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Abstract

The United States National Oceanic and Atmospheric Administration’s 
(NOAA) ET0P05 worldwide digital bathymetric dataset has been in the public 
domain for some years. Because it is noisy, it has not found much use in 
oceanography. A bi-cubic spline approach is used to smooth out the noise and 
represent the data as an explicit mathematical function, thus making it useful in 
many areas of oceanography. This method requires the data to have a rectangular 
grid.

This report2 gives an effective approach for ET0P05 data’s bi-cubic 
spline representation and smoothing. It presents a new procedure designed to 
determine the Foot of the Continental Slope (FCS). This procedure is in accord with 
The United Nations Law of the Sea (LOS) article 76, section 4.b legal definition of 
the FCS, which is "the rate of maximum change of the gradient at its base". This 
explicit mathematical function can also be used to refine the grid. This function can 
also be differentiated exactly. One may compute from this function, at any point, the 
second derivative in the normalized gradient direction. The resulting surface is 
called for brevity "Surface of Directed Gradient" (SDG). The location of the crest of 
its highest ridge is a good approximation of the FCS. This approach gives an 
accurate mathematical representation of the LOS Convention’s legal description of 
the FCS as stated above. The'SDG technique is used to compute the FCS for the 
U.S. Atlantic coast.

The FCS computed by the SDG method is compared to the FCS' 
computed by the surface of maximum curvature approach that is in general use.

1 U.S. Department of the Interior, Minerals Management Service, Resource Evaluation D iv is ion ,.
Herndon, Virginia.

2 This report does not necessarily represent the methodology the United States will employ in
defining the outer limit of its continental shelf.



Introduction

The Minerals Management Service (MMS) is the bureau in the 
Department of the Interior that is responsible for managing the mineral resources on 
the Federal Outer Continental Shelf (OCS) and Exclusive Economic zone (EEZ). 
The mineral resources include, but are not limited to, oil, gas, sulphur, sand, gravel, 
phosphorites, manganese, cobalt, and heavy minerals. The MMS, therefore, has an 
interest in defining the Foot of the Slope and outer limits of the EEZ. The United 
Nations Law of the Sea (LOS) gives a legal definition of the Foot of the Continental 
Slope (FCS). The FCS extends a nation's mineral rights past the 200-nautical mile 
Exclusive Economic zone (EEZ) where the FCS is beyond 200 nautical miles from 
that country's coast. This is true for some parts of the U.S. Atlantic coast. The 
accurate location of the FCS is important to any coastal country whose FCS 
extends beyond the 200-nautical mile EEZ. As new technology allows for deeper 
offshore drilling and mining, the location of the FCS will become more crucial. 
Location of the FCS can also be of importance in boundary disputes between 
coastal countries.

The United Nations Convention on the LOS states, in Article 76(4)(b), that 
the "foot of the continental slope (FCS) shall be determined as the point of 
maximum change in the gradient at its base". See Figure 1 for a cross-section 
showing the location of the FCS. To follow the legal description of FCS as cited 
above, one must proceed in the direction of the gradient at each point (x,y) of the 
digital bathymetric dataset. The computational procedure, as presented in this 
report, generates the surface by computing the second derivative in the normalized 
gradient direction of the smoothed function. This is the same as the Rayleigh 
Quotient (R.Q.) of the Hessian (H) of the smoothed function evaluated at the 
gradient. The resulting surface is called the "Surface of Second Derivative in the 
Gradient Direction" or for brevity the "Surface of Directed Gradient" (SDG). The 
location of the crest of the highest ridge of this surface is a good approximation to 
the location of the FCS. This procedure is then used to compute the FCS for an 
area covering most of the U.S. Atlantic coast using a spline-smoothed version of 
NOAA'S ET0P05 bathymetric dataset. For a discussion of splines see de B o o r  
(1978) or S c h u m a k e r  (1981).

V a n ic e k  et al. (1994) determine the FCS by computing the "Surface of 
Maximum Curvature" (SMC). Because the SMC approach requires a scaling of the 
x, y, and z axes to the same units to give satisfactory results. After the scaling and 
the FCS is obtained, the results need to be scaled again to return it to the proper 
aspect ratio. After scaling twice, the SMC obtains essentially the same results as 
those obtained by the SDG in locating the FCS. The SMC, as outlined by V a n ic e k , 
when implemented on the original ETOP05 data with the axes being x: degrees 
longitude y: degrees latitude, and z: metres, did not give a satisfactory FCS.

The notation in labeling the grid intervals of the figures is an issue 
throughout this report. The original coordinate units for the ET0P05 data are: x: 
degrees longitude, y: degrees latitude, and z: metres measured below sea level. 
These are measured on a sphere. In displaying the data and results of this report, a 
flat surface is used. One degree of latitude on the y-axis is approximately 60 
nautical miles or 5 minutes of latitude are approximately 5 nautical miles. When 
converting to nautical miles from degrees on the x or longitudinal axis, the farther



the distance is from the Equator, the smaller is a degree of longitude according to 
the rule:

1 degree longitude (at latitude 0) = (60 nautical miles) x Cos(0). 

with 9 being 90 degrees at the Equator and 0 degrees at the North Pole.

C o n t in en t a l  S lope  

L A N D  S H E L F  E D G E  O C E A N

FIG. 1 .-The foot of the Continental Slope (FCS) as located on cross-section of the continental shelf.

