface model 
is wrong (i.e. if the fit is not very good) then the contours are also wrong.

We now examine these two methods in some detail.

POINT MODELS

Point models estimate depths by linearly combining the surrounding observed 
data points. That is, the depth at any unobserved point can be “ guessed” by a 
weighted average of the observed depths which fall geographically close to the 
unobserved point. C onsider Figure 2. In this illustration we see the essence of point 
modelling. On the x-y plane we have a number o f observations. The observations 
are more-or-Iess randomly located on the plane with no connecting inform ation 
uniting them. To contour, we want to have values on the uniform  grid. This can 
be accomplished by sequentially marching through the grid nodes and making 
weighted averages at each grid intersection. In Figure 2b we examine one 
intersection in detail. The area around the point to be estim ated is searched for 
observations and then these values are used in the weighted average formula. The 
two issues we should concentrate on are the concepts o f neighbourhoods and 
weighting.



F ig . 2. — P o in t m odels.

NEIG H BO U RH O O D S

A typical field sheet contains about 20,000 soundings. How should we use this 
vast volume o f data ? In  general, the soundings in the lower-left corner o f the field 
sheet cannot be used to predict the behaviour of the bottom  portrayed in the 
upper-right corner. In hand contouring, hydrographers examine only those sound
ings which sit close to the spot where his pen lies. We need some similar 
mechanism to limit the blind inclusion o f excessive and unconnected data.

Neighbourhoods are required to limit the num ber of data points included in 
the linear com bination. In its simplest form the neighbourhood is defined to be a 
circular area of user-set radius, centred upon the point to  be estimated. Any 
observations found within this area are included in the com putation. Figure 2b 
shows that six observations were found in the neighbourhood o f the central grid 
node. The observations are found by doing a search of the data record and 
checking each point to see if it falls within the neighbourhood.

Unfortunately, defining the neighbourhood as some simple circular area 
surrounding the grid node won’t always work. Figure 3 shows some o f the 
drawbacks of using a simple, pre-defined, static neighbourhood.

In Figure 3a we have the problem of sparse data. In order to include a 
minimum num ber o f observations in the calculation, some programs expand the 
search circle in increments until either the required minimum num ber o f points is 
included o r some m axim um  radius is achieved. Alternatively, if there are too many 
points in the standard neighbourhood, the radius is reduced incrementally until the 
maximum num ber o f desired observations is achieved or until some pre-set 
minimum radius is reached. Note that the neighbourhood in these cases is 
independent o f  the value o f the data and is dependent only on its spatial structure.
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F ig . 3. — N eig h b o u rh o o d  p ro b lem s.

Figure 3b illustrates another common problem  — how to include some 
unmeasured inform ation in the interpolation scheme. Here we have a situation 
where an observation is geometrically close to a grid point — but on the other side 
of a barrier (in this case a point o f land). Clearly, the observation indicated should 
not be used in estimating the value at the grid point — even though it falls in the 
neighbourhood. To overcome this one could sample, digitize and include the 
shoreline inform ation as observations. But this method is not foo lproof since the 
shoreline points are considered in the same way as all o f the other observations — 
as elements in the weighted average. The real solution is tO’ have some m athem a
tically impermeable barrier through which interpolation cannot take place. The 
inclusion of barriers is a feature o f many of the more sophisticated contouring 
packages available on the market.

A similar problem  is shown in Figure 3c. Here we have an underw ater scarp 
or cliff. The problem  here, again, is that observations m ade on one side o f this 
feature should not be included in the estimation o f grid point values on the other 
side. In this particular case, only data points on the lower level o f  the scarp should 
be included in the estimation o f grid nodes there.

The problem illustrated in Figure 3d is one o f extrapolation, not interpolation. 
This problem is particularly apparen t with polynomial surface fitting procedures 
and is diagnosed as a very “wavy” appearance of the contours along the edge o f 
the sheet. One solution is to ensure that only interpolation takes place. This can be 
done by having the program only contour within a window which is bounded 
externally by observed depths.



WEIGHTING SCHEMES

In the depth estim ation process, weights are applied to the observed data to 
allow observations of higher “ quality” to have a greater influence than points of 
lesser “ quality” . This quality feature can refer to the relative quality of the various 
depth measurements, but is usually used as a means o f ensuring that “closer” 
observations have a higher weight than observations farther away. In this restrictive 
sense, quality is a function o f the distance between the observations and the grid 
node to be estimated. The fact that closer observations should have a higher weight 
than ones farther away is initially appealing, but is not universally applicable. This 
can be seen in Figure 3b where the geometrically closest observation is hidden 
behind a barrier. Hence a more sophisticated distance-weighiing scheme is 
required.

