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TOWARDS A REAL-TIME TIDAL ANALYSIS 
AND PREDICTION

by TIANHANG Hou and Petr VANltEK 1

Abstract

In the practice of tidal analysis and prediction, the number and kind of 
astronomical tidal components that are to be included in a tidal model depend on 
the length of available tidal record and the desired accuracy of prediction. Since tidal 
frequencies, including shallow water constituents, are distributed unequally in a few 
narrow frequency bands, an inappropriate selection of tidal constituents to be 
included in the analysis and prediction may cause the normal equations to become 
ill-conditioned, or even singular, and the prediction to become poor. This 
investigation shows how to construct lumped tidal frequencies which better 
characterize ocean tides with diminishing length of observational series.

Further, a sequential tidal analysis model is proposed and an algorithm for 
its implementation is presented, which can rigorously update a tidal solution when 
the number of observations increases. The algorithm also brings in automatically 
additional tidal constituents without a large amount of computation work; the CPU 
time for this analysis is only about 4 percent of that for the conventional harmonic 
technique. The sequential algorithm for ocean tidal analysis and prediction has a 
potential to be used in tide gauge stations for providing continuous up-to-date tidal 
prediction.

INTRODUCTION

The drive towards an increasingly more accurate predictive capability of sea 
level elevation in coastal zones has been spurred on by concerns relating to 
navigation, global warning, shore-line engineering and pollutant transport. 
Traditionally, site specific sea level tidal information is derived from the harmonic 
analysis of a collected time series which estimates the amplitudes and phases of
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some selected harmonic tidal constituents. Then, these harmonic tidal constituents, 
which can be either of an astronomic origin, or of the shallow water variety [ZETLER 
and ROBERT, 1967], are used to predict the tide for future dates.

In tidal predictions, the accuracy of predicted values ÿ(t) depends not only 
on the number of tidal components used in the computations, but also on the 
accuracy of their estimated amplitudes and phases. Assuming that we order the 
components according to their amplitudes, the more tidal components are included 
in an analysis, the higher the accuracy that can be achieved in tidal predictions. On 
the other hand, the accuracies of estimated amplitudes and phases of these tidal 
constituents, of which we would want to select as many as possible, are closely 
related to the length of the time series used in the estimation with the least squares 
method. If too many constituents are chosen for the analysis (in other words, if the 
time period over which observations are taken is too short), then either no solution 
would ensue, or an unstable solution would be obtained, in which the interference 
between and among tidal components with similar frequencies would be a 
detrimental factor.

This happens when two or more frequencies are too close together so that 
they cannot be resolved from the given length of the time series. As a rule of thumb, 
two tidal constituents of frequencies f| and fk can be separated, if their frequencies 
satisfy the relation [GODIN, 1972]:

n(fj - fk) > 1, j *  k. (1)

This rule is called the Rayleigh criterion, where n represents the number of steps - 
typically hours - in a continuous sequence of observations.

From the above description, it is apparent that the number of tidal 
components that could be included in a tidal analysis really depends on the length 
of the available tide gauge record. Since tidal records of 'sufficient' length are not 
available at all tide gauge stations, it is usually impossible to obtain as many tidal 
constituents as we would wish to have to make a 'sufficient' good prediction. The 
problem then is that when the length of the collected tidal series is short, how many 
and which tidal constituents should be included in the analysis to give us the best 
predicted results. Before answering these questions, we should realize that since the 
tidal frequencies are distributed unequally in a few narrow bands, the selection of 
the tidal constituents to be included in both the analysis and prediction, is not a 
simple matter. Arbitrary selection of tidal constituents may cause either large 
departures of the prediction from reality, or cause the normal equations to become 
ill-conditioned (unstable), or even singular. Therefore, the selection of tidal 
constituents (from standard tidal tables) which fit different lengths of observational 
series is a critically important step, particularly for short tidal series.

As we can see from equation (1), by increasing the time period over which 
sea-level data are collected, more and more tidal constituents can be separated and 
thus included in the analysis. Then, the accuracy of tidal prediction will gradually 
increase. But, with adding new data and new tidal constituents, the normal 
equations of the harmonic analysis model have to be inverted repeatedly to update 
all the estimates. Usually, the matrix to be repeatedly inverted is quite large, so 
updating the estimates takes a good deal of CPU time.



