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A METHOD FOR THE DELIMITATION OF 
AN EQUIDISTANT BOUNDARY 
BETWEEN COASTAL STATES 

ON THE SURFACE OF A GEODETIC ELLIPSOID <*)

by Galo CARRERA  (**)

SUMMARY

The m athem atical apparatus availab le  to geodesists for the task of 

positioning on the surface of a reference ellipsoid is used to develop a new 

maritime delim itation method. The method is based on two com binatoria l 

algorithms and requires only the geodetic coordinates of the baseline points of at 

least two coastal States. The end result of this method is a set of turning points 

from which the boundary can be drawn.

INTRODUCTION

Maritime boundary delimitation is one of the most important issues subject 

to negotiation between coastal States stemming from the Third United Nations 

Conference on the Law of the Sea (UN CLOS III) (United Nations, 1982). As of 

November 1985, more than 300 worldwide bilateral or multilateral negotiations 

remain to be signed or ratified.

The challenge to negotiators in each case is to transform the legal principle 

of equity into a rigorously defined geometric entity: the international boundary. 

UNCLOS III does not prescribe the application of a specific methodology to solve 

the above problem. One single formula cannot be applied to a wide variety of 

cases, each of which involves many different economic, géomorphologie and strategic

(*) Editor’s note.—  The views expressed in this paper are purely those of the author and must not be 
construed in any manner as reflecting the views of the I H O  or IHB. The Bureau also holds a 
program based on the author’s method, on magnetic tape, which will be made available to Member 
State Hydrographers on request.

(**) Canadian Hydrographic Service, Bedford Institute of Oceanography, P.O.Box 1006, Dartmouth, Nova 
Scotia, Canada B2Y 4A2.



relevant factors. However, several guidelines to achieve an equitable boundary 

have been proposed by the Internationa] Law Commission (ILC) since 1953 

(United Nations, 1953). One of these guidelines calls for the use as a general 

rule of the principle of equidistance. Very often the application of this principle is 

of value inasmuch as it provides a reference boundary for further negotiations.

The principle of equidistance in this context states that every point on a 

boundary must always be equidistant from the nearest points on the baselines 

from which the breadth of the territorial sea is measured (United Nations, 1953). 

T h is  p r in c ip le  has been im p le m e n te d  in v a r io u s  geom etric  m ethods 

(e.g., S h a lo w i t z ,  1962 ; H o d g s o n  and C o o p e r ,  1976).

Existing methods, however, use Euclidean geometry and are performed 

graphically on charts or maps. Several shortcomings of these approaches have 

already been pointed out in the literature (e.g., T h a m s b o r g ,  1 9 7 4 ;  S m ith ,  1 9 8 2 ) .  

Particularly of importance are the effects on tHe resulting boundary due to the 

distortions imposed by the selection of a particular map projection and the loss of 

accuracy induced by manual graphic procedures.

The purpose of this article is to present a new method for the delimitation 

of a maritime boundary that overcomes the shortcomings found in previous 

approaches. The technique is designed to provide an equidistant boundary 

between opposite or adjacent coastal States on the surface of a geodetic ellipsoid.

For the definition of geodetic terms and notations used herein the reader is 

referred to V anIcek and K rakiwsky (1982 ). For the definition of boundary 

delimitation terms, reference should be made to United Nations (1982).

FUNDAMENTALS OF THE METHOD

The reference surface selected is a geodetic reference ellipsoid. Its main 

advantage is that it can be used to delimit maritime boundaries worldwide, of any 

length and orientation, free of distortions.

Another advantage derived from the use of a geodetic datum, as opposed 

to a chart, is that it allows for the determination of a more accurate boundary. 

This is because baseline points can be determined to a much higher accuracy by 

means of a geodetic survey rather than by identifying them on a map or a chart. 

Appendix A  describes the coordinate transformations carried out when, in a 

particular negotiation, the geodetic coordinates of the baseline points of the 

coastal States are referred to different geodetic ellipsoids.

The method presented here makes extensive use of geodesics as the curves 

on the ellipsoid over which distances are measured. The property that the 

distance measured over a geodetic curve is a minimum, i.e.,

S =  min Jc dS

avoids any geometric ambiguity.



The solution to two classic problems in geodesy involving geodesics, the 

direct and inverse problems on the surface of a reference ellipsoid are the basic 

keystones of this method.