The distance weight can be simply the inverse-distance between the observa
tions and the grid node to be estimated but, usually, the inverse-square o f the 
distance is used. This ensures a faster drop-off of the influence with distance. This 
inverse-square weighting is commonly referred to as the “Gravity Model — the 
relevance being the inverse-square relationship between two bodies in N ew ton’s 
Universal Law of Gravitation. Note, again, that the weighting is independent o f the 
value o f the observations but is based on the spatial relationship alone.

Figure 4b illustrates another problem associated with simple distance 
weighting — trends in the data. The data points on the left hand  track will clearly 
have a greater influence on the estimate than those on the right hand track. 
Suppose that there is a left-right linear trend to the data with the soundings on the 
left considerably deeper than  those on the right. Then the estimated depth at the
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point indicated will be deeper than  it should be. W eighted averaging systems have 
no explicit way o f handling data  which has clear trends in it. Such data sets are 
better handled by contouring algorithms which model these trends.

Clustering o f data points can also place emphasis on the wrong data. This 
situation is shown in Figure 4c. The data points to the upper right will have a 
greater effect on the estimate than the lone point to the left — yet this point should 
be included in any estimate. Why ? Because, firstly, it is closer than the o ther points, 
and secondly, it acts as a means o f determining trend.

Data shielding is also an im portant consideration. I f  one were to hand- 
contour the data shown in Figure 4d, one would nor consider the values o f the data 
points in the line to the right of the right-hand sounding. This would be 
inappropriate since the right-hand data point shields the line data. For instance, if 
the track data was considerably deeper than the other two soundings, then the 
interpolated depth would be influenced by the nearness of these deep soundings. 
This would result in a depth estim ate which is too deep — thus showing a 
depression where one probably does not exist. To get around this problem , one can 
apply a second level o f weighting — directional weighting. In this case, the 
algorithm must seek out observations within the neighbourhood which are shielded 
by other observations. This can be accomplished by examining the spatial 
relationships o f the observations vis-a-vis the grid node, determining the associated 
angles and de-weighting any observations which fall within the shadow cast by 
closer observations. M any m odern contouring programs feature such directional 
weighting automatically.

Another o f the consequences o f simple weighted averages is the fact that each 
observation is considered as a local extremum. That is, each observation is 
considered to lie on either the peak o f a local hummock or the p it o f  a local 
depression. This is a direct fall-out from the use of the weighted average. The grid 
estimates will always be bounded by the observations. One cannot estimate a value 
deeper than the deepest observation within the neighbourhood and neither can one 
estimate one shallower than the shallowest. The effect o f this is m ost apparen t 
when a rugged area is contoured at a close contour spacing. The observations are 
all ringed by contours. This m ight make sense for topographic surveying where 
observations are taken upon the local extrema, but it would never make sense in 
hydrography where we never see the surface we are m apping and consequently the 
chances o f occupying a local peak or pit are slight.

Including some slope inform ation is the way to get around this particular 
problem. But slopes are not observable in hydrography, so they have to be inferred. 
Geom orphologists use external inform ation on the surrounding geology and 
geomorphology to  help them create models for the unseen surface. I f  this 
inform ation is not available, then the observations alone m ust be used to estimate 
the slopes. Essentially this involves calculating the slopes from the differences in 
depth of the observations. Several o f the contouring packages available com mer
cially offer slope estimation as a program option. Once slope inform ation is 
available, it can be used to predict extrema other than at the observation points.



AREA MODELS

To overcome some o f the above limitations — particularly those which deal 
with trends in the data  — m ethods have been derived which specifically exploit 
these trends to m ake estimates. Such methods assume that the surface can be 
expressed as an analytical function — usually a polynomial. Deviations from these 
surfaces would be classified as noise. Figures 5, 6 and 7 show some examples of 
analytical surfaces used by surface-fitting programs.

Having the surface expressed as a m athematical function has certain 
advantages. D epth  estimates can be calculated at any position. Once the surface has 
been fitted, grid estim ates at any density can be calculated quickly and easily. The 
shape of the surface is also, to some degree, predictable. A polynomial surface of 
the first order would exhibit a constant slope. A quadratic surface (Figure 7) would 
show concavity — either upw ards or downwards, depending on the data. A Fourier 
surface (Figure 6) would appear periodic. This ability to predict the shape o f the 
surface has some attraction because we are often faced with data which has clear 
trends which could be exploited by such surface-fitting techniques. On the other 
hand, if we force  a surface onto data  which does not exhibit such a trend we could 
introduce artificial features into the surface — for instance, more hollows than 
actually exist.