The purpose of this work is to seek a method, that, while adopting the most 
detailed tidal model possible, would update harmonic results with a minimum 
computational effort.

CONVENTIONAL HARMONIC ANALYSIS

Let us, for the moment, forget the shallow water constituents and the non 
tidal effects in the oceans and consider the tide to be composed of astronomical tidal 
constituents only:

m

y (l i) = Z o+ £  COS (U j t+ Ç j+4),) =
J - 1

m
= Z0+5^ (Hj cos cos (a), t+q>p-Hj sin ¢, sin (w, t+q>,)}, (2)

J -i
m

= Z0+ 5 2  fCj ^  (wj t+<Pj) + S, sin (to, t+<pj} 
i -  i

where

Cj = Hj cos <J>j , Sj = -  Hj sin

te (t„ t2, ..., tN), tot+<p=klx+k2s+k3h+k4p+k5N+k4Ps [MUNK and CARTWRIGHT, 1966], and 
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For the theoretical tide, the arguments (o,t+<Pi for individual tidal constituents 
are known from Doodson's harmonic development [DOODSON, 1923]. For the actual 
tide we have to estimate the unknown parameters Z0Hj, (j = 1, 2 , ..., m) from the 
series of measured values y(t,) (i = 1, 2 , ..., n) by the least squares methods. Once the 
parameters have been estimated, the values ÿ(tt) can be obtained from the above 
model (2); this is the tidal "prediction".

Matrix notation can now be used to rewrite equation (2) as:

Y = AX, (4)

where Y = (y(t,), y(t2) , ..., y(t„))T is the "observation vector", X = (Z^ C„ S ,, ..., Cm SmT 
is the "unknown vector", and the matrix



1 006(0)! tj + ... sm((i>m tj + q t j

1 (5)

1 co s^ t, + q>!) ... sin(o)m tn + q»J

is called the Vandermonde (or design) matrix. The least squares solution of the 
above system of overdetermined equations (for n>2m+l) is given by the following 
normal equations:

X = (ATA)_1 AtY (6)

It is known from the theory of the least squares r^ethod [VANftEK and 
KRAKIWSKY, 1986] that the accuracy of the solution vector X is estimated by the 
covariance matrix:

£  = (Y-Aft)T (Y-Aft)(A TA) ! 
* n - (2m+1)

(7)

The diagonal elements of C; represent the variances oj (i=l, 2, ..., 2m+l) of the 
estimated parameters and off-diagonal elements are the covariances a^x (i,j=l, 2 , ..., 
2m+l) between pairs of parameters. ’

This method is widely used now in tidal operations because it is simple, yet 
it gives good enough predictions for most purposes.

LUMPED TIDAL CONSTITUENTS

As we have already stated, the number of constituents used in a tidal model 
depends strongly on the length of the observational series. If the length of observed 
series is long enough, all the harmonic tidal constituents of Dood son's development 
as well as shallow water constituents can be separated and thus included in the 
model. In other words, if the series is this long, then it makes no sense to introduce 
the sequential approach. But if the duration of observed series is much shorter, 
sometimes only a few months, weeks or even days, we wish to know which 
principal tidal constituents should be selected in the model to obtain the best 
predicted results. In other words, the question arises as to which selection of tidal 
constituents gives an optimal representation over whole tidal frequency spectrum. 
Making such a selection in tidal analysis is very difficult. N o  such composition 
captures the tidal energy distribution over all tidal frequency bands rigorously.

For constructing the sequential tidal model, we create representative lumped 
tidal constituents from individual astronomical and shallow water constituents, by



the least squares method. This smaller number of lumped tidal constituents, can be 
considered to be the best representation of tidal frequency bands. To demonstrate 
how to form these lumped tidal constituents, let us consider two pure astronomical 
tidal constituents with adjacent frequencies co, and (¾ lumped together the result 
must have a representative frequency to* located somewhere between to, and o\ and 
a combined amplitude A* somehow related to the amplitudes A, and A2 of the 
original constituents (Fig. 1).

FIG. 1.- A representative frequency w* for to, and 1¾.

