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PRECISE COMPUTATION BY NUMERICAL
INTEGRATION OF VERY LONG GEODESIC AND
COMPARISON WITH APPROXIMATE METHODS

by TADAO TATSUNO !

FOREWORD

In the UN Convention of the Law of the Sea, several articles prescribe the
outer limit lines, lines of delimitation and median lines. These lines should be drawn
according to the results of precise geodetic computation. The distances on the Earth’s
surface are computed according to the geodesic length on an ellipsoid surface.

For computation of the geodesic, several methods are known. Some of them
are based on series expansion. Some of them are derived from spherical
trigonometry. The method described here is based on numerical integration. It is
directly derived from the EULER's equation of the calculus of variations.

This method can be applied to a very long distance, more than 19,000km,
with an accuracy of Imm. Algorithms and some examples are described here.

1. EULER’S EQUATION OF THE CALCULUS OF VARIATIONS

A line element ds on an ellipsoid surface is formulated as follows:

dsz

dx2+dy2+dz2

P2 d? + P2 dA? = (2 + P22y dg? G = %)

L}

where r,, and r, are the radius of curvature of the meridian and radius of curvature
of the parallel of latitude, respectively, and described as follows:
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n

r, = a(l-e)w’
r,=a cosp/w = N cosd

(w = y/1-€? sin’})

where N is the radius of curvature of the prime vertical, ¢ and A are latitude and
longitude respectively.

The line elements ds becomes as follows, by using g, as the sign of change.

ds = o, \rm + 1, ide
o. = +1 (when ¢ is increasing, i.e. cos a>0)

[

-1 (when ¢ is increasing, i.e. cos a<0)

According to the general theory of the calculus of variations, the stationary
function y, which gives a stationary value to the following definite integration L:

L= ’:‘ F(x,y,y)dx

is decided by the following FULER’s equation:

5-2(5)-

By the application of this theory to the present problem, the following formulae are
obtained.
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By substitution, the line element ds is obtained as follows.

ds = o __rﬂ_dd)

’ \/r:—Kz

Introduction of the azimuth o« brings the equation to the following well known
equation of the geodesic.
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r..
tan ¢ = -2 }
r,l

rpsina=K

The geodesic is determined by the parameter K, that is established by the
two terminal points of the geodesic. There are two kinds of terminal dispositions of
the geodesic. On the one hand, two terminal points, P, and P,, lie on the same side
of the ascending course or the descending course, as shown in Fig. 1. On the other
hand, two terminal points lie on different sides of the course, as shown in Fig. 2. The
top point P,, where the latitude takes the minimum value in the course, lies outside
of the course in the former case, and inside the course in the latter case.

Px

Pl

FIG. 1.- Single route.
P1 and P2 lie in the same ascending course.

In this report, the former case is called the "Single Route", and the latter case
is called the "Tum Route". The turn route appears not only in the case of a long

distance, but also in the case of a short distance, such as that of equal latitudes of
two terminal points.

The formulae of the integral are described by using the latitudes and
longitudes (¢,, A,), (¢, A;) and (¢,, A,) of the terminals P,, P, and the top point P,.
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Px

P2

FIG. 2.- Turn route.
P1 and P2 lie on different sides of the course.

1. Single Route

In this case, the latitude simply increases or decreases from ¢, to ¢,. The
following formulae are obtained.

r

M=o K" —2 _ dp + A,

¢ 2 2
rp\/ rP -K

§=0 ¢ r_"'rp_dd)
c‘x /rZ_Kz
P

Partial derivatives of 1', and s with respect to K are necessary for reiteration
and they can easily be obtained. The sign coefficient g, is constant through the
whole integral course. It can be obtained at point P,. Reiteration can be done by
using the following AK, modification of the parameter K, where K is the original
value of K.
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AK = B2
1+Kgh,
Ad = A,-A,

TNy -K,

_ L) T
Iz = Ocj;l Kou—z)sﬂ dd

2
rp(r | 2

2. Turn Route

In this case, the integrals of A, and s are similarly determined by the
coordinates of P, and P,. However, the integrals are composed of two terms, one
integral from ¢, to ¢,, and the other from ¢, to ¢,. The latitude ¢, of the top point
P, is determined by the following formula.