In order to gain an appreciation of this problem  let us consider the surface 
shown in Figure 7. This is a bivariate (i.e. a 2-variable), second-order polynomial
_ a common function used in surface fitting. Fitting functions to data is usually
accomplished by using a numerical technique called regression or, more commonly,



least squares. The details o f the method can be found in any text on  regression, such 
as Applied Regression Analysis ( D r a p e r  and S m i t h , 1981).

To fully see the effects that the fitting o f such a surface has, it is far easier 
to examine the graph in two dimensions. Let’s see what happens in the quadratic 
case. In  other words, we will take a slice (or section) out o f a surface like that o f 
Figure 7.



In Figure 8a we have some data taken from a depth profile to which we have 
fitted a quadratic curve. We can see that the choice is not a good one. The data 
does not exhibit a significant trend — yet a quadratic one has been imposed. This 
is im portant, since the contours will be determined by this artificial surface — not 
the one defined by the observations. Figure 8b illustrates another problem. In this 
case the data does exhibit a trend — a linear one, whereas, again, a quadratic one 
has been imposed. Depths substantially deeper than m easured have been estimated. 
Alternatively, Figure 8c shows a case where the quadratic does fit well.
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p r o f i l e  r e g r e s s i o n

Fig. 9. — Problems in extrapolation.

Figure 9 illustrates the problem o f sensitivity in extrapolation when fitting a 
polynomial. In this case only the last point has been changed. Note the drastic 
change in the value extrapolated at X =  20. Extrapolation is safer with distance- 
weighted averaging since the extrapolated values are bounded by the extreme 
values in the neighbourhood.

Clearly, area-modelling methods also suffer some drawbacks. All too often 
the surface is far too random to be approxim ated, even locally, by an analytical function.

AREA VERSUS POINT MODELS

It will come as no surprise that one method is not clearly superior to another, 
oint models offer safer interpolation in areas where the bottom  undulates 

random ly about some near-constant level whereas area models are safer where the 
ottom has a clear trend. Area models are cosmetically cleaner and more efficient 

in storage space and in execution -  but these are, by and large, irrelevant issues 
for hydrographers who have the time and equipm ent to do the job  right. One can’t 
help but feel uneasy about fitting smooth functions to surfaces which are by nature 
rugged and unpredictable. Point models can handle the ruggedness but are 
defeated by trends. Clearly some com bination o f the two techniques might be the 
ticket; an area model to detect and model the trends and a point model to work 
on the residual surface which rides on top o f the trend. This is the essence behind 
universal kriging — a topic beyond the scope of this particular paper. There are two 
other techniques, however, which do, to some degree, incorporate features from 
both area and point models, namely triangulation and parallel line techniques We investigate those now.



TRIANGULATED NETWORKS

Many, m any techniques have been developed to generate the grid estimates 
upon which the contour placem ent will be based. Literally dozens are available 
each one considered optim al in one way or another by its author. Some are 
designed to  exploit features inherent in the data itself or in the geometric structure 
of the sam pling program. For instance, some surfaces are very smooth and slowly 
changing — such as our perception of a gravity surface. Others, including 
bathymetry, can be very rugged. Some surveys are very dense and regular like 
that o f G estalt Orthophotography — while others, like borehole surveys, are often 
sparse and irregular. A technique developed particularly for one type o f data will 
not necessarily perform  as well on another, radically different, type o f data. A 
technique developed for a large mam-frame com puter wili not perform weii — or
at all _ on a  medium-size mini-computer. Storage and processing speed are two
o f the chief considerations which many designers hold supreme.

W ith such a variety o f program s and techniques available, it is not surprising 
that a certain am ount o f controversy is apparent in the literature as to which 
technique is really the best. One o f the most frequently debated items is the grid 
versus triangulated irregular network (TIN). The grid, as we have already discussed, 
is a square mesh applied over the measured surface with the non-regularly-spaced 
observations being used in some interpolation procedure to derive estimates at the 
mesh nodes. A TIN , on the other hand, joins together the observations into a 
triangulated network (see Figure 10) and then interpolates. New estimates inside 
the network are interpolated by sub-dividing the network triangles into a series o f 
smaller clone triangles. Depth estimates are then made at each o f the new vertices. 
TINs are particularly appealing to  hydrographers because they honour the data.