The direct problem seeks to determine the geodetic coordinates of a point 

P2 given the coordinates of a point P,, the distance S12 along the geodesic joining 

them and the geodetic azimuth a 12, i.e.,

4 >2  0 ( 0 1 )  ^ 1 >  S | 2 ,  OC\2 )

and

h 2 X (0 ., X], S 12, « 12)-

The inverse problem seeks to determine the distance along the geodesic S l2 

and the geodetic azimuth a vl given the geodetic coordinates of two points P, and 

P2, i.e.,

S 12 S(</>1, h i, (j>2, h 2)

and

otV2 —  a (4 > u  h u  <j>2, h 2).

Over fifty algorithms to solve the above two problems are known to exist 

( J a n k  and K iv io ja ,  1980). The methods developed by V in c e n ty  (1975) are 

particularly well known for their accuracy and efficiency.

The principle of equidistance is enforced in this method by means of two 

algorithms. One algorithm finds the coordinates of the turning points of the 

boundary that are equidistant from the nearest pair of baseline points along the 

coast. The second algorithm performs the same task but from the nearest triplet 

of baseline points.

Once a complete set of boundary turning points has been found, the 

international boundary joining them can be defined.

THE TWO-POINT ALGORITHM

The algorithm that enforces the principle of equidistance in the analysis of 

pairs of points is referred to as the two-point algorithm. Its purpose is to find the 

equidistant points (or boundary turning points) from the nearest baseline points 

along the coast.

The two-point algorithm  is based on the analysis of all possible 

combinations of two points, one from each coastal State. The total number of 

combinations analyzed is given by

(? ) ( ? ) = «
where p and q are the numbers of baseline points in each coastal State.



The analysis of each combination of baseline points, e.g., P; and Pj, is 

achieved in the following steps :

First, the distance S^, and azimuth, a ijt are found

Sjj =  S (cj>„ A,, </>j, Aj) 

a,j =  K  4>\, ^,)-

The next step consists in determining the geodetic coordinates of the 

midpoint Pm along the geodesic joining them

<£m =  0(4>i, S.j/2, Oüj)

K  =  M 0 ,. K  Sji/2, a n).

Finally, the conditions that the midpoint Pn, has to satisfy to be a valid

S
boundary turning posnt ârs tHcit its distsncs _-* to P or F bs srrsâücr thsn or

equal to its distances to all other points, i.e., ^

Sr
^  Sniu u = l , 2 , 3 , . . . , p

u i, j

•W’ ^  Smv v =  1, 2, 3, ... , q

v ^ i , j

where the indices u and v represent all the points found in the first and second 

coastal State, respectively.

THE THREE-POINT ALGORITHM

This algorithm enforces the principle of equidistance in the analysis of 

triplets of baseline points. Its purpose is to find the equidistant points (or 

boundary turning points) from the nearest triplets of baseline points along the 

coast.

The three-point a lgorithm  is based on the analysis of all possible 

combinations of three points formed by the baseline points of both States.

The total number of combinations analyzed by this algorithm is given by

( s ) ( ? M f ) ( 2 M <  p+»-2> <»
where p and q have been previously defined.

The first and second terms on the left-hand side of equation (1) represent 

the number of combinations formed when two points belong to the first coastal 

State and two points belong to the second coastal State, respectively.

The mathematical model used in the analysis of each combination of three 

points, e.g., Pj, Pj and Pk is formed by three distances and two unknown para­



meters, i.e., the system is overdetermined with one degree of freedom. The model 

can be set forming three linearized distance observation equations on the ellipsoid 

( V a n ic e k  and K r a k iw s k y , 1982).

r im=  C4( P jP + C 5(P ,P JÔ X m + S'% ~ S<°>

r)m =  C4( P , P + C 5(P ,P J6\ m + S‘°> - S‘°> (2)

r , . = c 4(p kp j ô 0m + c 5(p kp j ô À m + s<k°: - S<°>

where rim, rjm and rkm are residuals. The constants C 4 and C 5 are functions of the 

coordinates of the points P,, P,, Pk and Pm, for example,

C4(P ,P J  =  - M m cos a mj

and

C 5(P ,P J  =  - Nm cos <£msin a mi

where

“ mi =  « ( < / > ^ < / 0 ^ 0 ) )

and M m and Nm are the radii of curvature at Pm in the meridian and prime 

vertical directions, respectively, i.e.,

Mm = -------» 0  -<* )---- --
( 1 — e2 sin2 t/><°))3/z

and

Nm =
(a2cos2</>(®) + b2sin2c/>(“))(O ) 1) ! / 2

where e2, a and b are the first eccentricity, the semi-major and semi-minor axes 

of the reference ellipsoid, respectively.