/_2
COS¢X=|K|—1-—e—

a2_e2K2

The sign of the latitude ¢,, is similar to that of cos o at P,.

By the use of ¢,, K and o, at P,, the longitudes A, A, and distance s are
computed by the following formulae.

T
2 52
rp\/rp -K

A, = l.1+och:’ db = Az—och‘:’ = ap

2 2
rp‘/rp -K
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For the turn route, when K varies, not only the integral function but also the
top of the integral area ¢, varies according to the above stated function. For
reiteration, the modification AK of K is computed by the use of successive sets of
approximation of (K;, 4,") and (K, ,").

AK=—Ki—(AI)

AX,-AX,
AX, = A -4,
AX, = A,-2y
K = K;-0, |K|
0, = +1 (if AX,>0)

-1 (if AX,<0)

2. NUMERICAL INTEGRATION

The above stated formulae of A,, A, and s are written in integral form. In this
report, they are directly computed by numerical integration, not by series expansion.
There are two ways of numerical integration applicable to the present problem. One
is the method of the weighted mean, and the other is the method of the double
hyperbolic function transformation. The former is applicable to the integration of the
single route. The latter is applicable not only to the integration of the single route
but also to that of the turn route, in which the upper terminal of the integration area
is a singular point of the integration function.
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1. Weighted Mean Method

In this method, the value of the following integration I is approximated by
the following weighted mean S.

[ f@ ax
=X wf(&x)

7
|

There are many methods to calculate the weighted mean, such as the
methods of NEWTON-COTE, MACLAURIN and GAUSs. In GAUSS's method, the values
of x; and w, are determined so as to get the best approximation. The GAUSS’s method
of six division points is adopted. The division of the area x; and the weight values
w, are as follows:

-x1=x6=0.932469514203152
-x2=x5=0.661209386466265
-x3=x4=0.238619186083197
w1=w6=0.171324492379170
w2=wb=0.360761573048139
w3=w4=0.467913934572691

The integration is repeated until the integrated value becomes sufficiently
converged. The limit ¢ of reiteration convergence can be set to Imm or less in value.
2. Double Hyperbolic Function Method

For the turn route, the upper terminal of the integral area is a singular point
of the integral function. In this case, the above stated GAUSS’s method becomes very
slow in converging. Another method is suggested. The method of the double

hyperbolic function is suitable. Here, the singularity of p, g>-1 at both terminals +1
of the following integration function can be allowed.

1
I= x) dx
[ f®
By applying the transformation

x=g(t)

the integral area (-1,+1) is transformed to (-cc,+o0).
I=[7fem g0 a

This integral resolves itself into the following summation by dividing the
area into small divisions with step h.
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I=hY f@gnh) g'(nh)

As the form of the transformation g(t), functions that decrease to zero in a
double hyperbolic function manner when {t| goes to infinity, are known to be most
suitable. The following function meets this condition and is used in the computation
of this report.

x = nmh(—;i sinh(f))

As for infinite summation, it is terminated when the value of the additional
term becomes sufficiently small and no significant change occurs by omission of the
succeeding terms. The reiteration is terminated by the convergence limit €.

3. FIRST APPROXIMATION

For reiteration, the first approximation of the geodetic parameter K is
necessary. The approximate value of K is computed from the approximate value of
the azimuth o.

1. Approximate azimuth at point P,

As an approximation of azimuth ¢, the following angle o’ can be computed
by using the position vectors 7,, ¥, of P, and P,, and the north unit vector N and
the east unit vector E at P,.

7 -7).E
7 -7).N

where 1, is the normal unit vector at point P,.
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The mean o, of o and a" has an accuracy of about 0".01 at distance of about

130 km, 0".1 at 530 km and 0".8 at 1320 km in comparison with the standard
examples shown in reference 1.

2. Approximate distance by mid-latitude azimuth

The following formula of cord length 1, radius p and arc length s can be
used for approximation of distance.

.11
=2 1=
K sin (2)

where 1 is computed by the following formula.

1= =,y -y,)P+2y 2,

The radius of curvature p is computed by the azimuth o, at mid-latitude ¢,,.

r®)
r,@,)

sin @, = sin @,

2 fn2
COos «a, sm'a,,

+
The accuracy of this approximation is very good, 0 mm at 130 km, 2 mm at

530 km and 6 cm at 1320 km in comparison with the standard examples shown in
reference 1.