For example, when a grid interval of 5 nautical miles is referred to, it 
means 5 nautical miles on the y-axis and 5 x cos(36.5) = 4.02 nautical miles on the 
x-axis. (See Figs. 4-6) The 36.5° is an average latitude over the area. Similarly, 
there is a 2.5-nautical mile grid interval in the y  direction and a 2.5 x cos(36.5°) = 
2.001-nautical mile grid interval in the x direction. (See Fig; 11). Grid intervals in 
kilometres are given exactly for the x and y  axes. (See Figs. 13 and 15).

SURFACE OF THE SECOND DERIVATIVE 
IN THE GRADIENT DIRECTION (SDG)

The theoretical mathematical derivation presented in this section was 
written by Carl de B o o r  (1995, On determining the Foot of the Continental Slope, 
private communication (adapted)). The official United Nation's definition of the FCS 
seems to be made with a univariate image in mind. One previous approach to 
compute the FCS uses the location of the highest ridge of the SMC. This approach 
seems to interpret the "maximum change in the gradient" to mean "maximum 
curvature" with a surface. This interpretation of the "maximum in the rate of change 
of the gradient" to be the same as a maximum in the curvature of/the seafloor 
ignores the legal definition, which suggests a profile or curve. The curvature will 
have a maximum at a well-defined foot, however, it can be large at other points 
also.



To comply with the legal definition, the approach should be one of a 
cross-section profile of the continental shelf in transition from the relatively flat 
continental shelf dropping to a steeply dipping slope to the rather flat rise of the 
continental rise or abyssal plain. See Figure 1. The narrow region where the 
continental slope meets the continental rise is the FCS. It is .characterized by the 
rapid change of the gradient from a steep slope to one of being almost flat. In 
mathematical terms, curvature in that small region is maximally positive. Which 
profile should one choose to comply with the legal definition at any point (x,y)7 The 
answer is the profile determined by the gradient at (x,y).

An approach representative of the legal definition of the FCS would be 
obtained as follows: Let S(x,y) (See app. A, eq. A2) be a bi-cubic spline function 
generated by Matlab M-file TCSAPS and represent the smoothed bathymetric data:

Z(x„yj), (/=1.......n; ./=1, ... , m)

The notation " :=" below means "defined to be".

To construct the SDG (Surface of the R.Q. of the H in the direction of the
Gradient):

1. Determine the direction of the steepest drop of the seafloor at the point 
(x,y). This is -DS, where DS is the gradient of S at (x,y) i.e.,

DS:=(DXS, DyS).

(It is the direction perpendicular to a contour line of the seafloor through 
the point (x,y).)

2. Determine the normalized second derivative of S at (x,y) in the gradient 
direction established above. This is given by the number N where:

W:=vTD2Sv:=(i/*)2DxxS+2\/x\/yDxrS+(yr)2Dy>,S, (1)

Where the "T" superscripting a vector means "transpose", and with the second 
partial derivatives, DXXS, DxyS, DyyS, of the function S all calculated at the point (x,y) 
and with

v:=(vx,vy)=DSI || DS || (2)

where ||v ||2 \-vx2 + vy2, i.e., v is the normalized gradient of S at (x,y). The 
calculation of N  is certainly easier than the calculation of the value needed in the 
computation of the SMC.

Note that, with v such that:

v=DS / || DS ||,

equation 1 can be rewritten as:

N=[(DS)tH(DS)] / [(DS)T(DS)] (3)

Where H the Hessian matrix of S is defined to be:



H :=
D xx S '-’ x y  S

DyX S Dyy S
=  d 2s

This shows the number N to be the R.Q. for H evaluated at the vector, v=DS:

R h{v):=N = (v t H v) I (i/ji/) (4).

The relationship between the SDG of Equation 4 and the SMC is as follows:

If by the word "curvature" one means nothing more than the second 
derivative in any particular normalized direction, then by the argument just given, 
the maximum curvature would be the maximum of the R.Q. of H, i.e., the maximum 
eigenvalue of H. In particular, if the gradient-directed second derivative is "large", 
then so must be the maximum "curvature". However, this maximum "curvature" may 
well be large in places where the gradient directed second derivative N, i.e., the 
"curvature" in the gradient direction, is not large.

Actually, the SMC proposed by V a n ic e k  et al (1994) as a means for 
determining the FCS is based on the actual curvature of the surface, I  where:

I  : (x,y) -» (x, y, S(x,y) ),

and hence may be even further removed from the original intent of the legal 
definition of the FCS.

Specifically, the SMC is obtained as:

(x,y) - *  (x, y, max {0, max k  (x,y)})

with max k(x,y) the maximum normal curvature of E at the point (x, y, S(x,y)). 
Elementary differential geometry applied to the surface I  shows the normal 
curvature of I  in the direction v equals the R.Q. evaluated at v. To see this let H" be 
the matrix of the dirst fundamental form for I ,  i.e.,:

H“ = H / || (-DS.1) || ,

and G be the matrix of the first fundamental form for I ,  i.e.,:

G = (D2)t (DZ) =
1 + (D ,S )2 DxSDyS 

DySDxS 1 + (DyS)2

then

K(v):=Rh~, g {v): = [ /H V  / /G u ] = [vt Hi/ : vTGv] / SQRT [DXS2 + DyS2 + 1], (5)

For the specific choice v=DS, one has
K(DS) = N : || (-DS, 1) ||3 ,

hence a simple relationship between the SDG, N, and the SMC, max VK (v). Since 
||(-DS, 1) || may vary widely, there may be no connection between the maxima of N



and those of the SMC. This makes the SMC even more doubtful in computing the 
FCS. Since both approaches use second derivative information, careful smoothing 
of the original data is imperative to a correct location of the FCS by either method.

