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DEPTH AND POSITION ERROR BUDGETS FOR 
MULTIBEAM ECHOSOUNDING

by Rob H A R E1

Abstract

Depth error budgets are commonplace for single-beam echosounders, but 
less so for their multibeam counterparts. Position error budgets for single-beam 
echosounders are seldom prepared, relying rather, on the positioning system 
accuracy specifications. Multibeam echosounders (MBES), in addition to having their 
own measurement errors, have errors resulting from the measurement inaccuracies 
of the additional sensors, which are needed in order to compute the depth and 
position of each sounding. This paper presents the general equations that relate 
measured quantities from all sensors to reduced depths and positions using MBES 
systems. The error equations are derived from these, using the method of 
propagation of errors. A simple model for sound speed profile errors is derived, and 
an empirical method for estimating sounder range and beam angle errors is 
presented. Total error budgets for depth and position are summarized and presented 
using small angle approximations.

1. INTRODUCTION

Like many other Hydrographic Offices, the Canadian Hydrographic Service 
(CHS) has recently acquired and begun surveying with MBES. After initially being 
overwhelmed with massive amounts of data and being dazzled by impressive 
three-dimensional displays of bathymetry, CHS realized that there was a need to 
quantify the accuracy of these modem systems, through total error budgets of depth 
and position. This need arises from the necessity to compare, and perhaps integrate, 
multibeam data with data collected using the traditional, single-beam echosounder 
technology. Preparing error budgets can also give an indication of where 
improvements can be made in these systems in order to increase the accuracy of 
depths or positions. Estimation can also be made of the suitability of a particular
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MBES system configuration to a survey task at hand. This paper develops these total 
error budgets from the general equations for depth and position.

2. BACKGROUND

Hydrographic surveyors around the world have for years prepared depth 
error budgets for single beam echosounder surveys in order to ensure that IHO 
standards, or the specifications laid out in their own survey instructions, can be met. 
The error sources for single-beam echosounders and depth reductions, along with 
the methodology for producing depth error budgets, have been well documented [4]. 
There have also been attempts to improve on the IHO standard [2] for depth 
measurement accuracy, because of the discontinuity at 30 metres depth [3].

MBES systems have several sources of error in common with single-beam 
echosounders, but also have additional sources of measurement error and errors due 
to measurements made by other sensors. Because of these additional sources of error, 
a total depth error budget of MBES systems is required.

In the past, it was assumed, perhaps lightly, that the accuracy of position 
of a single-beam echosounder depth on the seafloor was equivalent to the precision 
of the positioning system. This assumption was made for several reasons:

• calibration procedures were followed to ensure the accuracy of the
positioning system,

• the beamwidth of the single-beam echosounder was typically wide
enough to absorb the positioning errors caused by roll and pitch,

• the positioning system antenna was located close enough (within the
positioning system error) to the transducer to be considered coincident,

• because of the cost of a gyrocompass, launches seldom logged heading
information, and

• the precision of the positioning system and the sounder resolution were
never good enough to allow accurate estimation of positioning system
latency.

However, there has been a revolution in both position and depth 
measurement capabilities, which is forcing Hydrographic Offices to examine position 
error budgets as well. Because a depth obtained by a MBES can be at some distance 
from the positioning system, and the positioning of that sounding is dependent on 
the vessel's attitude sensors, a total position error budget for MBES systems is also 
required.

3. DEPTH AND POSITION EQUATIONS FOR MBES

In order to derive the error budgets for MBES systems, the relationships 
between the measured values and the derived quantities of depth and position must



first be established. By applying the method of propagation of errors [6] to these 
relationships, approximate depth and position error equations can be developed.

Figure 1 shows the various sensors used in MBES systems in a boat-fixed 
coordinate system (the body frame). The body frame chosen here is the right-handed 
coordinate system used by the TSS 335B heave, roll and pitch (HRP) sensor, also 
called a vertical reference unit or VRU.

D irection o f  vessel travel

FIG. 1.- Vessel-based, right-handed coordinate system (local-level also shown).

The arrows at the end of each axis indicate the positive direction. A North 
arrow is shown to indicate that the vessel is heading roughly north-east. The arrows 
around each axis indicate the direction of positive rotation. Although the pitch angle 
in a right-handed coordinate system should be positive when the bow of the vessel 
is down, the TSS 335B negates this value so that the output pitch angle is positive 
for bow-up vessel attitudes (a maritime convention).

For each sounder ping, several depth soundings are obtained beneath and 
to either side of the vessel. A latitude, longitude and depth is needed for each beam 
across this swath (lateral coverage from one sounder ping). The sounding position 
coordinates can be calculated by adding the offset coordinates of each sounding from 
the positioning system antenna to the latitude and longitude of the antenna as 
determined by the positioning system receiver. The method will be described later. 
The depth of each sounding is calculated from the slant range measurement 
(travel-time) and the receipt angle, which will be discussed next.

Sounder system equations

The cross-track distance and depth can be calculated from the range 
(determined by measuring two-way travel time) and beam angle as shown in 
Figure 2.



FIG. 2.- Position and depth calculation for a MBES system.

Using simple geometry, the cross-track distance, y and the depth below the 
transducer, d can be calculated by:

y = r sin 0 (1)

d = r cos 0 = -z

The range, r and beam angle, 0 are the geometric distance and direction 
from the transducer to the point on the seafloor where the centre of the beam makes 
contact. The along-track coordinate CO is zero if the transducer is not pitched. 
Referring to Figure 1, it should be apparent that these coordinates can be corrected 
for roll, pitch and heading angles by rotating the vector in the body frame about the 
three orthogonal coordinate axes. TThis can be written using a matrix equation of the 
form:

X 0

y -R (a, P, R) r sin 0

z . L -  r cos 0

where R is the roll angle of the body frame, P is the pitch angle of the body frame, 
a  is the gyrocompass heading of the body frame (from North), r is the geometric 
range from the transducer to the bottom and a  is the geometric beam angle from the 
nadir with positive beams to port.

The subscripts LL and B on the vectors represent the local-level and body 
reference frames respectively. The local-level coordinate system is also a 
right-handed coordinate system: z-axis up, y-axis North and x-axis East (see 
Figure 1). The local-level vector enables the calculation of three-dimensional 
coordinates in the global reference frame using the coordinates of the antenna and 
the coordinate offsets of the antenna from the transducer which will be discussed 
later. The negative sign for the z coordinate in the body frame (r cos a) is because 
the z-axis is defined as pointing up. Treating the third coordinate as depth, this value 
becomes positive as shown in Equation 2.