In our algorithm, the weighted average to* of the frequencies to,, 0¾ of the 
two tidal constituents to be lumped together is used for the frequency of their 
lumped representative:

w2 -  Ü)

1 A 1 + * 2

(8)

where A„ A2 are the respective theoretical amplitudes of the two constituents. The 
representative flumped) amplitude A* is defined as:

A* = v'Af + A? . (9)

These parameters w and A' are then used in the next lumping step as the 
representative values for the original constituents.

METHOD OF CONSTRUCTION OF LUMPED CONSTITUENT TABLES

The tidal potential contains about 400 constituents in Doodson's harmonic 
development [Doodson, 1923], about 500 terms in Cartwright' s spectral analysis 
results [Cartwright and Taylor, 1971] and about 1140 terms in Qiwen 's logical 
deduction method for precision tidal analysis [QlWEN and TlANHANG, 1987].



In the construction of our lumped tidal tables, we have selected only 60 
harmonic constituents whose theoretical relative amplitudes are larger than 500x10 s 
(neglecting the fact that actual amplitudes may be significantly different, altered by 
tidal resonance and, of course, by latitude). Since the tidal energy is proportional to 
the squares of the amplitudes, the 60 principal constituents represent some 99.97% 
percent of total tidal energy. Beside the 60 principal tidal constituents, an additional 
15 shallow water constituents have been also considered in our construction. 
Amplitudes of shallow water constituents change dramatically from place to place. 
In our computations, however, for a lack of any better information, we have 
assumed all their amplitudes, to equal to 600x1O'5. As shown in equation (8) and 
equation (9), theoretical amplitudes are only used in computing the lumped 
frequencies and their amplitudes.

When building up the design matrix, we re-write the observation equation
(2) in such a way that the theoretical phase ipj and the unknown phase lag are 
added together. Then they become part of the unknown parameters C* and S* as 
follows:

m
Vi=l,n: y(tt)= Z0+ £  Hj cos(wj t

j=i
m

=Z0+J2 fHj cosOPj+̂ j) coswj t-Hj sin(Çj+<J)j) sincoj t]= 
j=i 
m

=Z0+ £  (Cj* cosWj t+Sj’ sinwj t),

where

V5 = l,m: C/ = H, costy  + fy; S/ = anfej + ty . (11)

Thus, the elements of the design matrix are expressed as functions of angular 
velocities to> and time t, regardless of the time origin of the analyzed series. It should 
be kept in mind, however, that the vector of unknown parameters C’ and S’ will 
change according to the choice of origin of time (usually Julian) used in forming the 
design matrix.

When the matrix of normal equations N=ATA is created, its elements have 
one of the following forms:

n n n

53 c08 Wjtj cos o>ktj, 52 008 %  s*11 “ kV sin ĉ t, sin o>ktj ^
i=i 1=1 1*1

with the exception of the first row and first column, where the elements are as 
follows:



cos (Dj tj, sin o>j tj . (13)

i=l 1-1

These elements can be computed much faster from the following equivalent 
expressions [BRONSHTEIN and SEMENDYAYEV, 1979]:
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Clearly, using the above expressions, the CPU time needed for constructing the 
matrix of normal equations is independent of the observation series length n. This 
is very useful in sequential tidal analysis, especially with a very long tidal series.

CORRELATION CRITERION FOR SEPARABILITY OF CONSTITUENTS

From the matrix of normal equations, we get some indication as to which 
two pairs of columns are likely to interfere with each other, i.e., which pair of tidal 
constituents is likely to be highly correlated. It is impossible, however, to determine 
the definite correlation values between any two adjacent constituents. For this 
purpose, it is necessary to invert the matrix and get the covariance matrix of the 
estimated coefficients (equation 7), which we will rewrite here as:



12m+l

(19)

Q ll • * Ql2m*l

e  • • • •

Qfrm-ii • • Q2m+12m+l U2m+U

where c£ = (Y-AX)T (Y-AX)/(n-2m-l).

The correlation coefficient of any two estimated coefficients X„ Xj (note 
that here X's stand for the unknowns C's and S's) is given by [Va n ICe k  and WELLS, 
1972J:

P « (20)

Clearly, we can also write:

P« =
%

P„ (21)

and to evaluate the correlation coefficient it is not necessary to know The 
following correlation matrix:

R =

* Pl2 * Pi 2m+l 
1 .

