# ALGORITHM FOR THE CALCULATION OF GEODETIC DISTANCES FOR MARITIME JURISDICTIONAL BOUNDARIES

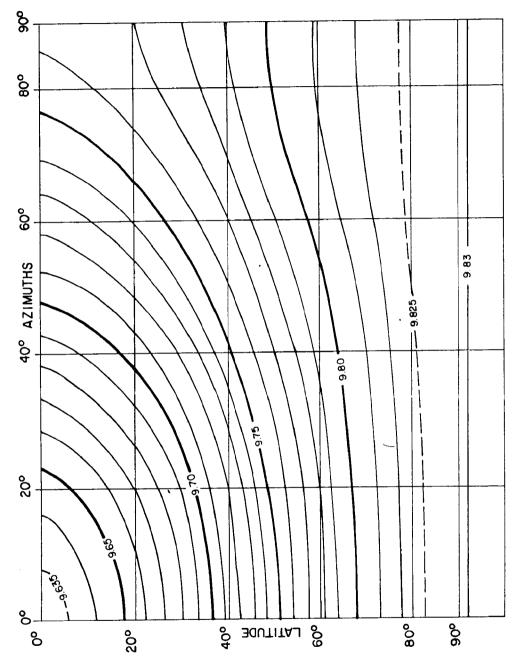
by F. MAYER, D. SZYCHTA, M. CRAVACUORE, D. VERON 1

#### Abstract

This paper presents an algorithm which can be applied for the calculations of distances of hundred kilometres from the co-ordinates of their end points.

Analysis of the simplifications are also presented and could be adopted for applications related to the Law of the Sea.

#### INTRODUCTION


Various solutions are possible to solve the problem of calculating the distances from latitude and longitude coordinates (so-called "second fundamental geodetic problem"). The complexity of the solutions increases with the longitude between end points.

Among the different programmes available, not all allow a quick change of elliptic parametres when their application to different reference systems is necessary. A few years ago, the accuracy in the calculation of distances larger than 150 km was hardly needed for Law of the Sea purposes. In most cases, distances involved did not exceed 40 km. The application of the United Nations Convention on the Law of the Sea has resulted in a need for the calculation of distances of 200 international nautical miles (1,852 m), i.e. 370,4 km.

In the exploitation of resources and during the control of operations related to this subject, it is frequently necessary to check if the distance of a position (obtained from a satellite positioning system) to the baseline or the line from which

<sup>&</sup>lt;sup>1</sup> Hydrographic Department, Naval Hydrographic Service, Argentina.





After obtaining K, the geodetic arc S must be calculated:

$$S = c + \frac{c^3}{K \times 10^{14}}$$

c and S being expressed in metres.

The following examples could clarify the application of the expressions given above:

| Ex. | Latitude      | Longitude             | С         | K     | S         |
|-----|---------------|-----------------------|-----------|-------|-----------|
|     | -45 00 00.000 | -65 00 00.000         | 000000 40 | 0.740 |           |
| 1   | -42 28 02.765 | -61 38 49,700         | 389939.18 | 9.763 | 389999.91 |
| 2   | -45 00 00.000 | -65 00 00.000         | 200024.50 | 0.762 | 400000 00 |
|     | -47 29 04.821 | -61 14 49.203         | 399934.56 | 9.763 | 400000.00 |
| 3   | -45 00 00.000 | -65 00 00.000         | 27001000  |       |           |
| 3   | -47 21 48.485 | -68 33 25.715         | 379943.88 | 9.763 | 380000.02 |
| 4   | -45 00 00.000 | -65 00 00,000         | 359952,17 | 0.762 | 250000 04 |
|     | -42 39 56.504 | -68 06 17.272         | 339932.17 | 9.763 | 359999.94 |
| 5   | -45 00 00.000 | -65 00 00.000         | 200024 54 | 0.505 | 100000 00 |
| 3   | -44 34 31.558 | -59 58 <b>4</b> 8.644 | 399934,71 | 9.795 | 400000.02 |
|     | -34 3500,0000 | -58 2200.0000         |           |       |           |
| 6   | -30 2122.2148 | -53 3607.5169         | 647920.06 | 9.742 | 648199.24 |
| 7   | -34 3500,0000 | -58 2200.0000         | (45000 45 |       |           |
| /   | -34 2245.4562 | -51 1848.5387         | 647922.15 | 9.785 | 648200.12 |
| 8   | -51 1755,0000 | -58 2758.0000         | 645000 40 | 0.545 |           |
| 8   | -45 2810.3983 | -58 2758.0000         | 647920.49 | 9.747 | 648199.50 |
| 9   | -51 1755.0000 | -58 2758.0000         |           |       |           |
|     | -47 0041.2043 | -52 2616.4277         | 647920.95 | 9.774 | 648199.25 |
| 10  | -51 1755.0000 | -58 2758.0000         | 4         |       |           |
| 10  | -50 5553.9524 | -49 1318.8437         | 647922.99 | 9.803 | 648200.46 |

Ellipsoid used "Int. Madrid 1924". (a = 6378388 m and 1/f = 297)

(\*) The values of Latitude and Longitude are given in degrees, minutes and seconds, and c and S are given in metres.

The adopted approximation C<sup>3</sup>/24 R<sup>2</sup> is reduced to the second term of the series. The difference with the complete expression reaches the following values:

| Distance (Km) | Error (m) |  |
|---------------|-----------|--|
| 400           | 0.04      |  |
| 600           | 0.27      |  |
| 800           | 0.90      |  |

These are acceptable within the range of maritime jurisdiction (Exclusive Economic Zone, Continental Shelf and Edge).