Since both H" and G are real symmetric, the maximum normal curvature 
at a point is the larger of the two principle curvatures at that point, i.e., the larger of 
the two eigenvalves k: , k2 of the generalized eigenvalve problem:

H '-kG .

Note also that k^< N < k2, hence at any point the'SDG is less than or equal to the 
SMC.

Equivalent, max k  is the larger of the two solutions of the quadratic
equation.

det(H‘ -kG) = 0,

which, on expanding the determinant and collecting terms according to powers of k , 
gives exactly the result of Equation 2 in V a n ic e k  et al. (1994)(as it should be).

Table 1.- The steps of the SDG algorithm

1. Let S(x,y) be an explicit mathematical spline representation obtained from discrete 
bathymetric rectangular array of Z(x,y), which represents the seafloor.

2. Specify a rectangular grid to be used, i.e., partition to be used in the x and y vectors. 
Let (x,y) be any point in the grid.

3. Compute the gradient vector v at (x,y):

v(x,y) = DS(x,y),

4. Compute the Hessian matrix H of S(x,y) at the point (x,y):

DxxS DyxS

DyxS DyyS

5. Compute the Rayleigh Quotient R of the vector v at (x,y):

R(x,y) = [(v)TH(v)] / [(v)T(v)].
(superscript T means transpose)

6. Enter the value of R(x,y), obtained from the Rayleigh Quotient in the above step 5 for 
each point (x,y) of the grid to obtain the SDG.

Nota The location of the crest of the highest ridge on the SDG surface is the estimated FCS.___________________

The SDG requires only x and y axes have the same coordinate units. 
Rescaling units only changes N in Equation 3 by a constant. The SMC requires the 
x, y, and z axes all Have the same coordinate units. The SQRT term in computing K 
in the denominator of Equation 5 causes the SMC to be very sensitive to scaling.



Finally, the simple real examples that follow show that the original legal 
definition of the FCS does not always cover every situation. There are places where 
the passage from a steep descent to flattish continental rise of the seafloor can be 
quite gradual with no particular area of sharp change in gradient. For this situation, 
an alternate legal definition of the FCS seems needed.

See table 1 for a concise statement of the SDG algorithm.

EXAMPLE: THE U.S. ATLANTIC FOOT OF THE CONTINENTAL SLOPE

The procedures outlined above will be implemented on the NOAA 
worldwide bathymetric dataset ET0P05 by computing the SDG and the SMC for 
the area outlined from longitude -76 to -69 and from latitude 33 N to 40 N. This is 
the U.S. Atlantic coast from Charleston, South Carolina, to just south of New York, 
New York. Figure 2 shows an outline of this area on a map. This 7°x7° area 
encloses a sizable portion of the U.S. Atlantic FCS.

84° «0° 76° 72° 68° 8 *° 60°

FIG. 2.- Map of study area of U.S. Atlantic coast.

Let:

*(*/. y>), ( '-1 ------n;/=1, .... m)



be the ET0P05 subsea bathymetric data given on an equally spaced 5-nautical 
mile rectangular grid. (Information from scattered data would have to be 
transformed to a rectangular grid prior to using this technique.) Figure 3 shows a 3- 
dimensional net display of the ET0P05 data described in the previous paragraph 
and given by the 85 x 85 grid:

z(Xi, yj), (/=1......85; 7=1....... 85),

returned by spline-smoothing Matlab M-file TCSAPS. TCSAPS has smoothing 
parameters px and py, where 0 < px < '\ and 0 < py < 1. With px and py set to 1, there 
is no smoothing. With px and py set to 0, there is the most smoothing. Usually px and 
py are chosen such that p=px=py.

FIG. 3.- 3-D Net display of original NOAA ET0P05 data of 7 degrees longitude 
by 7 degrees latitude portion of U.S. Atlantic coast ('Z=0' is sea level; 5-nautical mile grid interval

(85x85 grid)) p=1.

For clarity of presentation, contour maps will be used to show the effects 
of data smoothing by TCSAPS for various values of the smoothing parameters 
p=px=py. The first contour map is Figure 4, which is a contoured presentation of 
Figure 3, the original data. This was accomplished by M-file TCSAPS with the 
smoothing parameters px and py such that p=px=py- 1.0, which is no smoothing, just 
a S(x,y) interpolation of the raw ET0P05 data. The contour interval on this map is 
500 metres . The contours presented are from -500 metres to -5000 metres below 
sea level. Note the angularity and sharp points on most of the contours. Also note 
the prominent presence of Hudson Canyon as it affects the contours located 
between (-70°, 36°) and (-71°, 40°).



(contour interval = 500 metres ; 5-nautical mile grid interval 1(85 x 85 grid); 
heavy line is a plot of the FCS as found by SDG.)

FIG. 5.- Contour map of the spline-smoothed NOAA ET0P05 data with smoothing parameters: 
p = p« = py = .9999 from 7 degrees longitude by 7 degrees latitude portion of U.S. Atlantic coast 

(contour interval = 500 metres ; 5-nautical mile grid interval (85 x 85 grid); 
heavy line is a plot of the FCS as found by SDG).



FIG. 6.- Contour map of spline-smoothed NOAA ET0P05 data with smoothing parameters: 
p = px = py = .9990 from 7 degrees longitude by 7 degrees latitude portion of U.S. Atlantic coast 

(contour interval = 500 metres ; 5-nautical mile grid interval 1(85 x 85 grid); 
heavy line is a plot of the FCS as found by SDG).