P2m+11 1

(22)

can be then calculated prior to having any observational series. This matrix R 
depends only on the assumed length n of the time series, and the selected number 
m of constituents. Looking at the off-diagonal elements in the matrix R, we can make 
a decision about whicfy two (or more) tidal components are strongly correlated; these 
two (or more) can then be held responsible for potential ill-conditioning of the 
normal equations.

To determine which two adjacent tidal constituents are significantly 
correlated, we first take the 4 by 4 symmetrical submatrix of R  connected with these 
two constituents. This submatrix will look as follows:



1 P c,s, P Cft*l

PsjC, 1
P »ft*l
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1

From numerical experiments we have established that

p  »  p
“ft*!

0  »  p  
cf t * l  V t* !

(24)

From further numerical experiments we have determined that the quantity

p u . .4 / ( M +M )2+( M +M >2 ^  l25)

decreases monotonically with increasing n, and is thus suitable to use as a 
correlation criterion. Somewhat arbitrarily, we have selected a value of 0.985 to serve 
as a limiting value for deciding if two adjacent constituents are correlated, i.e., if they 
are separable or not (for py+1 < 0.985 all the correlation coefficients in matrix (23) are 
smaller in absolute value than 0.95). For any two adjacent constituents, the value n 
for which they become separable can then be determined.

Representative lumped constituents, obtained as described above, are given 
in the individual boxes in Tables 1 to 3. These tables show how the lumping works 
for diminishing length of observational series, when the series is shortened in 
successive steps. Looked at from the other perspective, i.e., considering the series as 
growing in length, these tables show the separability of constituents. Based on these 
tables, detailed time schedule for the tidal constituent separability has been designed 
and included in our computer program for sequential tidal analysis.

THE SEQUENTIAL MATHEMATICAL MODEL

In applying the sequential technique to tidal analysis, we have to have the 
first estimates of unknown parameters which are obtained from an initial tidal 
harmonic analysis. In the next stage these initial estimates are updated by computing 
corrections to the earlier results as functions of previous estimates. The information 
made available for subsequent use consists of the estimated amplitudes, phase lags 
and their covariance matrix.
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In our sequential tidal model algorithm we distinguish between two 
different update modes:

(i) adding only new observations;
(ii) adding both new observations and new tidal constituents.

Throughout the development of the algorithm (as well as the program based 
on the algorithm), we restrict ourselves to the rigorous approach, but we will include 
some discussion concerning approximate approaches for certain situations.

The original mathematical model for tidal harmonic analysis is (cf. eqn. 4):

\  X x = L j (26)

where L1=(L1, L j , ..., Ln)T is the data vector, A, is the design matrix, and X,=(X], X2, 
..., X2m+1)T is the unknown parameter vector. The least squares solution of the above 
system of over-determined linear equations is given by normal equations as 
[VANfôEK and KRAKIWSKY, 1986]:

= N,-1 A* Ll = (A* A,)-1 A* Ll (27)

The sequential updating starts with the acquisition of additional data. Let 
us assume that a batch of data, consisting of 1 to n, new values, becomes available. 
We note that the size n, of the batch (it may be as small as 1!) should be selected 
beforehand according to what use the results of the analysis are going to be put to.

When adding the new batch of data to the existing series, two or more tidal 
constituents may become separable. If this is the case, then the separable constituent 
present in the previous analysis - it could have been a lumped constituent, of course 
- is replaced by its separate component. This case is referred to as ii) above. We shall 
first discuss the more simple scenario i), when no new tidal constituents appear in 
the sequential step.

ADDITION OF NEW OBSERVATIONS

If only new observations Lj = (L„+], Ln+2, ..., Ln+n )T are added, the observation 
equations (26) become:

Aa
( X jn + Ô X f*)  = (28)

and the new solution is given as:



(29)

Here, the matrix N2 of normal equations has the same dimensions as N, in equation 
(27) and it read as follows:

The inversion of this matrix can be obtained from the following rigorous sequential 
expression [MORRISON, 1976]:

N2_1 = (Nj +AN2)_1 = N,'1 -  n ; 1 A^ [ I+A2N1' 1A2T] ' lA2Ni"1 (31)

Here, I is the identity matrix, and AN2 = A2TA2 can be considered the perturbation 
of the set of the original normal equations due to the added observations. From 
expression (31), we see that the matrix I+A2N,'1A2T to be inverted has a dimensions 
of n, by n„ where n, is the number of added observations.