The large capital "R" in Equation 3 is a rotation matrix operator. There are 
in fact separate rotations about each of the three orthogonal axes (see Equation 4): 
about the x-axis (axis 1 - denoted by 1 subscript in Rj) by the negative of the roll 
angle, about the y-axis (axis 2 - denoted by 2 subscript in Rj) by the pitch angle and 
about the z-axis (axis 3 - denoted by 3 subscript in Rj) by the negative of 90° minus 
the heading angle. The rotation about the x-axis uses a negative angle in order to 
rotate the rolled vector into a level system. The pitch angle rotation is positive 
because the maritime convention for pitch angles is negative in a right-handed 
coordinate system. The rotation about the z-axis is opposite to the measurement 
direction of the heading angle and is measured from the y-axis (North). For this 
reason the heading angle must be subtracted from 90° and then negated, i.e. a-90°. 
The total rotation matrix sequence is given as follows:

X 0

y =R, (a  -  90) R, (P) (-R) r sin 0

z . L -  r cos 0 B

Care must be taken to ensure that the roll and pitch angles used in 
Equation 4 are the Euler angles (angles measured in a rotated coordinate frame as 
defined by the Tate-Bryant Convention) and have not been transformed into the 
local-level coordinate frame by the attitude sensor. The TSS 335B for example uses 
the following convention:

sin(R) = sin(v|/) cos(P) (5)

where y  is the Euler roll angle The Euler pitch angle, P is the negative of maritime 
pitch convention as discussed above (which has no effect on Equation 5). Because the 
gyrocompass is gimballed and oriented North, heading is already in the local-level 
coordinate system and therefore needs no correction. Hereafter, the roll angle is 
assumed to be the Euler roll angle given by:

In other words, the pitch angle is assumed to be small enough that the Euler 
roll angle can be approximated by the output roll angle without significant error. 
The form of the rotation matrices can then be given as:

sin a -cos a 0 cos P 0 -sinP 1 0 0

R ,(a-90)R 2(P)Ri(-R) = cos a sin a 0 0 1 0 0 cos R -sinR

0 0 1 sinP 0 cos P 0 sinR cos R

When these are multiplied together, the combined orthogonal rotation 
matrix is:



R{a,P,R)=

sinacosP -cos a  cos K -sinasinPsinR  cosasinR -sinasinPcosR 

cosacosP sinacosR -cosasinPsinR  -sinasinR -cosasinPcosR 

sinP cosPsinR cosP cosR

(13)

Premultiplying the vector on the right-hand side of Equation 3 by this 
matrix yields the following three equations:

x LL = -rsin0(cosacosR  + sinasinPsinR) -rcos0(cosasinR -sinasinPcosR ) (9) 

y u  = r sin 9 (sinacosR -cosasinPsinK ) + rcos0(sinasinR + cosasinPcosR) (10) 

z LL = r sin 9 cos P sin R -  r cos 9 cos P cos R (11)

Depths from MBES systems

The depth and position equations will be examined separately, beginning 
with the equation for measured depth. Rearranging Equation 11 yields the
following:

zLL = r cos P (cos 9 cos R -  sin 0 sin R) (12)

Recalling a trigonometric identity for the sums of angles: 

cos (A +B) = cosA cosB  -sinAsinB 

Equation 11 can be simplified to the following:

zL L = —rcosPcos(0 +R) (14)

Substituting Equation 14 into Equation 2 results in Equation 15, which is the 
principal equation for MBES depth calculation from the measured quantities of 
range, beam angle, roll and pitch.

d = r cos P cos (9 + R )

Note that d is in a local-level coordinate system by definition (measured 
perpendicular to a level surface - i.e. the water surface). This value is the depth 
below the transducer at the instant of measurement, but only when r is the true, 
straight-line geometric distance to the seafloor and 9 is the geometric beam angle as 
shown in Figure 2. In order to get these geometric quantities from what was 
m easured by the transducer, corrections for ray-bending and propagation effects due 
to the sound speed profile in the water column must be made. The measured roll 
and pitch angles from the VRU will also need correction since the VRU alignment 
to the body frame may be different from that of the transducer. Although there are
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both roll and beam angle terms in the brackets it should be stressed that some MBES 
systems steer the receive beams in real-time to compensate for smearing due to 
excessive roll and to ensure that a uniform coverage is obtained. The roll term has 
been left in Equation 15 as a reminder that there is an error contribution to beam 
angle from any roll measurement error. The errors in these quantities will be 
discussed in Section 4. 

So far, only errors which affect the sounder system (echo-sounder and 
angular motion sensor) or those errors which affect the measurement of the vertical 
distance from the transducer to the seafloor (sound speed errors) for each depth 
across a swath, have been discussed. There are several other potential sources of 
error, independent of the sounder, which affect accuracy of the final reduced depth. 
Two of these errors - dynamic draught and heave - are dependent on the sounding 
platform and, in the case of heave, on the location of the attitude sensor in relation 
to the transducer. 

Dynamic draught. 

Dynamic draught is the instantaneous depth of the transducer below the 
mean water level and is made up of three components as shown in the following 
equation: 

dyn draught = draught - squat - load 	 (16) 

where draught is the depth of the transducer below the water level when the vessel 
is at rest, squat is the change in the draught with changes in vessel speed and load 
is the change in draught over time, e.g. because of fuel consumption. 

Draught is the vertical distance between the water level and the 
measurement centre of the transducer when the vessel is at rest. The draught must 
therefore be determined for each survey platform, perhaps on a daily basis. In some 
cases, determination may be a direct measurement from the water level to the 
transducer and in another case, it may require reference to draught marks which 
have a known relationship to the transducer. 

Squat is defined in the Mariner's Handbook as the "difference between the 
vertical positions of a vessel moving and stopped. It is made up of settlement and 
change of trim." Settlement is the general lowering of a vessel due to the change in 
the level of the water around her and is a function of the depth of water and the 
speed of the vessel. The effect of increasing speed on planing-hulled vessels 
(common for small boats) is to cause them to lift out of the water. For 
displacement-hulled vessels, forward motion generally causes the stern to settle. 