4
p

3. Approximate distance by scalar product

For the turn route, another formula gives a better approximation, which is
based on the vector angle computed by the scalar product of two vectors. First, a
point Q is taken on the z-axis apart from the origin by 2, and computed by the
following formula using the mid-latitude ¢,

a e sin ¢,
\/l—ezsinzcbm

Then the angle 6 between the vectors Q?, and (31?2 is computed from the
scalar product formula.

Zq=



96 INTERNATIONAL HYDROGRAPHIC REVIEW

QP, . QP,
QP,| - IgP,|

From this angle 8, the radius p and the distance s are computed by using
the cord length 1.

I
P = 2m@©p)
s =0p

The accuracy of this approximation in the case of the turn route is very
good, 0 mm at about 370 km, 2 mm at 920 km and 1 mm at 1200 km in comparison
with the results of the integration method as shown in the examples stated later.

4. DISCRIMINATION OF INTEGRATION ROUTE

1. Coordinate transformation

To choose the integration method, it is necessary to discriminate the
integration route. Three points P,, P, and the origin O determine a plane. The cut of
this plane and the ellipsoidal surface is proved to be an ellipse. The equatorial semi-
axis of this ellipse is identical to that of the ellipsoid. The polar semi axis b’ is
computed by the following formula:

where i is the inclination of the plane containing the ellipse to the equatorial plane,
as shown in Fig. 3. The inclination angle i and the rotation angle Q are computed
from the coordinates (x,, y,, 2,), (X, Y,, Z,) of points P, and P, through the direction
cosine 1,m,n.

i = tant (L 12;”'2)

Q = tan! ()
-m
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1 sin i sin Q
m| =|-sin i cos Q
n cos i

“A

Y

X X'
FIG. 3.- Coordinate transformation.

Q: Rotation around z-axis; i: Rotation around x’-axis.

The direction cosine 1,mn are computed by the expansion of the following
determinant.

1 ijk
m(=A|%y
n 0NNy

where A is the normalization factor and T, J, K are unit vectors in the direction of
the x-axis, y-axis and z-axis respectively.

The new vector r in the cut plane is transformed from the original vector
r by the following rotation matrices Rx(i) and Rz(Q).
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r’ = Rx(i) Rz(Q)r

where matrix Rx(i) denotes rotation around the x-axis by angle i, and Rz(Q) around
the z-axis by Q. After this rotation, if the transformed coordinates y’, and y’, of the
points P, and P, have the same sign, the integration route is the single route. If, on
the other hand, they have different sign, the route is the turn route. This is the
discrimination of the route.

2. Approximate Distance by Inclined Ellipse

As a byproduct of the coordinate transformation, there arises another
approximation of distance. The angle y of the normal to the ellipse is computed by
the following formula, where ¢’ is the eccentricity of the ellipse.

- -1 J"
¥ =tan” (—=—)
(1-e")x’

From the mean angle y,, of the two normal angles y, and ‘¥, at points P,
and P,, the radius p of the curvature of the ellipse can be computed.

a(l —e'z)
(1-e'sin? )"

By substituting this radius p in the formula of cord and arc, an approximate
distance can be computed. This gives a better approximation than the approximate
distance computed by the radius of curvature from azimuth o, at mid-latitude ¢,
The difference is 0 mm at 130 km and 530 km, and 1.8 cm at 1320 km in comparison
with the standard examples shown in reference 1.

5. EXAMPLES

Several examples are computed for both single and turn route,

1. Single Route

Five examples, cases A through E, are shown in Table 1. The results
computed by two methods of integration are shown as dist.gm and dist.dh, which
are distances computed by weighted mean using GAUSS's method and the double
hyperbolic function method, respectively.

Approximate distances are also shown as dist.ma and dist.ie which are
computed from mid-latitude azimuth and included ellipse respectively.
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For the convenient comparison, the input data of the cases A through C are
the same as those of the standard examples shown in reference 1. They are said to
be originally the examples shown in the Handbuch der Vermessungskunde by
JORDAN-EGGERT-KNEISSL (1959). The input data of case D are also similar to those of

the example in reference 2. Those results coincide very well with the former
computations.

The case E is a completely original example and has no former results for
comparison. The approximate distance is computed using vector method. In this
case, because of very long distances, distma and dist.ie are not so good
approximations as in the other cases.