If n, is large, we need to invert a large matrix which would eliminate one 
of the important advantages of the sequential approach. In practice, the number of 
added observations n, should be small. If we let, for example, n ,= l, meaning that 
only one new observation is added at a time, the matrix above degenerates into a 
scalar

Obviously, when adding a single new observation at a time, no additional matrix 
needs be inverted.

Before the rigorous complete sequential solution is given, let us introduce 
an important approximate formula for matrix inversions which may be useful in 
some cases where the original matrix is huge, and the number n, of observations 
added is so large that the rigorous inversion would be too time consuming. The 
approximate expression reads [CRAYMER and VaniCek , 1989].

a  a , N, '1 Aj7) = Q. (32)

equation (31) is then written as:

N2 = (Nj+AN^ " 1 = Nj"1 -  N^ANjNj"1 (34)

This approximation may be used when



|AN2| <|N,|

where LI denotes a norm [VANfôEK and KRAKIWSKY, 1986]. There are several ways 
to compute a matrix norm, and we adopt here the most commonly used quadratic 
norm. The formulation is given as:

_1
|2 \2 (36)

where T̂  are the elements of matrix T.

To conclude: if no new tidal constituents are added, the new (sequential) 
solution is given by:

x{2) = Xi(1> + àX ? (37)

ô x f} = - N1' 1FN1' 1(A1tL 1 + A?L2) (38)

where the matrix F is given as

F =

-A2a(I+A2N1"1a7 )'iAz (general case)

-  —AN,

AN,

(39)

when | AN2 I < | Nj ||.

SEPARATION OF TIDAL CONSTITUENTS

The separation of tidal constituents is done in 3 steps.

1) In the first step we consider the complete observation vector L = (L„ ..., 
L„+nl) and solve for the same constituents as in the previous step. This step is thus 
identical to the one described in the previous paragraph. We write the result of this 
step as



x® = x{1> + ax(1) (40)

2) In the second step, we leave the number of observations as it is, i.e. at 
n+n„ and solve for 2(m-i)+l = 2m - 2i + 1 parameters, to erase the i constituents 
(which possess 2i parameters) to be separated; typically, i wil be equal to 1. We thus 
first split the vector of parameters X® as follows:

XJ‘(?)

(2)

(41)

and proceed to forget about the 2i-dimensional vector X2. Then, the first part of the 
vector of parameters, X/2*, must be corrected for the effect of discarding the 2i 
parameters. This is done by computing a correction

« X ®  = -  m „  [ ( K y ’M j A 1 -  a J] l (42)

where are submatrices of the complete covariance matrix (N®)'1 of X. This matrix 
can be written as:

( N ^ 1 =
^ 1 1  ^ 1 2 A *  A j A / A ,

A f o  A ^ A ,

- l

(43)

Here A„ A2 are the two parts of the original design matrix corresponding to the two 
parts of X. Finally we evaluate X,<3) from

xj3) = xj2) + fixf(2) (44)

3) In the third step, we again leave the number of observation unchanged 
at n + n„ and solve for 2(m+2i) + 1 parameters, having added the 4i new 
parameters. To do this, the vector of existing parameters is first augmented by 4i- 
dimensional vector

x f  = 0 (45)

and we write



X}-(3)

.(3)

Now, once again, the new vector of parameters has to be corrected for the effect of 
the added parameters. The correction is computed from the following expression:

« X ® « AlT
ÔX® = = ( N ^ '1

ÔXf A3T

- W u X ' N i P  

-D -'lV N n ri D-'

where Nn stands for the N<2) from the previous step.

D -  (NK - N21(Nu)"‘ N,2)

-1 A?

A3T

(47)

(48)

and Njy N21 = N12T, N22 are the submatrices of the current complete matrix of normal 
equations:

N 0 ) =

Nu n 12

N21 N 22

A* Aj A3tA 1 

A?A, A/A3
(49)

The A matrices are, of course, the design matrices. Then, we get finally

X(4) = X (3) + 0X(3) (50)

This is the required new vector of dimensional 2(m+2i)+l of the augmented 
parameters best fitting to the updated n+n, - dimensional vector of observations.