Changes in load will cause the water line measurement to be different on 
a daily basis and may change non-linearly over the course of a day. The load change, 
as a function of time, could be approximated by a linear function if the draught at 
rest was measured at the start and end of each day. It may also be possible to 
monitor fuel and water levels and model the load change as a function of these 
parameters. 
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Heave 

Heave is the relative vertical motion of the transducer with respect to its 
mean vertical coordinate over a predefined time period (called the bandwidth) or its 
steady-state position if not being moved by outside forces. The heave at the 
transducer will not be the same as that measured by the heave sensor if the two 
sensors are not coincident (generally a physical impossibility), so the heave induced 
(1-i) by the rolling and pitching of the vessel must be calculated and added to the 
measured heave (Hm) value. The total heave value at the transducer may be 
calculated by: 

H = H +H. 	 (17) 
m 

Since heave is a relative measurement, the induced heave is a difference 
between two z coordinates: the z value of the transducer at rest minus the z value 
of the transducer when the vessel is rolled and pitched. The rolled and pitched z 
value can be determined by a rotation of the offset coordinate vector between 
transducer and VRU, which is then subtracted from the z value at rest as: 

lxi 

H. = z - R(a,P,R) Iy 	 (18) 

where x, y and z are the offset coordinates between the transducer and the VRU. 
Note that only the rotated z-coordinate is needed, and not x or y. By multiplying the 
offset vector by the rotation matrix given in Equation 8, the simplified equation 
becomes: 

H. = -x sin P - y sin R cos P + z (1 - cos R cos 0) 	 (19) 

Water level 

Another source of error, independent of the sounding platform, is the water 
level above chart datum. The term water level is used here because sounding can 
take place in both tidal and non-tidal waters. The height of water above chart datum 
is dependent on both the time and location at which a sounding was collected. 
Combining depth measurement and reductions, charted depth, D can be given by: 

D = d - H + dyn draught - WL 	 (20) 

where Wi. is the water level above chart datum at the location and time the 
sounding was collected, d is the measured depth, H is the total heave of the 
transducer with respect to the water level and dyn_draught is the depth of the 
transducer below the water level at that time. 
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Positioning soundings from MBES systems 

The position of each sounding in an absolute coordinate reference frame, 
such as WGS-84, is made up of several components. The coordinates of the antenna 
come from the positioning system as a latitude and longitude (for example) on a 
suitable datum. The position of each sounding relative to the transducer is 
determined by the sounding system. The relative position of the transducer, with 
respect to the positioning system antenna, is determined by measuring offsets in the 
body frame and rotating into the local level system for roll, pitch and heading 
angles. Finally, the synchronization of the soundings with the positions must be 
accomplished by applying a time lag or latency correction, which translates into an 
along-track position displacement as a function of vessel speed. For calculating total 
positioning errors, the positioning accuracy of each of the components must be 
known in the same reference system. 

A simple pair of equations for position, which introduce negligible errors 
for short horizontal distances from the positioning system antenna to the depth 
sounding on the seafloor, allows calculation of WGS-84 coordinates from the 
lOcal-level coordinate offsets and the latitude and longitude of the positioning system 
antenna; The equations used for this transformation are: 

 

 

where p is the latitude of the sounding, çm  is the latitude of the positioning. system 
antenna, ) is the longitude of the sounding, A is the longitude of the positioning 
system antenna, M is the radius of curvature of the ellipsoid in the prime meridian 
and N is the radius of curvature of the ellipsoid in the prime vertical. The subscripts 
represent the offsets (in both x and y) between the sounding and the true position 
of the antenna at the instant the sounding was acquired. The s subscript represents 
the offset of the sounding from the transducer, the a subscript, the offset of the 
transducer from the positioning system antenna and the t subscript, the latency offset 
between the acquisition (logging) of positions and soundings. Using such 
approximations, instead of rigorous geodetic formulae will cause errors of less than 
1 cm for x and y  offset distances of up to a kilometer. Since a heading error of 0.5° 
can introduce a position error of nearly 10 metres at this distance, these 
approximations are more than adequate for the discussion of position error budgets. 
The offsets from the positioning system antenna to the sounding on the seafloor are 
discussed below. 

Relative sounding position 

The local-level x and y coordinates relative to the transducer for each 
sounding across a swath are calculated as given by Equations 9 and 10, restated here 
as offset coordinates: 
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Ax, = -rsinO(cosacosR +sinasinPsinR) -rcosO(cosasinR -sin(XsinPcosR) 	(9) 

=rsinO(sinacosR -cosasinPsinR) +rcos9(sin(xsinR +cosasinPcosR) 	(10) 

Rearranging these two equations, gives the following form: 

Ax = -rcosa(sinOcosR +cosOsinR) -i-rsinasinP(cosOcosR -sinOsinR) (23) 

'' =rsina(sinOcosR +cosOsinR) +rcosasinP(cosOcosR -sinOsinR) 	(24) 

Using the trignnometric identity given by Equation 13 for the sums of 
angles, and another trigonometric identity given by the following: 

sin(A+B)=sinAcosB+cosAsinB 	 (25) 

after substitution and simplification Equations 23 and 24 become, respectively: 

	

Ax= -rcosasin(O +R)+rsinasinPcos(O +R) 	 (26) 

	

Ay,=rsinasin(8 +R) +rcosasinPcos(0 +R) 	 (27) 

As was the case for depth, the roll and pitch angles are corrected for the 
misalignment of the transducer, but for these equations the gyrocompass heading 
must also be corrected for transducer yaw misalignment, since this will affect the 
location of the sounding on the seafloor. This component of position is independent 
of the location of the attitude sensor, positioning system accuracy and data logging. 

Relative transducer position 

The offsets of the positioning system antenna from the transducer, also in 
the local-level coordinate system, are added to the sounding coordinate offsets. These 
offsets can be calculated by pre-multiplying a vector of transducer-antenna 
coordinate offsets in the body frame by the rotation matrix given in Equation 8. The 
local-level coordinates of these offsets are given as: 

Ax, =xsinacosP -y(cosacosR +sin(xsinPsinR)+z(coscxsinR -sincsinPcosR) (28) 

Ay, =xcoscLcosP +y(sinacosR -cos(xsinPsinR) -z(sinasinR +cosasinPcosR) (29) 

These coordinate offsets represent a vessel-specific source of error, since the 
separation coordinates are a function of where the antenna and transducer are 
located. The roll, pitch and heading angles are those measured by the sensors and 
are now independent of transducer misalignment. Because these offsets are 
independent of the sounder system, they only need to be calculated once for each 
sounder ping. 