Case A B C D E
Input Data
61 49° 30" 07| 52°30 167" 45° O 0"| 10° O 0" 35° O Q"
Al o0 ¢ 0 00 0] 0 0 0 00 0¢O 1400 O 0"
$2 50° 30" 0"| 54° 42’ 506" 55° ¢’ 0"{ 55° ¢’ 0" -35° ¢’ 0"
A2 1 0 0 7° 6 0" 10° ¢ 0" 49° 35 55.480210 316° 0 0"
Approximation
dist.ma(m) 132315.375 529979.580 | 1320284.430 6606991.305 19650401.991*
dist.ie(m) 132315.375 | 529979.578 | 1320284.347 6606733.567 )
Results
dist.gm(m) 132315.375 | 529979.578 | 1320284.368 6606996.043 19661372.255
dist.dh(m) 132315.375 | 529979.578 | 1320284.368 6606996.043 19661372.255
Table 1. Examples of single route.
dist.ma : Approximate distance by mid-latitude azimuth
dist.ie : Approximate distance by inclined ellipse

* 1 Approximate distance by vector angle

dist.gm : Integrated distance by GAUSS's weighted mean
dist.dh : Integrated distance by double hyperbolic function
Ellipsoid : Bessel 1841 (cases A to C) a=6377397.155m  f=1/299.152813
International{case D) a=6378388.m f=1/297.
WGS 84(case E) a=6378137.m =1/298.257223563

Convergence limit: ¢ =0.1mm

2. Turn Route

Five examples are shown in Table 2. The cases A through C are computed
as examples of short and medium distances. The case D and E are examples of long
and very long distances.

The results are computed by the double hyperbolic function method and
shown as dist.dh. Approximate distances are computed by the mid-latitude azimuth
method, inclined ellipse and vector angle by scalar product, represented as dist.ma,
dist.ie and dist.va, respectively. For the cases D and E, dist.ma and dist.ie are not so
good approximations and result in big errors in comparison with other cases.
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In the case of the turn route, there are no examples which were previously
computed or can be easily found, so no comparison is made with these examples.

Case A B C D E
Input Data
01 34° O 0"y 34° ¢ 0] 34° 0 07 31° 52" 42" 1° 0 0
Al 131° 0 07 13° O 07 130° O 07 130° 54" 15" 1° 00
01 34° ¢ o) 34° o 01 34° 0 07 320 320" 1° 0 0
Al 135° 0¢ 07| 140° ¢ 0143 0 0" 35° 17729"]| 175° O 0"
Approximation
dist.ma(m) 369471.650 923370.475 1200051.050 | 8680101.745 [19498109.734
dist.ie(m) 369471.650 923370.456 1200050.968 | 8677078.970 |{19267006.900
dist.va(m) 369471.650 923370.457 1200050.984 | 8678076.042 |19333513.953
Results
dist.dh(m) 369471.650 923370.459 1200050.983 | 8677723.647 | 19330340.907
Table 2. Examples of turn route.
distma : Approximate distance by mid-latitude azimuth
distie : Approximate distance by inclined ellipse
dist.va : Approximate distance by vector angle
dist.dh : Integrated distance by double hyperbolic function
Ellipsoid Bessel 1841 (cases A to C) a=6377397.155m  f=1/299.152813

WGS 84(cases D to E) a=6378137.m f=1/298.257223563
Convergence limit: ¢ =0.Imm (cases A to C), € =Imm (cases D to E)

6. CONCLUSIONS

Two kinds of precise computation of very long distance geodesic by
numerical integration, GAUSS’s weighted mean method and the double hyperbolic
function method, were developed for single route. They all agree together, with an
accuracy of 1 mm over distances of more than 19,000 km.

One method, the double hyperbolic function method, can be applied to the
turn route, over a distance of more than 19,000 km to an accuracy of 1 mm.

Three kinds of approximate computation for long distance geodesic were
developed by using geometry and vectors. They are the methods of the mid-latitude
azimuth, the included ellipse and the vector angle. The first two methods are
applicable to both of single and turn routes. The vector angle method has good
accuracy for the turn route.

These three approximate methods can be used up to 1,200km for practical
use with good accuracy. At 200 nautical miles, they have an accuracy of Imm.
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