Writing the result of the above 3 steps together, we obtain



x(4) = X®'

0

f ix S 1)+ 0 X ® + 8 X ? )

ÔX (3)
(51)

This vector then becomes again X0) in the next sequential step, be it either the simple 
addition of observations, or addition of observations combined with the next 
separation of tidal constituents. It is interesting to see that the additional matrix 
inversions for sequential separation of constituents are only at most of the size of the 
number of added parameters.

In the sequential process, the inverse of the entire matrix of normal 
equations, i.e., the covariance matrix of estimated parameters, in the current step 
must be available in the next step, to obtain the rigorous sequential solution.

TESTING OF ACCURACY OF FIT

To test the performance of our sequential algorithm, we had generated a 
synthetical hourly series consisting of the most dominant 60 theoretical 
(astronomical) constituents and 15 shallow water constituents. We then analyzed this 
series, starting with the first 100 values and proceeding till 300 hours (i.e., 12.5 days) 
were reached, using a step of two hours. From the lumped constituent tables, the 
program selected 12 lumped constituents to be fitted to the first 100-value series and 
ended up fitting 21 lumped constituents to the whole 300-value series. At each step

we plotted the relative RMS error defined as 0 ,/  Ç , where

V i = 1, 300: E CCj -  9 2 / (n-2m -l) 
j=i

(52)

(53)

j=i

with being the generated values and ^  being the estimated values. This relative 
RMS is shown in Figure 2, where the symbols (13), (14),... (21) indicate the number 
of lumped tidal constituents used at any particular time.

The shape of the curve demonstrates that when new tidal constituent are 
added (really, when used lumped constituents are separated), the relative accuracy 
of the fit increases. During the time interval when the number of tidal constituents 
in the model is fixed, the relative accuracy decreases until the next separation of 
constituents occurs. It implies that before adding the next constituent at a certain



stage, the tidal model finds it more and more difficult to fit properly the current data 
series. Intuitively, this behaviour makes a good sense.

Time in hours

FIG 2.- Relative RMS of the Sequential Analysis.

For comparison, we also give the RMS (o{) curve of the real tide-gauge data 
analysis at Halifax (Fig. 3). It shows that the values of standard deviations of the fit 
also generally decrease when a new constituent is added to the model. The situation 
in this case is more complicated however, because of the presence of non-tidal 
signals in the data. Thus, Figures 2 and 3 cannot be compared directly. Some 
modeling of non-tidal contributions would be needed to improve the performance 
of the sequential algorithm with real data.

COMPUTATION SPEED TESTING

The tidal harmonic analysis results at permanent tide gauges should be kept 
up-to-date to maintain the quality of tidal prediction at any given time. To do this, 
large systems of linear equations have to be solved repeatedly. This requires a lot of 
CPU time, which, in turn, increases the cost. It is thus of natural interest, to 
determine just how much faster the analysis can be performed using the sequential 
approach. The comparison of the time consumption of the traditional harmonic 
analysis with that of the sequential approach is given in Figure 4.

The difference in the CPU time consumption (including solving the initial 
system of normal equation in the sequential method) for obtaining solutions with 
increasing number of unknown parameters (on the UNB mainframe IBM computer) 
is seen very dearly. For instance, if the tidal model contains 7 constituents (15



Time in hours
FIG. 3.- The RMS of the Sequential Analysis at Halifax.

Order of Matrix 

FIG. 4.- CPU Time Consumption of the Two Methods.

unknown parameters), solving the pertinent 15 normal equations to get updated 
solutions, the standard method spends 1.34 seconds of CPU time, while the 
sequential method spends 0.45 seconds - a saving of 0.89 seconds, i.e., 66%. If the 
size of the system of equations is increased to 95, the difference of CPU time needed 
by the two methods increases to 1.38 seconds, i.e., 63%. With.further increases in the 
number of needed constituents, the CPU time saving increases progressively.