The common practice is to measure the coordinate offsets of all sensors from 
some common reference point - the coordinate centre of the body frame. This point 
may be a convenient point on the ship such as the centre of roll or the centre of 
pitch, or it may be chosen to be at one of the sensors. In any case, the coordinate 
offsets represent three-dimensional vectors in the body frame. As such, vectors from 
the centre of the body frame to any two sensors may be subtracted in order to 
determine the vector between the two sensors. The errors in this vector sum are then 
simply the quadratic summation of the errors in the determination of each sensor's 
coordinates.

Relative position-time displacement

The final coordinate offset to be dealt with is due to timing offsets between 
the position system and the transducer depth measurement. The coordinate offset 
will always result in an x-axis displacement in the body frame and is calculated as 
the product of the time offset (or latency), At and the ship's speed over ground, SOG. 
This vector can be rotated into the local level coordinate system using Equation 3 as:

X AtSOG

y = R (a,P,R) 0

z .L . o 1

Multiplying the vector on the right-hand side of Equation 30 by the rotation 
matrix given in Equation 8, we get the following three coordinate offsets due to 
positioning system latency:

A xt = AfSOGsinacosP (31)

A y( = AfSOGcosacosP (32)

A z, = At SOG sin P (33)

These offsets are logging-system specific, but also depend on ship dynamics. 
The equations also show why it is difficult, using a patch test, to separate pitch 
misalignment from positioning system latency. The z-coordinate offset due to latency, 
which will be negligible for small pitch angles, is ignored in this analysis.

4. DEPTH ERROR EQUATIONS

In the following sections, the various sources of error in the right-hand side 
of Equation 15 will be examined. Then, a method to map these error contributions 
into their depth measurement error components will be given. Measured range and 
beam angles contain measurement noise and are also affected by errors in the sound 
speed, both at the transducer face, in the case of beams steered non-orthogonally to



the transducer, and throughout the entire water column. The measured roll and 
pitch angles, as determined from the VRU, also contain measurement noise and may 
be affected by a time delay from the VRU. In addition, there will be errors in the 
determination of the roll and pitch offset angle of the sonar head orientation from 
that of the VRU. These errors can be determined from a calibration procedure such 
as a patch test [1]. The errors which affect the echosoundings themselves (i.e. the 
range and beam angle) are examined first.

Geometric range

The measured range (half the total travel time multiplied by the average 
measured sound speed) can be corrected for the true (geometric mean) sound speed, 
v, by a simple ratio of sound speeds as follows:

r  = r
(34)

From Equation 34, errors in the determination of geometric range can be 
seen to come from both range measurement errors and from errors due to an 
imperfectly known sound speed profile. Applying the method of propagation of 
errors, the total variance of true geometric range is:

O2 =

r d v 
i

a"r
\ V

o 2
" a  v

T

Tv
V V

(35)

O2

where the variance of range and sound speed are assumed to be the square of the 
measurement errors in these quantities. It is assumed that all measurements are 
uncorrelated random variables, with normally distributed errors, such that the rules 
of statistics apply. The true sound speed is without error (i.e. zero variance). The first 
term in Equation 35, after substituting the partial derivative, gives:

0 2 =

f  V
V

V m
V J

(36)
a  «  a

r_ 2  T  2

The second term in Equation 35, after substituting the partial derivative,
gives:

o 2 =
f  V-v .r / N2 rn

n.\

a



Both equations are only approximations since the measured sound speed 
will be different from the true sound speed, due to measurement limitations and 
spatial or temporal changes in the sound speed. If the difference is small however, 
the ratio is very nearly 1, because the speed of sound in water is between 1400 and 
1500 m/s. The total variance in range will be the sum of Equations 36 and 37 or:

f  ^rn
V

n.v y

o 2 (38)

The total error in range can then be obtained by taking the square-root of 
this variance.

Geometric beam angle

Assessing the errors in the beam angle is much more complicated than for 
range. This is due to the fact that the beam bends with the sound speed gradient as 
defined by Snell's Law. At each sound speed interface (see Figure 3), the sine of the 
incident and refracted beam angles are related to the ratio of the sound speeds on 
either side of the interface as follows:

sin 0 ' = sin 9  (39)
V

Z> transd ucer

0  \

layer 1 (v)

soutid sp eed  in terlace

0 '

layer 2 (v 'j

\  se a tlo o r

FIG. 3 .- Beam angle bending at a sound speed interface as defined by Snell's Law.

Since the sound speed profile is sampled discretely there will be many such 
interfaces over the entire water column. This situation leads to a need for some form 
of approximation. As a simplification, the geometric beam angle can be given as the 
sum of the measured beam angle and a small angular correction for the true sound 
speed profile as follows:



0  = 0 + 0 (40)
m v

The total error in beam angle is then made up of two components: one due 
to beam measurement error and the other due to errors in the sound speed profile, 
represented by the following equation:

, , , (41)
* °5

Sound speed errors

There will be errors introduced into the final coordinates (depth and 
position) as a result of imperfectly known sound-speed profiles. Such errors may 
come from errors in measurement of the sound speed, due to velocimeter 
measurement limitations, errors in the determination of the depth at which the 
sound speed measurements were taken or errors due to spatial or temporal changes 
in the sound-speed profile. Equation 38 shows how sound-speed profile errors 
propagate into an error in range. Errors in beam angle result from incorrect steering 
due to errors in the sound speed at the transducer (for beams which have to be 
steered non-orthogonally to the transducer face) and from errors in the geometric 
correction to the beam angle due to sound-speed profile errors. These errors are 
examined next.

Errors in beam angle due to sound speed profile errors

By differentiating Equation 39, the error in 0' due to imperfect knowledge 
of sound speed v' at a sound speed layer boundary is:

cos 0 ' d 0 ' = sin 0  (42)
v

where d\' is the error in the sound speed profile and dQ' is the resultant error in the 
beam angle at the sound speed interface. Assuming that the thickness of both layers 
is the same (see Figure 4), then a reasonable approximation for the error in the 
geometric beam angle due to errors in the mean sound speed profile is half that of 
the error at the middle boundary. Using this assumption and moving terms to the 
right-hand side of Equation 42 gives:



d  6  72
layer I (\>)

G

d d layer 2 fv'i

FIG. 4.- Sound speed error model using two equal layers.

