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ON THE IDENTIFICATION OF SPIKES 
IN SOUNDINGS

by Jorgen EEG 1

"For the Snark's a peculiar creature, that w o'n't 
Be caught in a  commonplace way.

Do all that you know, and try all that you don't: 
N ot a  chance m ust be wasted to-day!"

Lewis Carrol: the Hunting of the Snark

Abstract

This paper points out a method of finding blunders in sounding 
measurements. By postulating that the sea bed enjoys a certain approximation 
property, inconsistencies in data can be found by a test which allows of an 
inspection of problem areas in decreasing order of interest. Finally a means to decide 
if the postulate is in error is presented.

Introduction

This paper describes a method which has been employed at the Royal 
Danish Administration of Navigation and Hydrography for over a year as an 
important part of the quality control of soundings. Although the method originally 
was devised with the multibeam echosounder in mind, it was quickly adopted for 
use with single beam surveys and, later, used to provide quality control during the 
digitizing of fair sheets. In both cases, ground truth (echogram and fair sheet) is 
available and provides an accurate means to verify the measurements by manual 
inspection. However,this kind of work is tedious and time consuming and therefore 
prone to errors. The solution which is suggested here is to inspect the potential
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blunders in decreasing order of interest. This is made possible by introducing an 
ordering into the set of observations so that observation z, preceeds zj if and only if 
Zj is at least as likely as Zj to be a spike.

For the moment, suppose that such a method is available,then how can a 
quality control procedure benefit from it?

First, it makes it possible to check-up the observations to a preselected level, 
and thereby achieve a homogeneous quality control for different surveys. For 
example define the probability of finding a spike as the ratio between the number 
of observations which are verified as blunders to the total number of inspected 
observations. As the inspection proceeds this ratio changes, and when the probability 
of finding a spike drops below a certain limit, the procedure stops.

Second, as the probability that the observation zt is a spike decreases, it 
becomes to a greater degree verified by the other observations. This relation may be 
expressed as a quality measure which, for example, may follow the observation into 
the database.

It is also worth mentioning, that a simple extension of the method would 
be to incorporate zi and 2¾ as sets of neighbouring measurements, thus allowing a 
search for features on the sea bed as wrecks etc...

The author wishes to acknowledge the lively interest of the surveyors in the 
Royal Danish Administration of Navigation and Hydrography in testing this method.

The Model

Surveying with a multibeam echosounder system is a complicated task in 
which the final result depends on output from several sensors, each having its own 
caracteristics and therefore prone to errors which are special for its type and which 
consequently should be modeled separately.

On the other hand, the end product of a survey which is a set of triples

( X i ^ Z j )  i =  1 , . . . ,n  ( 1 . 1 )

of positions (xvy )  and corresponding depths zv also offers some means of control 
which again may give rise to a modeling of the errors in the sensors. For instance, 
overlapping tracks which are traversed in opposite directions may supply 
information about a time lag in the system.

Below we shall investigate the special case where we take the positions

(*i/ y )  > = 1... n

for granted, and regard the corresponding depths zi as measurements of a real 
valued function



/ : R2 -» R

at the position (,xiry),

*i (=) / ( ¾ )  i = U ....n (1.2)

where the parentheses on both sides of the equality sign indicate the errors which 
are inherent in the measuring process.

Of course, for any set of values of (1.1) we have an infinity of functions g,

z i =  g ( x „ y )  i = l,2.....n

which are continuously differentiable to any degree and interpolate (1.1). This again 
is a subset of the set of functions which approximate /, but its members may, at least 
locally, not be good candidates for a representation of the bottom due to gross errors 
in z,. Whether or not such a conclusion can be drawn from a given set of triples (1.1) 
depends on additional statements about the function / which is to be approximated 
and on the distribution and density of the points (x̂  y {).

Below is investigated some consequences for the set (1.1) which may be 
drawn, when the function f  enjoys the following property:

For the given sample the function f  can locally be approximated homogeneously by 
a polynomial of fixed order in x and y.

For the set (1.1) of triples this means, that for any measurement z with 
neighbours zk, k = l ,2,...,m, the effect on the approximation of leaving out z from a 
least squares fit of a surface of this fixed order should be of the same order of 
magnitude as the average effect of leaving out any one of its neighbours.

For any function which enjoys such a property it is possible to check a set 
of triples (1.1), once the order of the polynomial in x  and y is fixed and the definition 
of which measurements zk we shall denote neighbours of z is chosen: For every 
measurement z the quotient q(z) of the above effects is calculated, and this quotient 
introduces an ordering in a subsequent check-up of the observations for gross errors.

THE SPIKES ALGORITHM

As an example I shall in some detail work through the spikes detection 
algorithm as it is currently implemented for multibeam measurements at the Royal 
Danish Administration of Navigation and Hydrography.