FIG. 7.- Contour map of the spline-smoothed NOAA ETOP05 data with smoothing parameters: 
p = Px = py = .9900 from 7 degrees longitude by 7 degrees latitude portion of U.S. Atlantic coast 

(contour interval = 500 metres ; 5-nautical mile grid interval (85 x 85 grid); 
heavy line is a plot of the FCS as found by SDG).



The SDG procedure was run on this raw dataset and the results plotted 
on the contour map of Figure 4. In this and other contour maps, the FCS is indicated 
by a heavy black line. This line is generated and drawn by the computer software. 
The FCS jumps from the -500 metre contour to the -3500 metre contour at 37° N 
latitude and 38° N latitude as observed in Figure 4. The FCS between Cape 
Hatteras, North Carolina, and Virginia Beach, Virginia, zigs and zags between the - 
500 metre contour and the -2000 metre contour. Notice the close spacing for the - 
500 metre, -1000 metre, and -1500 metre contours This represents a steep dip or 
gradient.

To smooth out some noise, set p = px = py = .9999. The results are plotted 
in Figure 5. Note that the contours are less angular and less pointed but their 
spacial location is still the same as well as the relative distance between them. Also 
note the Hudson Canyon on the right side of the map is still well defined; hence, 
there has been little loss of information content by this slight degree of smoothing.

The FCS as computed by the SDG method still zigs and zags between 
the -500 metre contour and the -2000 metre contour between Cape Hatteras, North 
Carolina, and Cape May, New Jersey; however, the large spikes at 37°N and 38° N 
have been eliminated. More smoothing is required.

Set p = px = py = .9990 and consider the results as given in Figure 6. The 
contours have been smoothed further. There are no sharp points nor angular edges 
remaining in the contours. Note that the relative distance between the contours on 
this map has been preserved and is about the same as the original data when p = 1 
in Figure 4. The Hudson Canyon on the right side of the map is still clearly evident 
From Cape Hatteras, North Carolina, to Cape May, New Jersey, with only one 
exception, the FCS is contained between the -1500 metre contour and the -2000 
metre contour. This is where it should be, according to the legal definition, because 
this is exactly where the "maximum change in the gradient at its base" occurs, i.e., 
after the closely spaced contours that indicate a steep slope; the foot is located by 
an increase in the spacing between the contours, which is where the maximum 
change in the gradient at the base occurs.

To introduce more smoothing, set p = px = py = .9900. The results are 
given in Figure 7. Now the contours are very smooth. Note the -500 metre, - 
1000 metre, and -1500 metre contours in Figure 6 are close together and -2000 
metre, -2500 metre, -3000 metre contours begin to widen out. In Figure 7, the -500, 
-1000, (-1500, and -2000 contours are about equally spaced. Note also the Hudson 
Canyon on the right side of the map is essentially nonexistent. Although this is a 
map with nice smooth contours, it has lost much of the information content of the 
original data in this last smoothing increment, i.e., there has been too much 
smoothing of the data by setting p = px = py = .9900. So p = px = py = .9990 is 
optimal if we increment the smoothing parameter by dropping off a 9 at each step. 
This is the data set that will produce the best results for a two derivative procedure 
with p = .9990

An equation for p is given on page 2-13 by de B o o r  (1992) to be:

p = 1 /[1+(ft3/6)], (6)

where h is the grid interval. Using de B o o r 's  Equation 8, one finds that when 
h=1/12, then p=.9999. For this dataset and the objectives of this report, Figure 5 
shows that this is not enough smoothing. The results from this report would suggest



replacing the constant 6 in Equation 6 with a constant of .6; thus, for h—1/12, then 
p=.9990, which yields the optimum value of p found for this dataset.

In the previous figures, the line representing the FCS was plotted on the 
contour maps without explaining how the lines representing the FCS were obtained. 
The intermediate steps that were used to obtain results presented will now be given. 
Figure 8 is a 3-dimensional net display of the surface generated by the SDG 
procedure as given by the SDG algorithm in table 1 above. Note the crest of the 
highest ridge on the surface locates the FCS and runs from the lower left-hand 
corner to the upper right-hand comer of the display. Also, note the small ridge just to 
the left of the big FCS ridge. It represents the place in the data where it was close to 
the coast line, and from there to the coast line all the z values were arbitrarily set to 
a value of -10 metres in the original dataset. The smaller features to the right of the 
FCS ridge are of interest. These trends should be examined in more detail by 
oceanographers to see what they represent.

x 104

FIG. 8.- 3-D Net display of the SDG of spline-smoothed NOAA ETOP05 data with 
p + px + py = .9990 from 7 degrees longitude by 7 degrees latitude portion of the U.S. Atlantic coast 

(  5-nautical mile grid interval (85x85 grid); FCS is located by the peak of the highest ridge )

The FCS line plotted on all the previous contour maps was obtained by 
contouring the SDG of Figure 8. This is displayed in Figure 9. The line indicating the 
FCS displayed in Figure 9 was found by the program keeping a record of where the 
cells of the grid obtained the largest value and connecting a line between those cells 
as the computation progressed.

One now shows that the 85x85 grids can be partitioned to a finer grid. The 
smoothing parameter p = .9990 eliminated much of the noise and still maintained 
the information content of the ET0P05 z values. These data are on a 5-nautical



mile grid interval. At this point, because the bi-cubic smoothing spline is a closed 
mathematical function, it could be sampled to as fine a grid as desired. Because this 
dataset was already quite large with an 85x85 grid, the grid was only refined once in 
this example by adding twice the number of equally spaced points in the x vector 
and the y  vector to define the grid to be 170x170 with a 2.5-nautical mile grid 
interval.