The variance in the geometric beam angle due to sound speed profile errors 
may be represented by the following approximation:

Beam steering - surface sound speed errors

In order to steer the receive beam, the sound speed at the transducer face 
must be precisely known. Errors in the knowledge of this sound speed will result 
in incorrect steering due to an incorrect calculation of the timing delay for each 
transducer element.

(
tan 8 (44)

2v
v /

l*~ L

steered receive beam

FIG. 5.- Beam steering from a flat transducer.

In order to steer a beam non-orthogonally to the transducer face, the 
reception of the transducer elements must be sequenced. The elements further from



the wave front are triggered at a later time and elements closer to the wave front are 
triggered sooner, such that the wave front remains coherent. Some MBES use curved 
transducers, because they are less dependent on precise sound speed at the 
transducer. Beam steering is, however, easier to visualize using a flat transducer. 
From Figure 5, it can be seen that for a flat transducer to steer a beam 
non-orthogonally to the transducer face by an angle p, the length of the transducer 
segment used for beam forming, L, and the speed of sound in water, v, are needed 
to calculate the required time delay, At. The following relationship holds:

By differentiating Equation 45 and performing a substitution, the error in 
the angle P caused by an error in the surface sound speed is given by:

1 At , sinB , tanP ,dp = ___ ____ dv = ____ ÏLdv = ___ _ dv
cosp L vcosp v

(46)

where dv represents the error in sound speed at the transducer face. The steering 
angle, p is the difference between the steered beam angle, 0  and the angle normal 
to the transducer face in the centre of the symmetric transducer element array used 
for beam forming, 8 .

The error in beam steering due to imprecise surface sound speed, for 
non-orthogonally-steered beams, can then be given by the following relationship:

d s  -  t a n ( e - 5 ) ^ (47)

The variance can then be approximated by:

G 0  ~V.2

(  V
tan(9 -Ô)

o v r (48)

Errors in sound speed for orthogonally steered beams will cause a change 
in the beamwidth but not its direction, since they can be steered using a symmetric 
array of transducer elements.

The effects of errors in sound speed on the beam angle can be accounted for 
by adding two beam angle variances, which account for beam steering and sound 
speed profile errors as:



There are other contributions to the total variance in beam angle, which will 
be given later. The errors in the measurement of range and beam angle (the 
measurement components of Equations 38 and 41) are discussed next.

Sounder measurement errors

Measurement of range and beam angle for multibeam echosounders is more 
complex than for vertical-incidence echosounders. As a result, errors in these 
measurements are due to several factors including: incident angle with the seafloor, 
range sampling resolution and transmit and receive beamwidths. At least one MBES 
manufacturer has produced a model of the measurement errors in range and beam 
angle, dependent on mode of detection, some sounder system parameters, and 
seafloor slope [5], Development of error models for other multibeam echosounders 
is still needed. An empirical method for estimating range and beam angle 
measurement errors is given later in this section.

Transducer misalignment angles

The transducer may not be oriented exactly the same as the VRU, so 
measured roll and pitch angles should be adjusted to reflect the "real" roll and pitch 
angles experienced by the transducer in the local-level coordinate system using:

R = Rm + AR (50)

P = P + AP + P (51)m s

where the first correction terms represent the misalignment angles determined from 
a patch test. The extra term in Equation 51 accounts for the pitch angle of the 
mechanical stabilization unit, if one is used. Although the heading misalignment has 
no effect on depth measurement (no heading term in Equation 15), the value is 
usually determined in the same way as the roll and pitch misalignment angles (patch 
test) and can be used to correct the observed transducer heading (see Equation 52) 
in order to compute the position of the sounding on the seafloor.

a  = a  + Aa (52)m

Angular orientation (attitude) errors

Equations 50 and 51 show that errors in roll and pitch can come from both 
measurement errors of the VRU and errors in the estimation of the transducer 
alignment angles from the patch test. In the case of mechanically pitch-stabilized 
systems, an additional pitch angle error will be introduced by the stabilization unit. 
Errors in the determination of roll will quadratically add to the errors in beam angle, 
because roll and beam angles are always additive. The total contribution to variance 
of beam angles and pitch angles can then be given respectively as:



(54)

where the contributions to beam angle variance come from beam angle measurement 
errors, errors in beam angle due to sound speed profile errors and in beam steering 
due to surface sound speed errors, errors in roll angle measurement and finally 
errors in the roll misalignment angle of the transducer. The contributions to pitch 
angle variance similarly come from pitch angle measurement errors, the pitch 
misalignment angle of the transducer and errors in the pitch stabilization angle 
(mechanically pitch-stabilized systems only). Second order effects (e.g. the effect of 
transducer pitch misalignment on roll measurement errors) are assumed to be 
negligible and have been ignored - a reasonable assumption if the misalignment 
angles are small.

It should be noted, that errors in the determination of attitude may come 
from more than just the resolution or measurement precision of the attitude sensor. 
If the attitude is undersampled (should have at least 10 times the Nyquist frequency 
for effective time series manipulation), or if the frequency of the attitude is outside 
the passband of the sensor (as can happen with heave if a vessel is running with a 
following sea), then errors far greater than the measurement errors of the instrument 
can occur. In this paper, the attitude is assumed to be well-behaved and within the 
limits of the sensor, but the reader is cautioned to use manufacturers' specifications 
for roll and pitch measurement accuracy with care.

For heading, the errors as apparent from Equation 52 will come from 
transducer misalignment with respect to the gyrocompass, or other heading sensor, 
and from the gyrocompass measurement errors as given by:

Real-time beam steering for roll angle

Some MBES use the roll angle output from the VRU to steer the receive 
beam angle in real-time. Because of this, the beam angle of each sounding is 
referenced to the nadir and the outer edges of the swath are uniform even when the 
ship is rolling. Because there are errors in the roll measurement, however, the beam 
angle will have these additional errors incorporated as shown in Equation 53. The 
equations given in the following sections, show only one beam angle term. It should 
be kept in mind that the roll angle is always part of the actual beam angle and that 
roll angle error is always part of the total beam angle error.