#### APPROXIMATE FORMULAS

Making some simplifications, the expressions given above are transformed into simpler ones. Taking:

$$\frac{1}{\sqrt{l-f(2-f)\sin^2\varphi_1}} \sim \frac{1}{\sqrt{l-f(2-l)\sin^2\varphi_2}} \sim 1 + f\sin^2\left(\frac{\varphi_1 + \varphi_2}{2}\right)$$

$$(l-f)^2 \sim (l-2f) \quad K \sim 9.77$$

$$c = a \left[ 1 + f \sin^2 \left( \frac{\varphi_1 + \varphi_2}{2} \right) \right] \sqrt{\left[ \cos \varphi_2 \cos (\omega_2 - \omega_1) - \cos \varphi_1 \right]^2} + \left[ \cos \varphi_2 \sin (\omega_2 - \omega_1) \right]^2 + \left[ (1 - 2f) (\sin \varphi_2 - \sin \varphi_1) \right]^2}$$

$$S = c + \frac{c^3}{9.77 \times 10^{14}}$$

From the examples given above, the following results are obtained:

| Example | С         | S         |
|---------|-----------|-----------|
| 1       | 389940.95 | 390001.64 |
| 2       | 389936.13 | 400001.61 |
| 3       | 379945.38 | 380001.52 |
| 4       | 359953.80 | 360001.53 |
| 5       | 399934.23 | 399999.54 |
| 6       | 647920.92 | 648200.12 |
| 7       | 647922.20 | 648200.17 |
| 8       | 647927.39 | 648206.45 |
| 9       | 647924.04 | 648202.33 |
| 10      | 647921.21 | 648198.68 |

If WGS 84 is used instead of that ellipsoid (a=6378137 m and 1/f=298.25722), the distances are:

| Example | С         | S         |
|---------|-----------|-----------|
| 1       | 389925.97 | 389986.65 |
| 2       | 399920.02 | 399985.49 |
| 3       | 379930.10 | 379986.23 |
| 4       | 359939.95 | 359987.68 |
| 5       | 399915.76 | 399981.06 |
| 6       | 647899.64 | 648178.82 |
| 7       | 647893.77 | 648171.71 |
| 8       | 647904,87 | 648183.90 |
| 9       | 647897.54 | 648175.80 |
| 10      | 647890.18 | 648167.61 |

## SPHERICAL APPROXIMATION

The ellipsoid calculation gives important differences with respect to the spherical calculation. Navigators generally assume that, if distances are calculated from the formula:

$$\cos s = \sin \phi_1, \sin \phi_2 + \cos \phi_1 \cdot \cos \phi_2 \cdot \cos \Delta \omega$$

and the value of S in minutes is transformed into miles, then the accuracy of the calculation will be sufficient. The list below gives various examples:

| Example | cos S        | S           | Sm(S *1852) |
|---------|--------------|-------------|-------------|
| 1       | 0.9981304278 | 210.2459717 | 389375.54   |
| 2       | 0.9980350963 | 215.5413790 | 399182.63   |
| 3       | 0.9982265793 | 204.7665307 | 379227.62   |
| 4       | 0.9984069733 | 194.0698558 | 359417.37   |
| 5       | 0.9980406311 | 215.2374922 | 398619.83   |
| 6       | 0.9948246922 | 349.9004112 | 648015.56   |
| 7       | 0.9948517232 | 348.9846485 | 646319.57   |
| 8       | 0.9948293329 | 349.7433616 | 647724.71   |
| 9       | 0.9948443944 | 349.2331739 | 646779.84   |
| 10      | 0.9948615579 | 348.6508715 | 645701.42   |

This demonstrates that differences of various kilometers can result from the above mentioned assumption.

### APPLICATION TO DEFINING THE LIMITS OF MARITIME JURISDICTIONS

One of the more concrete applications of the calculation of long geodetic distances is the establishment and the verification of the limits of the United Nations Convention on the Law of the Sea.

In addition to the problem discussed in the Introduction about checking if the distance of a given position to the points defining baselines is larger or shorter than 200 international nautical miles, the limits for exploitation of resources must be frequently drawn.

On the other hand, when two coastal States with adjacent or opposite coasts have interests in superposed areas, these States have to solve their delimitation problems by means of bilateral treaties. These treaties are generally based on equidistant lines.

To face this problem, the calculation of long distances from given positions becomes a routine of frequent application.

#### **Bibliography**

BEAZLEY, P.B.: Maritime Limits and Baselines. A Guide to Their Delineation, *The Hydrographic Society*, SP2, London, 3rd Edition, 1987.

BOMFORD, G.: Geodesy, 4th Edition, Oxford, Claredon Press, 1980.

FRANCALANCI-SPANIO: La Convenzione Delle Nazione Unite Sul Diritto del Mare, Istituto Idrografico della Marina, Genova, 1989.

JORDAN-EGGERT-KNEISSL: Handbuch der Vermessungskunde Band IV, Matematische Geodäsie, Metzler, Stuttgart, 1958.

KAPOOR-KERR: A Guide to Maritime Boundary Delimitation. Carswell, Toronto, Calgary, Vancouver, 1986.

LEVALLOIS, J.J.: Géodésie Générale, Eyrolles, Paris, 1970.

SEEBER, G.: Satellitengeodäsie, W. de Gruyter, Berlin-N.Y. 1989.

SEVILLA, M.J.: Sobre un Metodo de Cálculo para la Resolucion de los Problemas Geodésicos Directo e Inverso. *Boletin del Servicio Geografico del Ejercito* No. 50, Madrid, 1981.

ZAKATOV, P.S.: Curso de Geodesia Superior, Ed. MIR, Moscu, 1981.