FIG. 9.- Contour map of the SDG using the spline-smoothing NOAA ET0P05 data with smoothing 
parameters: p = px = py = .9990, 7 degrees longitude by 7 degrees latitude portion of U.S.

Atlantic coast (FCS is obtained from the crest of the highest ridge; 5-nautical mile grid interval 
(85x85 grid); heavy line is a plot of the FCS as found by SDG).

Note in Figure 3 the noisy 3-D net display of S(x,y) was given for the 
original ET0P05 dataset with smoothing parameter p = 1.0. Figure 4 showed what 
happened when this dataset was contoured and the SDG computed with this S(x,y) 
as input. This gave a very poor location of the FCS at a grid interval of 5 nautical 
miles. Figure 10 is a 3-D net display of S(x,y) with an optimal smoothing parameter 
of p = .9990. The data have been smoothed and the FCS plotted at a grid interval of 
2.5 nautical miles. It misses the FCS at some places; but it is locating it at most of 
them.

Figure 11 is a contour map of Figure 10. The FCS is located in map view 
by latitude and longitude to the accuracy of the 2.5 nautical mile grid. The bi-cubic 
spline-smoothing representation S(x,y) with an optimal smoothing parameter does 
an excellent job of eliminating most of the noise and maintaining the data integrity 
and information content.



FIG. 10.- 3-D Net display of the spline-smoothed NOAA E T 0 P 0 5  data with smoothing parameters: 
p = px = p, = .9990 from 7 degrees longitude by 7 degrees latitude portion of U.S. Atlantic coast 
(2=0' is sea level; 2 .5-nautical mile grid interval (170x170 grid); heave line is a plot o f the FCS

as found by S D G ).

FIG. 11,- Contour map of the spline-smoothed NOAA E T 0 P 0 5  data with smoothing parameters: 
p = px = py = .9990 from 7 degrees longitude by 7 degrees latitude portion of U.S. Atlantic coast 

(contour interval = 500 metres ; 2.5-nautical mile grid interval (170 x 170 grid); 
heavy line is the FCS as found by SDG



x 1 0 3

FIG. 12,- 3-D Net display of the SMC; x, y and z axes are in kilometres using the spline-smoothed 
NOAA ET0P05 data with smoothing parameters px= 7.00728x 10"4, py = 3.650 x 10'4 7 degrees 

longitude by 7 degrees latitude portion of U.S. Atlantic coast (28.135 kilometre grid interval x-axis; 
35.000-kilometre grid interval y-axis (85x85 grid); FCS is the peak of the highest ridge) ■

FIG. 13,- Contour map of the SMC; x, y  and z axes in kilometres with smoothing parameters: 
px = 7.00728 x 10", Py = 3.650 x 10 .7 degrees longitude by 7 degrees latitude portion of 

U.S. Atlantic coast (contour values in kilometres as labeled; 28.135-kilometre grid interval x-axis; 
35.000-kilometre grid interval y-axis (85 x 85 grid); heavy line is the FCS as found by SMC).



3-D Display o f the Surface of Rayleigh Quotient
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FIG. 14 - 3-D Net display of the SDG, x, y, and z axes are in kilometres using the spline-smoothed 
NOAA ET0P05 data with smoothing parameters; px = 7.00728 x 1 0 ', p, = 3.650 x 10 7 degrees 
longitude by 7 degrees latitude portion of U.S. Atlantic coast (28.135-kilometer grid interval x-axis; 

35.000-kilometre grid interval y-axis (85x85 grid); FCS is the peak of the highest ridge)

FIG. 15.- Contour map of the SDG, x, v, and 2 axes in kilometres with smoothing parameters: 
px = 7.00728 x 10'4, py = 3.650 x 10 7 degrees longitude by 7 degrees latitude portion of 

U.S. Atlantic coast (contour values in kilometres as labeled; 28.135-kilometer grid interval x-axis; 
35.000-kilometer grid interval y-axis (85x85 grid); heavy line is a plot of the FCS as found by SDG^.



This ET0P05 dataset was chosen because it covered most of the coastal 
areas of the world. Working with the noisy original ET0P05 data would have 
produced poor results with any approach attempting to compute a surface that has 
to be differentiated twice, because taking the derivative of any real dataset always 
increases the noise level.

The SDG approach described above will be contrasted for this example 
with the SMC as outlined by V a n ic e k  et al. (1994). The SMC was computed using 
Equation 1-5 and 11 of their report. The results of running the SMC on this dataset 
as it originally was given in x: degrees, y: degrees and z: metres are not presented, 
because it gave no reasonable location of the FCS. In the Introduction, it was 
explained why this would happen without scaling. In order to obtain meaningful 
results with the SMC, the units of measurement on all axes needed to be changed 
to the same units. The input used had a smoothing parameter of p = .9990, which 
previously was found to be the optimal smoothing parameter for this dataset. With 
the data grid scaled so that the grid units are kilometres on the x, y, and z axes, the 
SMC's peak of its highest ridge locates the FCS. The scaled SMC map of the FCS 
then needs to be scaled again to return the map to the proper aspect ratio of the 
original data. As pointed out in the Introduction, the SDG approach requires only the 
x and y axes have the same units and requires no scaling of the ET0P05 data to 
obtain the FCS. To accommodate the SMC, the data are now scaled to compare the 
location of the FCS using the SMC and the SDG.