(55)



Mapping sounder system errors into measured depth errors

All of the components of Equation 15, and where their respective error 
contributions come from, have been discussed. How these errors, or corresponding 
variances, map into an error in the measured depth is discussed below. Think of 
Equation 15 as a mapping of the measured parameters into a measured depth. 
Applying propagation of errors to Equation 15 gives the following equation, which 
maps the measurement errors into a depth error:
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The assumption has been made that all the error sources are normally 
distributed and act independently. This allows the trailing covariance terms to be 
dropped. The entire equation can be evaluated at once, or each error source can be 
considered separately, so as to view in detail each contribution to the total depth 
error budget.

The first term of Equation 56, upon substituting partial derivatives of 
Equation 15 with respect to range, reduces to:

= (cos P cos 0 )2 a 2 (57)

Therefore, to calculate the effect of range error on depth, the beam angle and 
the amount of pitch on the transducer must also be known. The total range variance 
comes from the sum of the variance due to range measurement and that due to 
sound speed errors. The depth contributions can also be examined as two separate 
components (a sounder measurement contribution and a refraction contribution) 
which must be quadratically added to obtain the total depth variance contribution 
due to range.

Similarly, the depth variance due to beam angle (roll angle) errors is given
by:

a 2, = (r sin 0 cos P ) 2 o2 (58)2 0

The total beam angle variance, which includes measurement errors, sound 
speed effects on beam angle, roll errors and transducer roll alignment errors, is given 
by Equation 54. Any one component of angular error can be examined separately, 
to see its effect on the depth.

Finally, the mapping for pitch errors into depth variance is given as follows:

a] = (r cos 0 sin P)2 a i
as *



The total variance of pitch is given by Equation 55. Note that the units of 
the standard deviation (square-root of the variance) of depth are metres for each of 
Equations 57-59. All angular error must therefore be in radians.

Limitations due to beam opening angle

Although not an error as such, the beam opening angle can be a limiting 
factor in resolving targets of a certain size on the seafloor. Figure 6  illustrates this 
problem.

The return path to the small target at the left-hand side extremity of the 
beam cone is the same as the vertical path, d. Unless tho target is directly under the 
transducer, a possible error exists as given by the following relation:

where ijj, is the beam opening angle. The variance is approximately given by the 
square of this equation or:

FIG. 6.- Resolution of targets due to beam opening angle.
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Total depth measurement error

The total measured depth error due to the sounder system is given by the 
root-sum-square (RSS) of the above components as:



MULTIBEAM ERROR BUDGETS 

a i = (62)

The contriburions to the total depth measurement error budget are 
illustrated in Figure 7.

FIG. 7.- Row diagram showing contributions to measured depth error.

Heave error

The variance of measured heave comes from the manufacturer's 
specifications for heave accuracy, typically as fixed and variable (function of 
peak-to-peak heave height) components. Measured heave variance can be calculated 
by:

= max ( a2, ( b * heave )2 } (63)

where a is a fixed component in metres and b is a variable component (% of 
peak-to-peak heave). The variance of roll and pitch induced heave can be calculated 
by applying the method of propagation of errors to Equation 18, which results in the 
following equation:

a 2H = (xcosP-ysinK sinP-zcosRsinP)2 o£

+ (ycosR cosP -zsm R cosP )2o 2R 
+ (sinP)2 â  + (sinRcosP)2o2+ (1 -cosR cosP)2<̂

Errors due to the measurement of roll and pitch as well as errors in 
measuring the coordinate offsets between the transducer and the VRU will all 
contribute to induced-heave error. In order to get the total variance of depth due to



heave errors, the heave measurement errors and induced heave errors are 
quadratically added, which results in:

Note that the variances are expressed entirely in terms of the measured quantities 
of heave, roll, pitch and the x-y-z offsets between the two sensors. As such, heave 
error is both a sounding system error (because of the contribution from VRU errors) 
and a vessel-specific error, dependent on the relative coordinates of the sensors. Thus 
the transition is made from depth measurement to depth reduction.

Dynamic draught errors

Dynamic draught variance is given by the quadratic sum of error sources as:

Draught, squat and load are values which must be determined for each 
survey platform and will have error sources peculiar to the characteristics of each 
vessel. The errors are not the values of draught, squat and loading changes 
themselves, but the residual errors that remain after correcting the measured depth.

Water level error

Water level errors come from several sources, which will not be described 
in detail here. The main sources of error are due to water level measurement at the 
gauge and spatially/temporally predicting the water level at the location of the 
sounding vessel. There may also be errors due to the method chosen to filter 
sea-surface waves at the gauge, and due to gauge or sounding vessel timing errors.

Charted depth error

The total depth error may be determined by applying propagation of errors 
to Equation 20. The charted depth error is given by the RSS of all the above error 
components as:

° D  \j d *  ° f (  *  ^dyndnugkt *  ®WL

The first term on the right-hand side of Equation 67 comprises all the error 
components of depth measurement. The heave term is due to the local sea state, and 
is also considered to be a measurement error component. The next term makes up 
the total dynamic draught error, which depends on the vessel, and the final term is 
for water level error. Figure 8  illustrates the contributions to reduced depth error 
from all the error sources discussed in this section.



FIG. 8.- How diagram of contributions to reduced depth error.

A method for estimating range and beam angle measurement errors

As stated above, depth measurement errors depend on range and beam 
angle measurement, which both vary with the inddent angle each beam makes with 
the seafloor. In the absence of a MBES measurement error model, it is possible to 
estimate range and beam angle errors, over a flat seafloor, from depth measurement 
differences of two coincident swaths. The two lines must be run exactly 
superimposed, at the same speed and in the same direction, within a short time 
interval. In this way, it is hoped that water level, refraction and dynamic draught 
biases will be minimized. Pitch errors are negligible in most cases, and small position 
errors over a flat seafloor can be tolerated. Thus, the depth difference errors should 
be due to two independent errors in the measurement of range, beam angle, roll and 
heave. By moving all but the range and beam angle error components to one side 
of the equation, the following equation can be formed:

a 2̂  - 2 o ^ - 2 (rsin0 aR)2 =2 (cos0 a r ) 2 +2 (rsin 0 a e ) 2 (6 8 )

where the first term of the left-hand side of Equation 6 8  is the variance of depth 
differences (on each beam angle) calculated from the coincident depth measurements 
obtained from each swath. All other terms are doubled because there are two 
independent measurements of each.