We have previously argued ( M o n a h a n  and C a s e y , 1983) that honouring is an 
im portant issue. We included it in our “ Musts and W ants” list as a must. We can 
now differentiate between two kinds of honouring : strict honouring and weak 
honouring. By strict we m ean that the observed data points are honoured in the



strict mathematical sense. The observations lie on the interpolated surface. Weak 
honouring implies that the observations do not lie on the surface but lie so close 
as to appear, for all intents, to be on the surface. This might seem like a m inor 
academic point but, in fact, is quite important. The im portant card triangulation 
proponents have to play is that their technique strictly honours the observations 
and m ost o ther systems do not. We do not differentiate between strict and weak 
honouring, since to do so would be to unfairly categorize systems on what we feel 
is a m inor technicality. Most gridding systems do not honour the observations in 
either sense and so, for hydrographic purposes, are suspect.

Interpolation in triangulation can be relatively straightforward. In its simplest 
guise, the three data points at the vertices define a planar surface. C ontour location 
on this p lanar surface is then linearly interpolated (See Figure 11). The survey area 
can be im agined as being built-up with a network o f triangular facets, like, say, a 
geodetic dome. The contours drawn on such a surface have a very characteristic 
“angular” look. This is a consequence of the discontinuity o f slopes which occurs 
at each triangular boundary. M uch more elaborate and sophisticated techniques 
are also available to overcome some of these limitations.

One o f the most sophisticated o f the triangulation algorithms is due to A k i m a  
( A k i m a , 1978). This algorithm applies a 5th order bivariate polynom ial to the 
surface of each of the observation triangles. First and second partial derivatives are 
com puted at each of the vertices and directional derivatives com puted along each 
side to ensure the smoothness within the triangles and along the triangle’s borders. 
These measures ensure that the strong contour angularity, which is so characteristic 
o f triangulation schemes, is minimized. A k i m a ’s algorithm is also designed to 
suppress the unsubstantiated undulations or ringing effect which the fitting of 
polynomials usually involves.
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Triangulation systems are not without their problems. A re-examination of 
Figure 10 will show that many other networks could be established from the same 
data points. Early generation triangulation schemes did not address this problem 
to any great extent, so the impression has grown that these schemes do not have 
unique ways of defining the network. If different networks are used, the resulting 
surfaces can look very different. Primitive triangulators used the order that the data 
was entered as a guide to establishing the network. If the data was re-ordered, then 
a different set o f contours would be derived. This is clearly distressing. Such 
incongruities have not helped the proponents o f machine contouring in promoting 
the use of computers in, what is for many, the final and most visible outcome of 
their work. Fortunately, many researchers have been working on this problem. The 
result is that there now are standards for the definition of triangulation networks. 
The de-facto standard is known as Delaunay Triangulation ( S i b s o n , 1978).

One popular method for achieving Delaunay triangles is to first form a set 
of polygons (called Thiessen Polygons) from which the triangles can be formed. 
This is known as Dirichlet Tesselation ( G r e e n  and S i b s o n , 1978). See Figure 12.

TINs and Thiessen networks have attracted much attention in the recent 
literature and are the subjects o f continued study but are relatively rare in 
commercial usage ( S a l l a w a y , 1981).

Can triangulation schemes do the job in hydrography ? Yes, in some specific 
cases. The vast amounts of data produced by area-mapping systems such as the 
Navitronix or the Larsen could be successfully contoured using a triangulation 
scheme i f  (and only if) sufficient controls were added to ensure a bias for safety. 
This could be feasible.

If the object was to contour an existing digital field sheet using only the data 
presented there, then a triangulation scheme would be superior to a gridding 
scheme. But there is a far better way to contour digital hydrographic data and that 
is by using all o f the observed depths — not just the ones portrayed on the field 
sheet. We investigate one method now which does just that.



PARALLEL-LINE DATA

All the contouring techniques we have discussed above assume that the data 
is irregularly and randomly distributed throughout the survey area. Indeed, most 
users o f  machine contouring packages have data which is in this form. Hydrogra
phic data, on the other hand, is blessed with a very important characteristic _
continuity o f  information along the sounding lines. This feature can, and should, 
be exploited.