S»», S*®* and S‘°> are the computed distances between P,, P, and Pk and the 

approximate coordinates of Pm, i.e.,

s<£ = s(°! (<*>,, x‘“>)

s z  =  S Z (4> k, K ,

In normal practice the last terms in equation (2) represent the observations. 

In this particular problem there are no observations but there is one condition: 

equidistance. An approximate value of the distance from the midpoint to the three 

points can be found via the average of the computed distances, i.e.,

: ( 0 )

Finally, 04>m and are corrections to the approximate coordinates of Pm. 

Appendix B describes the method used to determine the approximate coordinates 

and X<°> of Pm.



Equation (2) can be expressed in matrix notation as

*  ir o C4(Pi,Pm) C s ^ P J 8<p J j ( 0 >  _  § 1 ° )

r j m C4(Pj,Pm) C5( P „ P J + _ s ( 0 )

* " k m C4(Pk,Pm) C5(Pk, P J 8 k j}(0) — §(0)

or

r =  A<5 + w (3)

where r is the vector of residuals, A  is the design matrix, 8 is the vector of 

corrections and w is the vector of misclosures.

In order to solve for 8 the length of the projection of the vector of residuals 

(r1 C r 1 r) must be minimized. From equation (3) one obtains

/ T  .rf"'» 1 \ ___  ■ T / *  O  i \ T  1 / a cv i \ T
in inô r yr \ ^ r  r )  —  min^ r [(ao t  w )  {j\o ~ r  w )j.

The minimization of the projection of r leads to

Cr 1 r =  (AT Cr 1 A) 8 + AT Cr 1 w =  0.

The least squares estimate of the corrections can be found from the above 

equation to be

8 =  - (AT Cr 1 A) 1 AT Cr 1 w,

where Cr is the covariance matrix of the residuals.

The vector of corrections ô is solved iteratively. Iterations are performed 

until the corrections and 8 k m become negligible (e.g., <  10  12 radians).

If the same accuracy is assigned to the three residuals, the above 

expression is further simplified by writing

C r = I ,

where I is the identity matrix.

F inally , after n iterations, the least squares estimate of the vector of 

unknown parameters, the geodetic coordinates of the midpoint, is expressed as

i  =  X,n)+  <5.

The conditions that the point Pm has to satisfy to be a valid boundary turning 

point are that its distance S(n) to P,, Pj and Pk has to be smaller than or equal to 

its distances to all other points, i.e.,

S(">£ S„

s(">̂  s„

u — 1, 2, 3, ... , p 

u i, j, k

v =  1, 2, 3, ... , q

v ^ i ,  j , k

where the indices u and v stand again for points located in the first and second 

State, respectively.



A WORKED EXAMPLE

A  hypothetical maritime delimitation case is proposed in order to illustrate 

the performance of the above two algorithms. The equidistant boundary is sought 

between the Province of Prince Edward Island (P .E.I.) and the Provinces of New 

Brunswick (N.B.) and Nova Scotia (N.S.) along the Northumberland Strait in 

Atlantic Canada.

Only nine and ten base points were selected along the shores of P.E.I. and 

mainland Canada, respectively. Table 1 lists their geodetic coordinates.

TABLE 1 

Geodetic coordinates of baseline points

Base
Prince Edward Island New Brunswick— Nova Scotia

point Latitude Longitude Latitude Longitude

1 46 53' 54.0" 64 13' 48.0" 46 58' 48.0" 64 49' 0.0"

2 46 37' 24.0" 64 23' 30.0" 46 401 0.0" 64 42' 24.0"

3 46 24' 30.0" 64 7' 42.0" 46 28' 42.0" 64 37' 0.0"

4 46 19- 12.0" 63 48' 36.0" 46 19' 12.0" 64 30' 48.0"

5 46 14' 54.0" 63 42' 0.0" 46 13' 12.0" 64 11' 24.0"

6 46 7' 48.0" 63 15' 18.0" 46 91 18.0" 63 48' 48.0"

7 46 3' 6.0" 63 2' 18.0" 45 51' 48.0" 63 25' 18.0"

8 45 57' 54.0" 62 49' 30.0" 45 48' 24.0" 63 6'48.0"

9 45 56' 6.0" 62 32' 48.0" 45 45' 54.0” 62 46' 54.0"

10 45 49* 54.0" 62 32' 0.0"

The application of the two algorithms described in the previous sections 

results in a grand total of thirty boundary turning points. The two-point algorithm 

produced thirteen (1-13) of these points and the three-point algorithm the next 

seventeen (14-30). Table 2 lists their geodetic coordinates. Figure 1 shows the 

geographic distribution of all the base points, boundary turning points and the 

actual boundary joining them.