Estimation of the two parameters (standard deviation of roll and beam 
angle) may be accomplished using an iterative least squares approach, with a large 
(statistically significant) number of measurements of depth difference for each beam 
angle. The parameters may have to be determined for each mode that the MBES 
uses, as the pulse length may increase with depth, thus decreasing the range 
measurement accuracy. The MBES system must be in perfect calibration before 
attempting such a procedure.

Beam angles from either side of nadir can be binned in order to increase the 
number of degrees of freedom, providing the seafloor is flat. Where significant slope 
exists, beam angles on either side of nadir should not be binned. Separate tests over



different seafloor slopes can be conducted to determine the measurement 
dependence on slope.

In the following sections, the errors in the right hand side of Equations 21, 
22 and their component equations, will be examined. The variance of position can 
be calculated from the sum of the variances in each coordinate. The radial variance 
of position for any offset coordinates is given by:

Combining the two coordinate error contributions in this manner, however, 
destroys the directional component of the error. Recovering the direction of the 
semi-major axis of the error ellipse without the covariance of the two coordinates is 
impossible, because of the simplistic approach taken. This approach gives a radial 
value for position error commonly used in hydrography, known as distance 
root-mean-square or drms, given by:

A radial position error, drms is not a rigorous measure of position error. 
Because covariances have been neglected, the confidence level of this measure of 
error dispersion is typically between 63% and 6 8 % depending on the eccentricity of 
the bivariate normal distribution.

Since the error estimates for antenna position (measured latitude and 
longitude in Equations 21 and 22) are typically output by the receiver as values in 
metres in X and Y, these estimates are used directly in the position error budget for 
each sounding. Presuming that the ellipsoidal radii (M and N) are without error, the 
errors in each of the coordinate offsets (the terms in the brackets in Equations 21 and 
2 2 ), due to the error sources which affect them, can be calculated.

Applying propagation of errors to Equations 21 and 22, and combining 
terms using Equations 69 and 70, gives the following for radial position error (in 
metres):

5. POSITION ERROR EQUATIONS

(70)

p

The covariance term may be known from the output of the positioning 
algorithm, but for this discussion all covariances are assumed to be zero. All errors 
are assumed to be normally distributed and uncorrelated (statistical independence).



The radial position variances for the relative offset coordinates, the last three terms 
in the last line of Equation 71, are discussed in the following sections.

Error in  relative sounding position

Applying propagation of errors to Equations 26 and 27, and combining them 
using Equation 69, gives the following total position variance for the relative 
coordinates of the sounding from the transducer:
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This error can be broken down into its individual contributions. The first 
component is that due to range errors. The variance of range has components of 
measurement error and error due to sound speed uncertainty as given by 
Equation 38. The equation which maps these errors into a radial position error, after 
some simplifications, is as follows:

°pSI = (1 -  (rcs 0 COS P )2)o^ (73)

Since this is a radial position variance, no information on direction is 
contained in the result. In fact, all the heading terms have conveniently cancelled.

The radial position variance as a result of heading errors is given by:

=  ̂ 1 “  (COS 0  COS P )2) <£ (74)

In terms of relative positioning error, the error in the heading angle, as 
measured by the gyrocompass, must be quadratically added to the error in the 
heading misalignment angle of the transducer as determined from a patch test.

The same equation that maps roll error into relative radial position variance 
of the soundings with respect to the transducer, will also map the beam 
measurement error, roll alignment error and beam errors due to sound speed 
variability into a position variance. The equation is as follows:

(l -  (sin 0 cos P)2) a2 (75)



The one remaining component is pitch, which can be mapped into a radial 
position variance by:

a2 = ((r cos 0 cos P)2) ci <76)
$4 ^

The relative position variance for the sounder system is given by the sum 
of the above components, as:

= ^  + + + (77)s S , *2 *3 »4

Figure 9 shows how the various error sources contribute to the radial 
position error between the transducer and each sounding. This value must be 
calculated for each sounding across a swath.

FIG. 9.- Row diagram showing contributions to relative sounding position error.

Error in relative transducer position

Neglecting covariance terms, propagation of errors applied to Equations 28 
and 29 gives the following total position variance for the relative coordinates of the 
transducer from the positioning system antenna:
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The roll, pitch and heading variances are for sensor measurement and 
contain no transducer misalignment variance component. The total error can once 
again be broken down into its individual contributions.

The first component is that due to the offset coordinate measurements. The 
variances of these measurements would have to be determined by the method that 
was used to make these measurements - e.g. using a cloth tape may give a standard 
deviation of +/- 1 cm at 6 8 % confidence for each coordinate. The actual variance of 
the coordinate differences is the quadratic sum of the errors in each sensor 
coordinate. The equation which maps these errors into a radial position error, after 
some simplifications, is:

(79)
o2 = ( (cos P)2) a2+( (cos R)2 + (sin R sin P)2) a2 +( (sin R)2 + (cos R sin P)2)vai x y

Note that when combining the x and y components to get a radial position 
variance, the heading component disappears. This is because a sum of squared sine 
and cosine terms is equal to 1 and the remaining terms easily combine. As a result, 
all information about the direction of the error is lost - only its magnitude remains.

The heading error component can be determined from the following:

(x cos P)2 +y2((cosR)2 + (sin RsinP)2) +z2((sin R)2 + (cos Rsin P)2 ) 
~xy cos P sin P sinR -xzcosP  sin P cos R -  yz (cos P)2 sin RcosR

\
,  (80) 

c ra

The relative position error due to antenna-transducer displacement is 
independent of the transducer, so the variance is of the measured heading, and does 
not include a component for the transducer heading misalignment.

The roll error component (no beam angle component because the offsets are 
independent of the sounder system) is mapped into a relative position variance, by:

y2 ( (sin R)2 + (cos R sin P)2} + z\ (cos R)2 + (sin R sin P)2 )< 

yzcosRsinR(cosP)2
2 (81) 

K

There is no x-component of the roll error contribution to relative position 
error, because the first rotation was about the x-axis (recall Equation 4).



The pitch error component is given by:

a? =(CtsinP +ysinRcosP + zco sR co sP )1) c 1p (82)

There are components from all three axis for the pitch error contribution to 
relative position error, as there was for heading error, because subsequent rotations 
in Equation 4 involved the other axes.