To scale the x and y axes of the dataset, the degrees were concerted to 
kilometres. For latitude, y, 111 kilometres for each degree was used; hence for 
latitudes 33° to 40° the kilometres ranged from 0 to 777 on the y-axis. On the y-axis 
the scaling factor is ry -  111. For longitudes -76° to -69°, x, cos(36.5°) x 777 = 625; 
hence the scale was from 0 to 625 on the x-axis. On the x-axis the scaling factor is 
89.228. The 36.5° is the mean of 40 and 33 degrees. Both axes are in kilometres.

The SMC did place the FCS in essentially the same locations as the SDG 
after the scaling of the x, y and z axes to kilometres. The 3-D net displays of the 
scaled axes of the SMC and SDG are given in Figures 12 and 14, respectively. Note 
the sharp rise from 0 of the ridge that represents the FCS as found by the SDG in 
Figure 14. To the west of the FCS is a smaller, secondary ridge of essentially the 
same orientation. The smaller ridge is where a -10 metres below sea level 
truncation of the data occurs. In Figure 12, the SMC does not show this as a distinct 
ridge; but it has only one wide ridge with no clear break between the two ridges. 
Figures 13 and 15 are the contour maps of the SMC and SDG, respectively. Note 
that the SMC in Figure 13 and the SDG in Figure 15 the highest ridge (FCS) run 
from the lower left corner to the upper right corner on both. But the ridge on the 
SDG in Figure 15 is better defined. In general, the features in the SMC in Figure 13 
are not as well defined, nor distinct; rather, they run together. The SDG obtained the 
same location of the FCS at all scales. Compare Figures 9 and 15 which have 
different scales. There is no figure for the FCS by SMC because it cannot compute 
it at the original scale of the data.

When scaling in figures with scaling factors, rx and ry, the following 
Equations are recommended for the transformed coordinates to determine the best 
smoothing parameters px and py:

P x  =  P J  [P x o  +  (1 - P x o  rx\

and
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With p = pxo = py0 = 999 and rx = 89.228 and ry = 111, the optimum smoothing 
parameters are found to be px = 1.4x 10'3 and py -  7.2993 x 10"4. Actually, in the 
transformed space, the best results were obtained by scaling px and py by 0.5 
obtaining p* = 7.0078 x 10'4 and py = 3.650 x 10 4.

For this ET0P05 dataset and the processing used in the report, the SDG 
has features that are better defined and more distinct than those same features as 
outlined by the SMC. It was shown in theory, in the paragraph following Equation 4, 
that, "this maximum curvature may well be large in places where the gradient 
directed second derivative, N ,  i.e., the curvature in the gradient direction is not 
large." This property may afford the SDG more flexibility and freedom than the SMC 
and thus allow it to be a more sensitive indicator of the FCS. More data need to be 
run to verify this conjecture.

A numerical verification of this theoretical observation in the paragraph 
following Equation 4 about the relative heights of the two surfaces will now be given. 
The surface A = SMC - SDG was computed as the difference of the two surfaces. 
Every value of the surface A was found to be zero or positive. This is clearly shown 
in Figure 16 by the 3-D net plot of the surface A.

x 1 0 J

0 0

FIG. 16,- 3-D Net display of A = SMC - SDG, x, y, and z axes are in kilometres using the spline- 
smoothed NOAA E T0P 05 data with smoothing parameters; p* = 7.00728 x 10' , py = 3.650 x 10'
7 degrees longitude by 7 degrees latitude portion of U.S. Atlantic coast (28.135-kilometre mile grid 

interval x-axis; 35.000-kilometre grid interval y-axis (85x85 grid)).

This approach of bi-cubic smoothing and data representation should 
make NOAA's ET0P05 worldwide database of interest and value in many areas of 
oceanography. Previous to the smoothing methods of this report it has been too 
noisy to be of much interest.



SUMMARY AND CONCLUSIONS

1. The preprocessing of the NOAA's ET0P05 worldwide bathymetric 
dataset by bi-cubic spline smoothing provides an explicit mathematical function 
S(x,y) that reduces the noise and retains most of the original information content of 
the data. This representation of the ET0P05 dataset should provide valuable 
information about the world's seafloors to many areas of oceanography.

This data smoothing is requisite to obtaining good results in 
constructing any second derivative surface. Noisy data will always give poor 
results using gradient methods, because taking derivatives introduces 
angularity and magnifies the noise. There is a limit to the amount of smoothing 
that should be done. An equation is given that provides a smoothing parameter 
p as a function of the grid interval. This parameter p should not destroy the 
original information content of the data. The constant required in the equation 
for an optimal p will vary depending on the dataset. The explicit, mathematical 
bi-cubic spline function allows the display of the data at a finer grid. These 
techniques can be implemented on any digital dataset having a rectangular grid.

2. The SDG approach is an accurate mathematical modeling of the legal 
definition of the FCS. The FCS is given by tracing the peak of the highest ridge 
of the SDG, I  : (x,y,S{x,y)). The SDG is obtained by computing the gradient at 
any point (x,y) of the grid, then computing the R.Q. of the H matrix of S(x,y) in 
the direction of the gradient at (x,y). The SDG contains other smaller but distinct 
ridges representing deep-water features seaward of the FCS. These should be 
examined by oceanographers in further study. See Figure 8.

3. The SDG on the E0PT05 dataset was computationally stable and does 
not require special scaling of the data to obtain accurate results.

4. The SDG will not find the FCS in all cases. In particular, when a cross- 
section perpendicular to the contours of the continental shelf is the arc of a circle, 
the legal definition will not yield the FCS. Because of the uniform gradient in this 
case, there is no maximum gradient at the base. In such cases, an alternative 
definition to the current definition of the FCS must be used. When the FCS is 
formed under normal sedimentation conditions, this situation will be rare.