It must be pointed out that the turning points are the only locations along 

the boundary that rigorously satisfy the condition of equidistance from the 

basepoints on the shorelines. The rest of the boundary drawn joining them is, 

therefore, the result of an interpolation. This step introduces an error which, 

however, tends to disappear as the number of basepoints is increased. 

Furthermore, it could be shown that if a continuous description of the shorelines is 

provided, instead of their digital representation by means of basepoints, the 

boundary could also be continuously described. In practice, the above continuous 

case is never found nor desired. This is because an international boundary must 

be easy to describe and m ainta in . This implies, necessarily, the need for a 

balance between the accuracy with which a boundary is to be determined, i.e., 

the num ber of its turning points, and the simplicity w ith which it must be 

described.

As a rule of thumb the number of boundary turning points n, which would 

result from this method may be a priori estimated via the approximate relationship



- , = • §  %

where nb is the total number of basepoints on both shorelines.

TABLE 2

Geodetic coordinates of the boundary turning points (*)

Turning
point

Latitude Longitude
T urning 

point
Latitude Longitude

1 46 56' 22.353" 64 31' 23.197" 16 46 27' 26.489” 64 22' 40.763"

2 46 38' 42.390'' 64 32' 56.773" 17 46 20' 14.917" 64 18' 29.305"

3 46 33' 3.200" 64 30' 15.539" 18 46 14' 20.544” 63 58' 59.359"

4 46 21' 51.583" 64 19' 15.558" 19 46 3' 29.520" 63 32' 30.966"

5 46 18' 51.017" 64 9' 33.190" 20 45 57' 3.955" 63 13' 25.310"

6 46 16' 12.569" 64 0' 0.621" 21 45 51' 5.276” 62 55' 50.173"
7 46 12' 6.051" 63 45' 24.172" 22 45 52' 24.009" 62 41' 55.771"

8 45 59’ 48.114" 63 20' 18.720" 23 46 48' 47.424" 64 30' 0.730"

9 45 57' 27.581" 63 13' 49.168" 24 46 27' 17.050" 64 21' 51.490"

10 45 55' 45.026" 63 4' 33.297" 25 46 17' 27.176" 64 0'41.414"

11 45 53' 9.329" 62 58' 9.737" 26 46 14' 15.234" 63 49' 5.540"

12 45 51' 54.010" 62 48' 11.860" 27 46 4'32.149" 63 32' 24.744"

13 45 53' 0.001" 62 32' 23.977" 28 45 57' 59.731" 63 14' 21.498"

14 46 51' 30.921" 64 32' 49.543" 29 45 55' 7.649" 63 0' 22.882"

15 46 35' 40.932" 64 33' 49.352" 30 45 52' 32.304" 62 42' 8.150"

(*) In the World Geodetic System of 1972 : a — 6378135.0, b — 6356750.52

CONCLUSIONS

A new method for the delimitation of international boundaries has been 

developed. It is based on the recommendation by the ILC that the principle of 

equidistance represents an equitable delimitation criterion.

The practical value of this method is twofold. It provides the international 

boundary when all parties involved in a negotiation consider it appropriate to 

draw it solely on the basis of equidistance. On the other hand, it is also of value 

in a delimitation case when a reference boundary is required as a starting point 

for further negotiations taking into consideration other economic, géomorphologie 

and strategic relevant factors.

The method uses a geodetic ellipsoid as the reference surface over which 

the delimitation takes place. The method, therefore, has the potential of worldwide 

application avoiding any distortions induced by the use of map projections.

The method requires only the coordinates of two sets of baseline points and 

provides the coordinates of turning points from which the boundary can be drawn. 

The number of boundary turning points determined by the method depends on the 

spacing of baseline points along the coast. This is not a surprising result: the 

detail with which the boundary is found is proportional to the detail with which 

the coastlines are described.