The total radial, relative position variance due to the offsets of the 
transducer from the positioning system antenna is given by the sum of the above 
variances as:

<  = (83)

Error in relative position-time displacement

An error in the knowledge of positioning system time offset (latency) will 
cause an additional position error in the along-track direction. The radial error can 
be calculated by applying propagation of errors to Equations 31 and 32 and 
summing the squared terms to give:
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The error contributions can again be broken down into separate components. 
The variance in position due to an error in the speed over ground is given by:

at = (A t c o s P fo l
SOG (85)

The variance in position due to an error in the time offset between the two 
systems is given by:

The variance in position due to an error in the heading is given by:

<7̂  = (At SOG COS P ^ O 2
3 «



Finally, the variance in position due to an error in the pitch is given by:

a i = (At SOG sin P )2ol (88)

The total position variance resulting from a time offset error is calculated by 
the sum of these variances as:

(89)

This error will propagate into the radial position error in the along-track 
direction (Equations 85-88 have both time and speed components, which give errors 
only along-track).

Total sounding position error

All the radial position error components propagate into a single position 
error for each sounding. Figure 10 illustrates how these error sources combine.

speed latency a P offsets

FIG. 10,- How diagram showing components of MBES sounding position error.

6 . TOTAL ERROR BUDGETS

Depth error budget

Once all of the measurement errors have been transformed into an error in 
depth, the total error budget for depth can be calculated from the RSS of these depth 
error contributions. The total error budget for depth is made up of the following 
components:

1. Sounder system error (range and beam angle measurement errors and 
beamwidth resolution),

2. Roll error (measurement and misalignment errors),
3. Pitch error (measurement, misalignment and mechanical stabilization 

errors),
4. Heave error (measured and induced heave errors) and
5. Refraction error (sound speed error effects on range, beam angle and 

non-orthogonal beam steering).



The RSS of errors 1 to 5 is the error in depth measurement. To this error is 
quadratically added the following reduction errors:

6 . Dynamic Draught error (static draught, squat and loading changes) and
7. Water level error (measurement and spatial prediction).

The RSS of the depth measurement and both depth reduction errors is then 
given as the error in reduced depth at the 6 8 % confidence level. Multiplying by an 
expansion factor of 1.96 will bring the error estimate to the 95% confidence level. 
This confidence level is being proposed to IHO Member States as the depth and 
position standard for the next edition of S-44.

Position error budget

The total error budget for positioning a sounding on the seafloor is made 
up of the following components:

1. Positioning system error (e.g. drms calculated from standard deviations 
of latitude and longitude as output from the positioning algorithm),

2. Latency error (errors in the knowledge of positioning system latency),
3. Relative transducer-sounding position error (due to range and beam 

angle measurement, refraction, roll and pitch measurement, and 
transducer misalignment errors),

4. Heading error (effect on sounding position from transducer due to 
gyrocompass measurement error and transducer yaw misalignment),

5. Relative antenna-transducer position error (due to offsets and attitude 
measurement errors)

The RSS of these errors is then given as the total radial sounding position 
error, drms, or at about the 6 8 % confidence level. The 95% (approximately) 
confidence value, 2drms, is obtained by multiplying this number by an expansion
factor of 2 .

Small angle approximations

In order to simplify the equations given in the previous two sections, some 
approximations and substitutions can be performed. Small angle approximations 
assume roll and pitch angles are small enough that the following substitutions can 
be made, without significant error:

sin (R) = sin(P) = 0 

cos(R) = cos(P) = 1

Further simplification can be performed by substituting cross-track distance 
and depth below transducer from Equations 1 and 2, repeated here for convenience:



y = r sin (0 )

d = r cos (0 )

If the seafloor is not flat, the cross-track distance and depth will have to be 
calculated for each beam. Finally, by assuming that the positioning system and 
MBES system are in perfect synchronization, some of the terms in Equation 89 will 
drop out. The equations below summarize those in Sections 4 and 5, but with small 
angle approximations, cross-track and depth substitutions, the assumption of zero 
latency and some simplification.

Total error budgets for MBES systems

The following equations can be used, under most circumstances, to evaluate 
the total depth and position error budgets of MBES systems. Where larger roll and 
pitch angles are present, or an unacceptable positioning system latency exists, the full 
equations of Sections 4 and 5 should be used.

1) Sounder measurement variance (range and beam angle):

o j, = cos 0 2 + y2 O0 2

2) Depth variance due to beam opening angle:

3) Roll variance:

4) Pitch variance:

5) Total heave variance:

Oj5 = max (a2,(bxheave)2) + x2 o 2p + y2 a 2

6 ) Refraction variance:



7) Total depth measurement error

8 ) Dynamic draught variance:

dytt draught draughl squat load

9) Total reduced depth error:

° D  + draught +  °
.2
WL

10) Total radial position error:

° p  =

drms2

+sin0 2a 2 +d2 o? +
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+ SOG2 oj,Ar

The first line of the above equation contains the radial positioning system 
error. The second line contains all sounder system positioning errors, including 
refraction and orientation errors. This line should be evaluated for each beam. The 
third line (relative antenna to transducer position errors) only needs to be calculated 
once for each MBES vessel. This value can then be quadratically added to positioning 
error, sounder system error and latency-induced error (fourth line), all calculated in 
real-time. The x, y and z elements in the third line are the coordinate offsets between 
the transducer and positioning system antenna (y is not the athwartships sounding 
coordinate in this line only).

7. CONCLUSIONS AND RECOMMENDATIONS

It was shown that depth and position error equations can be derived for all 
of the measurement error sources which affect MBES system accuracy. In some cases, 
the error sources acted in linear combination and were quadratically added. In other 
cases, a depth or position error component had to be calculated for each error 
source. Using small angle approximations, the depth and position error component 
equations were simplified. Total error budget equations were presented for both 
depth and positions of soundings collected using MBES systems.

At least one MBES manufacturer has developed a range and beam angle 
measurement error model. Models for depth measurement errors need to be



developed, or at least publicized, for other MBES types. Further work on modeling 
the errors due to uncertain sound speed profiles is needed. MBES manufacturers 
should be encouraged to implement algorithms which calculate position and depth 
error estimates in real-time for each sounding. These estimates could be output in 
the data telegrams and used for quality assurance in real-time, or for more effective 
data integration in post-mission.
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