In the shallow Danish waters the density of measurements is very high, 
mostly there is less than 2 metres between neighbouring measurements in a track, 
and as the seabed furthermore is rather smooth it is reasonable to postulate that it, 
at this sampling density, can be approximated homogeneously by a polynomial of 
order zero in x  and y, i.e. by a constant.



Let z have the neighbours ^ 1 (  = then, applying a least squares
adjustment with equal weights, the least squares estimate of the above mentioned 
constant is the average of the observations

i  ’  *  g v  <2 '>

and the least squares fit of this model is the square sum SSD of deviations from the 
average,

SSD = (z -z)2 + £  (¾ - i f
k=1

If z is left out of this adjustment, one gets a new estimate z of the sea bed

z = -  Y ,z k (2.2)
m Hi

and of the least squares fit ssd

ssd = £  (zk - z)2 
*=1

According to the postulate, the difference

SSD -  ssd  =  ( z  ~  z)2 (2.3)

m +1

and the mean s2 of ssd

s2 =
1 "

m-1 t=1

should be of the same order of magnitude for the neighbourhood of each 
measurement in the swath. Therefore it follows, that the larger the quotient

(z ~ z fq{z) = ----------------------------- ------ (2.4)
Tfl 1 i «2

-----7 - -----7 L ,  (¾ *m+1 m-1 \

is, the more z separates from its neighbours, or, put in another way, as the quotient 
decreases the observation becomes to a greater degree verified by its neighbours. 
This fact makes rational spike detection feasible: For each observation in the track the



corresponding quotient is calculated. Using the size of the quotient as a key the problem areas 
o f the track can be inspected in increasing order of interest.

The choice of neighbours to a given observation still has to be accounted for. 
For the moment, regard the positions of the measurements in the track

(*!/&) i = U ....n (2.5)

as points in R2. Then for any point (x^ ), the pair

(xÿy)  and (x^y,) i =

splits R2 into two halfplanes, each consisting of members of R2 which are closer to 
one of the points than to the other. The intersection of these halfplanes as the index 
i runs through the set 1,..,j-i,j+i,..n forms a polygon Pj around (x^y) consisting of the 
elements of R2 which are closer to (ayyj) than to any of the other measurements in 
the track.

The polygons Pj, i = 1,...,11 form the Voronoi diagram of (2.5). As neighbours 
to the point (x^ ) I choose those points (xk/yk) in the track for which the 
corresponding polygons Pk share a side with Pf. It is well known, that if points 
defined as neighbours in this way are connected by line segments, then one gets the 
dual of the Voronoi diagram namely the Delauney triangulation of the point set. Due 
to its importance for applied interpolation in R2 the Delauney triangulation has been 
treated extensively in the littérature. I shall only give one reference here [1], which 
deals with the aspect of finding an efficient algorithm to produce a Delauney 
triangulation, and otherwise refer to the Internet where the source text is available 
in public domain.

Using (2.1) and (2.2) one gets

_ m (m + l)(z -  z) = (m + 1)Z -  z zk
k* 1

so that (2.4) can be written

ç(z) =

m(z - z)

(z - z}2
7I* + 1 1 / «\2
------ • ---- 7 22 (¾ " 3m m - 1

which shows, that the quotient at z (apart from the number) depends on the variance 
of the neighbours

1 "
m - l  t=1

and their ability to interpolate z,



(z -  z)2

So, when the set of neighbours to z is chosen, it is important that the choice 
reflects the variation of the seabed at the position where z is measured and that it 
consists of measurements which surround z.

For the spikes detection algorithm this means that measurements located on 
the boundary of the convex hull of the track, and measurements which are more 
than a fixed distance from any one of its neighbours are not checked by the 
algorithm, but flagged as boundary measurements.

Also notice, that the quotient is invariant with respect to a joint change of 
scale for z and its neighbours. Depending on the accuracy demands on the survey, 
a constant c is chosen, so that only areas of the track for which

(z -  z f  > c

are inspected.

Below an extract of the ASCII output from the spikes algorithm is depicted. 
The track contained in this case about 65000 measurements which on a HP720 were 
processed in less than 30 seconds. The output can be read as follows: Every 
prospective spike has associated two lines of information. On the first line is placed 
facts about the suspected observation: quotient, depth, easting, northing and beam 
angle, while the second line contains information on the neighbours, as an example: 
6.48,0 means that the observation 7.80 m has a neighbour of 6.48 m for which the 
maximum distance in northing or easting is between 0 and 1 metre.

quot. depth easting northing date time transducer angle
116 7.80 731543.02 6172844.99 17/10/92 13:22:10.47 12.4

6.48,0 6.49,0 6.43,1 6.29,0 6.21,1 6.18,1
106 4.73 731716.44 6172335.66 17/10/92 13:19:29.01 -60.3

6.44,0 6.59,0 6.53,1 6.46,1 6.20,0 6.65,1
91 12.00 730887.02 6174941.15 17/10/92 13:31:22.99 -34.6

13.26,2 13.14,1 13.32,2 13.26,1 13.41,0
66 14.48 730819.60 6175077.53 17/10/92 13:32:16.57 53.3

13.44,2 13.40,0 13.43,2 13.41,2 13.26,2
57 12.32 730872.57 6174910.78 17/10/92 13:31:14.82 57.0

13.38,2 13.30,2 13.33,0 13.24,2 13.41,1
etc..