Most users o f  contouring packages have to be satisfied with interpolated 
contours. In our case, however, the position is known along the sounding lines 
because we measured it there. This measured position can then be used to anchor 
the contour s position as it intersects each sounding line. These points, commonly 
known as contour intercepts, are as well known as any of the soundings we normally 
plot on our field sheets. Thus only the contour’s path across the inter-line zone has 
to be interpolated. The use o f contour intercepts is the modus operandi o f  
geomorphologists who create bathymetric charts such as edition V o f  GEBCO. Its 
use in conventional hydrography can be traced to Q u ir k  ( Q u i r k , 1966).

We can also exploit the parallel line nature o f  our sounding lines in 
determining the contour. To control the contour’s position between the lines 
requires an interpolated grid o f  one kind or another. The sounding lines can be 
used to establish this grid. Consider the situation shown in Figure 13. In this case 
we have a series o f  sounding lines crossed by a set of uniformly spaced parallel 
lines. These lines will form the column lines in the regular grid we are about to  
construct. At each point where the column lines intersect the sounding lines the 
digital data record is searched for the appropriate depth associated with that 
position. These cross-over points are called the intersection nodes. These nodal 
soundings are then used in the generation o f the grid estimates.

SURVEY LINES

F ig . 13. — G ridding from parallel survey lines.



Both contour intercept honouring and parallel-line gridding are incorporated 
in a new contouring package developed by the Pacific Region o f the CHS in 
co-operation with Barrodale Computing Services o f  Victoria, B.C. The package is 
known as the Hydrographic Contouring System  (HCS). An overview o f its interpo
lation procedure is shown in Figure 14.

In Figure 14a a grid has been placed over the sounding lines and the 
soundings extracted at the intersection nodes. For simplicity, we are showing one 
grid line between each sounding line. In practice this is a variable. Typical values 
would range from one to four.

We now examine a one-column section in the next diagram (14b). Here the 
actual sounding values are plotted as continuous straight lines. We now fit a special 
type o f  polynomial to these values. This function, known as a cubic spline, fits the 
observed data exactly and yet retains smoothness, throughout the curve. Estimates 
are then made, using the spline, at the uniform interval corresponding to tue 
intersection o f  the row line crossing the column lines in the grid. These estimates 
are indicated as dashed lines in the section. This spline fitting and interpolation is 
then carried out for each o f the column lines o f the grid. In this way the grid 
estimates are established.

The next diagram (14c, d) illustrates how the course o f  the contour is 
controlled within each grid cell. Recall that, on the sounding lines, the contour’s 
position is fixed. It is only in the inter-line zone where position estimates are 
required. Here we show a block o f 16 depth estimates corresponding to 9 grid cells. 
We use the 16 values to fit a surface from which we will guide the contour in the 
central cell. Again we fit a spline — this time a bi-cubic spline since we are now 
working in two dimensions. A much finer grid (14e) is then established on the 
bicubic surface within the central cell and depth estimates made for this fine grid. 
This procedure is continued throughout the entire grid. The contour is then strung 
through each o f  the grid cells by allowing or denying access to the cell s interior.

(p l a n )

F i g . 14. — T h e  H C S  i n te r p o l a t i o n  schem e.



The contour is constrained to pass through the contour intercepts. The data 
is honoured in the weak sense. In fact, the honouring is to the nearest fine-grid 
intersection. Since the fineness o f this grid is a variable, the degree of the honouring 
is also variable. In practice, the grid fineness is about 1 mm. More information on 
the HCS is given in C a se y  et a i, 1984.

SUMMARY

We have given here an overwiew o f how most o f the available contour 
packages work. There will be detail differences that we have left out for simplicity, 
but we have tried to capture the essence of each technique.

Hydrographers and cartographers are usually reluctant to work with what 
they perceive as computed depths (*). The feeling is that these computed depths are 
very much second class compared to measured depths. This is true — they are. 
Nevertheless, the charts we produce show a continuity o f information despite the 
fact that we seldom make continuous measurements throughout the survey area. 
So, whether we like it or not, some form of depth computing is built-in to our 
procedures. The fact that such interpolation is done in the head of some 
experienced professional does not sanctify the result — a guess is still a guess. To 
mechanize this guessing — that is the objective of machine contouring. If care is 
taken in the selection of the interpolation algorithm and in the principles laid out 
for its implementation, then perhaps contouring of hydrographic data can be 
mechanized. We will find the answer to this question only after an extensive period 
of experimentation.

One point cannot be over-emphasized. The most sophisticated and elaborate 
contouring system ever devised cannot improve a poor survey. The ground rules 
of hydrography will not change — a poor survey will produce a poor chart every 
time. No amount o f post-survey data manipulation will ever change that.
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