COMPARISON BETWEEN USING PURE AND LUMPED CONSTITUENTS

The lumped tidal constituent tables discussed above are based on the 
astronomical tidal constituents and created by the least squares method, in which the 
covariance matrix of the estimated constituents' amplitudes and phases is inspected 
by using a specific correlation criterion. With the lumped constituent tables, we 
establish a standard model that includes as many tidal components as possible with 
the limited length of observational series, while assuring that well-conditioned 
normal equation matrix results in any of the steps of the sequential algorithm. As we 
have mentioned earlier, the lumped tidal constituents can be considered as a good 
representation of the pure astronomical and shallow water constituents when the 
time series is short. For demonstrating the differences between using the two kinds 
of constituents, pure and lumped, two data series, a synthetic one and the observed 
data series at Halifax, were analysed. The resulting a ( of the respective fits computed 
by equation (48) are shown in Table 4

Table 4 - Standard deviation of analyses with pure and lumped constituents
n

(hours)
Observed series 

(cm)
Synthetic series 

(cm)
Pure

(Astronomical) 40 ±5.826 ±1.414
Tidal 70 ±5.213 ±1.303

Constituents 100 ±5.046 ±0.264

Lumped 40 ±4.599 ±0.408
Tidal 70 ±3.743 ±0.151

Constituents 100 ±4.410 ±0.365

It can be seen that when the series is not very long, the analysis with 
lumped constituents yields generally more accurate results than the one with the 
pure constituents. The only exception is found for the longest analyzed stretch of the 
synthetical data series (n = 100 hours). The reason is that the lumped constituents 
used in the analysis contain some shallow water contributions. When the length of 
the series is increased, the effect of these contributions on the lumped constituents 
becomes more and more apparent and the misfit of the fitted series to the synthetical 
series (generated from purely astronomical constituents) becomes more and more 
obvious. It may be assumed that if the lumped constituent tables were constructed 
without considering the shallow water effects, the accuracy of the analysis (using 
these lumped constituents) would also be higher.

As one may expect, prediction with lumped tidal constituents gives also a 
higher accuracy than that with pure astronomical constituents. This can be seen from 
numerical results listed in Table 5, constructed for n = 100 hours and predicted for 
another 30 hours. The standard deviations were computed from equation (48), where 
estimated and predicted values were computed with the values of the 
analyzed/predicted series.



Table 5 - Estimations and predictions with pure and lumped constituents
(in centimeters)

Lumped constituents Pure constituents

Stand, deviations 
for estimates

4.410 5.046

Stand, deviations 
for predictions

12.881 15.291

When the length of the time series is increased, the results by using the two 
kinds of constituents get closer together, until the difference between them 
completely disappears. This happens, when the series becomes sufficiently long so 
that all the lumped constituents can be separated into their pure constituents.

CONCLUSIONS

The sequential tidal harmonic analysis proposed in this study can be used 
to provide up-to-date information for ocean tidal predictions in real time. Once new 
hourly observations become available, updated results (estimated new amplitudes 
and phase lags, and their standard deviations) can be obtained with very little CPU 
time expenditure, as the solution time is only weakly dependent on how many tidal 
constituents are included in the tidal model. If desired, the prediction values Ç can 
be naturally computed in each sequential step.

For obtaining accurate enough results for shorter series lumped tidal 
constituent tables have been constructed. This has been done by using the correlation 
matrix for estimated tidal amplitudes and phases and by applying a specific criterion 
for maximum allowable correlation. If the need arises, these tables can be 
recomputed for a different criterion. It appears that lumped tidal constituents are a 
realistic representation of pure astronomical tidal constituents over all tidal 
frequency bands with observational series of a limited length.

The program for sequential tidal harmonic analysis is recommended for use 
with tide gauges equipped with micro-computers. If the initial tidal analysis contains 
a large number of constituents, the covariance matrices and unknown parameters can 
be calculated beforehand in a larger computer. This solution (unknown parameters 
can be calculated beforehand in a larger computer. This solution (unknown 
parameters and their covariance matrix) may be input as a file on a diskette for 
sequential computations in the micro-computer. At the tide gauge, only sequential 
computations for the updating of the unknown and future predictions would be 
carried out.

To increase the accuracy of tidal analysis, the non-tidal effects, which result 
from long periodic causes such as glacial melts, crustal movement, river discharge 
and several important meteorological variations, should be filtered out from data 
before performing the sequential tidal analysis. Alternatively, these non-tidal effects 
could be modeled within the sequential analysis.
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