5. The theoretical mathematical relationship between the SDG and the SMC 
is presented in this report. The SDG uses the R.Q. of the H of S in the direction of 
the gradient to find the FCS. It has fewer mathematical steps than computing the 
SMC.

The SDG requires only the x and y axis to have the same units to locate 
the FCS accurately. The SMC required scaling the three axes to the same units to 
find the FCS. It must then be scaled again to restore the proper aspect ratio for the 
proper location of the FCS. Equations are given for the equivalent optimal 
smoothing parameters after scaling.

The SDG is always less then or equal to the SMC at each (x,y). This was 
shown in the theory on page 56 and verified in the example.



6. With new technology allowing deeper drilling and mining, coastal 
countries are going to be increasingly more interested in the accurate location 
of their FCS when it is past the EEZ.

7. It is hoped that this report will show how to utilize the information content 
of the NOAA ET0P05 dataset in many areas of oceanography and allow many 
countries to use it to compute their FCS with it.
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A ppendix  A : B rief Discussio n  Of S pline  F unctions

For those unfamiliar with splines, this brief discussion of spline functions 
is presented because they are used in this report to smooth the raw bathymetric 
data. Splines are used physically by draftspersons and in ship fairing to obtain 
smooth curves. These splines are long plastic or wooden strips that have weights 
placed on them at the points the strip is to bend. The function, which is the 
mathematical analog of the physical spline, is also called a spline. The cubic spline 
is the one of interest in this report. The mathematical analog of the physical weight 
is called a knot. The plastic or wooden strips are represented by the mathematical 
splines as cubic polynomials joined together at the knots. At the breakpoints where 
the cubic polynomial pieces meet, they are constructed to have two continuous 
derivatives. To construct the second derivative surface of this report, we need to be 
able to take two derivatives of a function and still have a non-constant function to 
describe the resulting surface. The cubic spline is just what is needed.

A cubic polynomial P(x) is of the form:

P(x) = Ax3 + Bx2 + Cx + D ,

where, A, B, C, and D are real numbers. The graph of a univariate cubic polynomial 
P(x) is given in Figure A1.1.

A univariate cubic spline S(x) is a sequence of cubic polynomials 
connected at the breakpoints so that the first and second derivatives match at the 
breakpoints. This is indicated schematically in Figure A1.B.

A univariate cubic spline can be written as:

S(x) = £ a - p/(*), (A1)
/=1

where each P, (x) is a cubic basis spline nonzero on [x„ x,+4 ], where {x, : / = 1, ..., n} 
are the knots, and the {A, : / = 1, ..., n} are the real coefficients.

A bivariate or bi-cubic spline S(x,y) is made up of patches of bi-cubic 
polynomials whose values and partial derivatives match along and parallel to the x 
and y  axis. A schematic display of a bi-cubic spline is shown in figure A.1.C. The 
general form of a bi-cubic spline is:

nx ny

S(x,y) = A ijP i (x )P j(y ) .  (A2)
/=1 7=1

where {AiJ: /-1, , nx j  = 1, ..., ny} are the nx times ny real number coefficients and 
[P,(x): /=1, ..., nx} are the nx univariate basis splines in the x direction with knots at
{x, : /=1...... nx } and {P, (y) : j= “\ ........  ny } are the ny univariate basis splines in the
direction with knots {y, :;=  1, .... ny}, as mentioned above in the univariate case.



FIG. A 1 - Graphs of (/¾) cubic polynomial P(x), (S) cubic spline S(x), and (C) bi-cubic spline S(x,y).

In one dimension, n data points {(x„ /,= : /=1,, n)} can readily be 
interpolated by a unique polynomial of degree less than n by one of several 
polynomial interpolating procedures. The problem is that these higher order 
polynomials (n>9) are under such tension that in between the data points they can 
assume erratic values, which make polynomials of little practical use over the entire 
domain of definition. The Matlab M-files (script files) of the Spline Toolbox compute 
the coefficients {Au :/=1, ..., nx, /=1, ..., ny} for equation A2. Splines are used to 
represent the data rather than polynomials because splines are so much more 
flexible and supple than polynomials and, hence give a representation that honors 
the information content of the data better. They also yield better results between the 
original data points where the data are interpolated. The basis functions for 
polynomials have infinite support; hence, remote data unrelated to local data can 
cause poor representation locally. Because of local support of the spline basis 
functions, the local spline representation of the data is not distorted by remote data. 
The bivariate spline smoothing of this bathymetric data yields a function S(x,y) of 
the data at the point (x,y). The bi-cubic spline function S(x,y) of Equation A2 is used 
to represent the smoothed data, because it is the spline of lowest degree that has



the continuous second partial derivatives that are required in the computation of the 
SDG. There is assurance that the two continuous partial derivatives exist at any 
point (x,y) in the domain of the function S(x,y), because they exist for each of the 
univariate cubic spline function components from which S(x,y) is constructed; 
hence, S{x,y) has two continuous derivatives over its domain of definition:

[X,, Xnx] x [Y 1f Yny],

The Matlab M-file, "CSAPS", is a univariate spline-smoothing program. It 
has a parameter p, where 0 < p < 1. With p set to 0, the algorithm gives a least 
squares spline approximation to the data. With p  set to 1, the algorithm gives a 
cubic spline interpolation of the data. When 0 < p < 1, the representation is a 
weighted mixture of the two options (p=1).