The number of mathematical operations in this approach increases geometrically
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with the increment of baseline points. Therefore, the entire method has been 

implemented in a computer program (Appendix C) (*).

F inally , the application  of this method is not restricted to bilateral 

negotiations. It can also be generalized to the case when the boundary between 

more than two States is to be determined.
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APPENDIX A

COORDINATE TRANSFORMATIONS

When the coordinates of the base points of two or more States are referred 

to different geodetic datums, it becomes necessary to transform these to a 

common datum. The coordinate transformation is achieved in three steps:

1. transformation from geodetic to cartesian coordinates in the geodetic 

system, i.e., h)G— (x,y,z)G

2. transformation from cartesian coordinates in the geodetic system to 

cartesian coordinates in an agreed conventional terrestrial reference 

system, i.e., (x,y,z)c~. (x,y,z)CT and

3. transformation from cartesian to geodetic coordinates in the con­

ventional terrestrial system, i.e., (x,y,z)CT—(</>,A,h)CT.

The equations used in the above steps are the following:

For the transformation (4>,A,h)G—(x,y,z)G

X G (N + h) cos <fi cos k

y =: (N + h) cos <p sin k

z (N b2/a2) s i n  cf>

where a and b are the semi-major and semi-minor axes of the geodetic ellipsoid 

and N is the radius of curvature in the prime vertical direction.

For the transformation (x,y,z)G —» (x,y,z)CT

rCT =  R^-ey.^) rG + r0CT

where

and

=  R1 (fg  RjfEy) R 3(ez)

CT —

CT

Rj (£^), R2(Ey) and R3(ez) are rotation matrices defined counter-clockwise as in 

H o t i n e  (1969), i.e.,



1 0 0
= 0 COS Ejj s in

-1 -sin Ex cos E*

cos 0 -sin
ey

= 0 1 0

sin
®y

0 cos
•v

cos e* sin Er 0

= -sin Er cos eT 0

0 0 1

Ri

R2 (¾ )  

R3 (ez)

where ê , Ey and ê  are the geodetic datum rotation angles around the x, y and z 

axes ot the conventional terrestrial reference system. The datum rotation angles 

are small quantities and the product oi the rotation matrices can be expressed, 

with enough accuracy, as (e.g., V a n i^ e k  and C a r r e r a ,  1985) :

R  (ex , Ey, Er ) =

1 Ez -Ey

1 e,
-e, 1

r0CT is the vector of datum translation components. It contains the coordinates of 

the origin of the geodetic system in the conventional terrestrial reference frame.

Finally, for the transformation (x,y ,z)cl ̂ (</>,A,h)c i, <£ is obtained by means 

of an iterative solution (B o w r in c ,  1976). The initial value of the parametric 

latitude u is given by

u =  arc tan
P b

and the iterations are performed via

z + e'2 b sin3 u
$ arc tan

a cos-1 u

and

u =  arc tan (— tan <£). 
â

The geodetic latitude A is given by

A =  2 arc tan
x + p

where

p =  (x2 + y2)1/2

and a and b are the semi-major and semi-minor axes associated with the CT 

system and e2 and e'2 are the first and second eccentricities. All the above 

transformations are performed on the surface of ellipsoids, therefore the above 

expressions are further simplified by setting h =  0 in all cases.



APPENDIX B

APPROXIMATE COORDINATES FOR THE THREE-POINT ALGORITHM

A requirement posed by the three-point algorithm  is the value of 

approximate coordinates for the midpoint Pm. These approximate coordinates are 

found solving the problem of equidistance on a mapping plane. The equations 

used to transform the geodetic coordinates of every triplet of points to a local 

cartesian system are

x =  R(4> - 4>0) 

y =  R(À - X0) cos cf>0

where <£0 and A0 are the coordinates of the origin of the local mapping plane and 

R is the Gaussian mean radius of curvature given by

R =  (M  N )1/2

where M and N are the radius of curvature in the meridian and prime vertical 

directions, respectively. Standard analytic geometry expressions then can be used 

to find the cartesian coordinates of the center of a circumference given the 

coordinates of any triplet of points on its perimeter, provided that they are not 

aligned, i.e.,

xm =  x (x1,y1,x2,y2,x3,y:j) 

ym =  y (x ,,y i,x 2,y2,X3,y3).

The approximate geodetic coordinates of the midpoint are found via