Other outputs from the programme are:

- a copy of the input where the observations are flagged according to 
whether they are verified by the algorithm, boundary points or 
prospective spikes. Furthermore the value of the quotient and the number 
of neighbours are registered here for use as a quality measure in the 
database.



- a file containing a 25 x 25 m extracted neighbourhood of each prospective 
spike for evaluation by hydrographer.

- a file containing information to draw a circle around each of the 
prospective spikes.

The last two files are used as input to AlliedSignal-Elac's postprocessing 
system, but it is planned to develop an interactive graphical interface which allows 
the user to accès the information which is necessary in order to decide the fate of the 
prospective spikes, that is whether to

- remeasure for confirmation

- flag as a spike

- flag as not a spike, confirmed by hydrographer.

A STATISTICAL INTERPRETATION

Above I have investigated some consequences which may be drawn for the 
behaviour of the measurements of a function / which enjoys the property that it 
locally can be approximated homogeneously by a polynomial of some fixed order 
in x  and y.

Once the order of the polynomial is fixed and the definition of the local term 
for a given approximation problem is chosen, the question arises whether there is 
a means to ascertain when these assumptions break down.

Assume that, for the neighbourhood of a measurement z , / really is a 
polynomial of the said order in x and y, and that the measurements z, zv z2,..., zm 
are independent with errors which follow a normal distribution with zero mean and 
variance a 2.

Then it is proven in [2] that (2.3) may be regarded as the Pythagorean 
theorem for a right angled triangle in the space of observations, making ssd  
independent of SSD - ssd, and each of these expressions follows a chi-square 
distribution with m-1 and 1 degree of freedom respectively. The quotient (2.4)

0 -1)
m - 1

then is (Fisher) v>2(l,m-l) distributed, as the numerator and the denominator are 
independent estimates of the variance a2. Now, the quotient is independent of a2, so 
if the value of the quotient is calculated for several disjoint sets of observations, each 
of which consists of an observation with m neighbours, then, even though each set 
may be supposed to have its own variance, the quotients can be pooled together and 
compared to a \)2(l,m -l) distribution.



With one minor modification I shall propose to use the above procedure to 
control if the assumptions about the function / are wrong. It is well known, that the 
square of the t-distribution with m-1 degrees of freedom is a u2(l,m -l) distribution. 
So, instead of using (3.1) one ought to use its signed square root, which sometimes 
in statistical littérature is called the jack-knife residual or the externally studentized 
residual. This quantity measures the effect on prediction which stems from deleting 
an observation, see [3].

When the polynomial is a constant this means that we, instead of using (2.4), 
compare the distribution of

riz) =
m

z -  z

1 "

r r £ " * -

(3.2)

z)2

to a t-distribution with m-1 degrees of freedom. In doing so we take advantage of 
the symmetry of the t-distribution to sharpen the comparison, which in a case like 
this, usually is carried out by employing a chi-square test. However, when 
evaluating the outcome of the test it has to be taken into account, that the 
assumption about the distribution of the errors is rather arbitrary. What still makes 
it worthwhile to consider the statistical angle of the approximation is, that for the 
small values of the degrees of freedom that we encounter in multibeam surveys 
(usually less than seven when we use a zero degree polynomial and a Delauney 
triangulation), the t-distribution of (3.2) is robust in the sense, that it essentially 
depends on symmetry and finite variance of the distribution of the errors of the 
measurements. While we, for any measurement of the sea bed, are able to guarantee 
the latter, the former may be sensitive to the degree of the polynomial or to 
systematic errors, for example in the outermost beams.

Conclusion

Above I have treated the problem of finding isolated gross errors in 
multibeam measurements. It is important to bear in mind, that the deviation in the 
numerator of the quotient (2.4) is normalized by the denominator. The effect of this 
is, that when one of the neighbouring measurements catches the build up of a 
structure, the quotient becomes small. The price one pays is, of course, that one does 
not find gross errors which are neighbours using the above model. From the 
expression (3.1) for the quotient it follows, that it is straightforward to generalize the 
above procedure to leave out two or more observations. As this number grows, the 
number of combinations and therefore the computing time makes it impractical to 
proceed along this line. Some small modification may, however, give a usable result. 
For example, in the variance plot which is widely used in post processing systems 
for multibeam measurements, it would be simple to use (3.1) combined with a 
display to indicate where the disposal of 2, 3 or more observations in a cell reduces



the variance of the remaining observations drastically, and therefore makes a further 
inspection of the area necessary.
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