The 2-dimensional version of CSAPS is called TCSAPS. It provides the 
bi-cubic spline-smoothed representation of the data { Z(x,, yy): /=1, . .., nx, /=1, ..., ny}. 
It has two smoothing parameters px and py,0 < p x< '\ and, 0 < px < 1.

With p, and py set to 0, TCSAPS returns a least squares linear spline 
approximation to the data. With p„ and py set to 1, TCSAP returns cubic spline 
interpolation of the data. Clearly, px and py can assume any value between 0 and 1, 
yielding a weighted mixture of least squares approximation and interpolation in the x 
and y  direction, respectively. In the labeling of the figures, the value of the 
smoothing parameters px and py, will be indicated by the letter p. It is understood 
that p = px = py in the original coordinate system.

Because we need a bi-cubic spline function with two partial derivatives in 
x and y direction, smoothing parameters p will be chosen close to 1.0, i.e., .9999, 
.9990, .9900. When the coordinate system is transformed by scaling, the proper px 
and py in the transformed coordinate system is given by equations (see p. 13) a 
function o f the scaling parameters in the x and y direction.

Spline have proved to be most useful in smoothing and representing 
general statistical data in various fields where the raw data are noisy. For 
application to general statistical data, see B ennett  (1972). For application to remote 
sensing, pattern recognition, and image processing of digital satellite data, see 
B ennett (1974) and B ennett et al. (1974). For a more detailed presentation of 
spline functions, see C heney and K incaid  (1985); For a more theoretical discussion 
of splines, see Schumaker (1981 ) and de Bo or  (1978, chapter 17).
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Appendix B: A r e a  o f  U.S. A t la n t ic  C o a s t  
w h e re  FCS is S e a w a rd  o f  th e  2 0 0 -N a u t ic a l M ile  EEZ

In the first area of interest presented in Figure 2 to 16 in the body of this 
report, the 200-nautical mile EEZ was always seaward of the FCS; therefore, the 
EEZ was not plotted on the maps in these figures.

We now consider the area of the U.S. Atlantic coast from -81° to -71° 
longitude and from 29° N to 39°N latitude. The location of this area is outlined in 
Figure B1. In a portion of this area off the coast of Florida, the location of the FCS 
(FCS plus 60 miles) is seaward of the 200-nautical mile EEZ.

FIG. B1.- Map of U.S. Atlantic coast, Appendix B area of interest.

Figure B2 shows a more detailed contour map of this area. Article 76, 
item 4(a), ii: of the Law of the Sea (LOS) extends the edge of the continental margin 
of the United States an additional 60 nautical miles seaward of the FCS. The FCS is 
indicated by the heavy black line. The FCS plus 60 nautical miles is indicated by the 
dashed heavy line. The 200-nautical mile EEZ is located on the map by the line 
overwritten with circles. The area of the seafloor between the EEZ and the "FCS



plus 60 nautical miles", which represents the additional mineral rights acquired by 
the United States by virtue of the LOS, is indicated by the shaded region.

Note that this area represents a sizable increase in the mineral rights of 
the United States, under the LOS.

FIG. B 2- Contour map of the NOAA ETOP05 data with smoothing parameter p=,9990, 
U.S. Atlantic coast, 10 degrees longitude by 10 degrees latitude (5-nautical mile grid interval; 
contour interval = 500 metres ; heavy line is a plot of the location of FCS as found by SDG; 

heavy dashed line is location of the FCS plus 60 nautical miles; line with circles over 
it is the 200-nautical mile EEZ);



A b b r e v ia t io n s  a n d  A c r o n y m s

CSAPS: A Matlab M-file for doing spline smoothing of digital data in 1-dimension.

D(S): Gradient of the function S(x,y) of 2 variable, i.e., DS=(DXS, Dj,S) where DXS is 
the partial derivative of S with respect to x and DyS is the partial derivative of S with 
respect by y.

EEZ: Exclusive Economic Zone, a line 200 nautical miles from coastline. This line 
determines the seaward extent of a country's mineral rights unless the FCS extends 
farther seaward than 200 nautical miles. In this case the FCS (plus 60 nautical 
miles) determines the limits of a country's mineral rights. Mineral Rights can never 
go beyond 350 nautical miles.

FCS: The Foot of the Continental Slope is "the point of maximum change in the 
gradient at its base".

H: The Hessian of a function S(x,y) of two variables is a 2 x 2 matrix with entries:
hn = DX*S, /7i2=DxyS, A72i=DyxS, h22=OxxS.

Matlab: A mathematical software and graphics package by The Math Works, Inc.

M-file: Series of Matlab commands in a script file started by typing its name at a 
Matlab prompt. M-files can be user defined functions or script files. Matlab has many 
system and user created M-files to do various mathematical, display, and 
bookkeeping tasks.

MMS: Minerals Management Service of the Department of the Interior, USA.

NOAA: National Oceanic and Atmospheric Administration.

R.Q.: Rayleigh Quotient a number obtained from a formal mathematical operation 
on a 2-D vector v and a 2 x 2 Hessian matrix, H, as defined in item 4 above where 
R.Q.(i/) = [vt Hi/]/[i/t v]. Superscripting a vector v with "T" means take the transpose 
of the vector i/.

SDG: Surface of Directed Gradient obtained from computing the Rayleigh Quotient 
of the Hessian of the normalized gradient of S(x,y) in the gradient direction.

SMC: Surface of Maximum Curvature is a mathematical procedure for computing 
maximum curvature surface for a given input surface S(x,y) of two variables. It is 
obtained by finding the largest eigen-value of the Hessian for S(x,y).

TCSAPS: A Matlab M-file for doing Spline Smoothing of digital data in two 
dimensions.


