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Abstract

Blunder detection is a topic of great interest to hydrographers because 
undetected blunders significantly distort the observed parameters, e.g., soundings. 
Based on an analysis of the characteristic of marine surveying, a robust method for 
the detection of abnormal data (include blunders) in hydrography is proposed in this 
paper, which is called the robust interpolation comparison test based on robust M- 
estimation by an iterative calculation procedure. Some questions involved in the 
implement of the suggested method are discussed in detail. Compared to the 
existing methods, the new method has more strong capacity of locating abnormal 
data. A simulation study and an actual numerical example for the process of 
multibeam soundings are given to test the performance of the proposed method. 
The results have illustrated the effectiveness of the method in the detection and 
identification of multiple blunders. The use of the new method will play an important 
role in improving the quality and reliability of marine measurements in our country.

INTRODUCTION

Compared to terrestrial survey, marine survey is strongly characterised by 
the dynamic effect. The observations in marine survey are affected not only by 
atmosphere, but also by the movement and physical property of ocean water. There 
exist, therefore, more noise sources in marine survey than in terrestrial survey. 
Taking the shipboard depth sounding for example, the pulse signals emitted from 
echo sounder could be reflected by floating and swimming living-things (e.g. fishes) 
and plants during their propagation. These false echoes and additional round trip 
echoes may result in a big discrepancy between the observed value and the true 
depth. It is the so-called blundering problem during data acquisition in marine 
survey. It is obvious that, due to the influences from different kinds of error sources, 
the blundering possibility in marine survey is much greater than that in terrestrial 
survey. In addition, it is difficult to make re-observations in marine survey at the
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exactly same position and find out the blunders due to lacking necessary checking- 
conditions. Thus the blundering problem remains in a very important position in the 
data processing.

In the statistical and geodetic literature, however, a blunder is not 
precisely defined. It is difficult to define since we are not sure if a blunder is a 
mistake or if the mathematical model is lacking. Someone calls those observations 
that are far away from the bulk of the data as blunders or gross errors or outliers. 
Someone believes that blunders are large in magnitude and much larger than the 
accidental errors. Obviously, blunder is a kind of abnormal data (called pseudo- 
abnormal data). In addition to blunders, there exists another kind of abnormal data 
in marine survey, i.e., the so-called true abnormal data, which are the true records 
of the observed parameters. These data are of great value to navigation with safety 
and design of marine engineering. It has been shown that there exist two kinds of 
abnormal data in marine survey, and it is essential for us to check and find out these 
observations in the data processing. However whether an abnormal observation is a 
blunder or not should be made a further investigation on the basis of sea state. As 
to this problem, this paper is not going to make a detail discussion. The main 
subject of this paper is to study how to find the existence of abnormal data and then 
locate them.

The problem of identifying is relatively simple when observations contain 
a single blunder. But if the observations contain more than one blunder, the problem 
of identifying becomes more difficult due to the masking or swamping effects. 
Masking occurs when some abnormal observations go undetected because of the 
presence of other, usually adjacent, abnormal observations. Swamping occurs when 
normal observations are incorrectly identified as abnormal ones because of the 
presence of other, usually remote, abnormal observations. In the past, those 
abnormal or suspected observations could only be extracted by manually editing 
blocks of data. With the widespread application of computer for the data processing 
in marine survey, some methods have been put forward to automatically remove the 
erroneous data through computer in recent two decades. These methods could be 
classified into two kinds. One kind is called statistical test based on some 
hypotheses, e.g., Luo (1984), Li (1988), Chen (1991), Zhang (1992) and Eeg 
(1995). The other is called comparison test based on function interpolation and/or 
stochastic estimation (collocation), e.g., H e r l ih y  et al. (1992), Ware et al. (1992), 
Sevilla  (1993), G il et al. (1993) and Zhu (1998). It should be admitted that if the 
methods mentioned above are reasonably used, part of abnormal observations 
could be correctly located and removed during the data processing. The pity is that 
all the methods mentioned above are based on the classical least-squares 
estimation. And it is well known that the least-squares estimation is not robust, even 
a single blunder can spoil the solution. If we use these contaminated estimates to 
construct statistic variable and then make statistical test, the results will certainly be 
unreliable. And unavoidably, the problem of masking and swamping effects 
mentioned above will arise, especially in the multiple-blunder case. To overcome the 
problem above, this paper makes an attempt to use the robust estimation to 
increase the reliability of the conventional testing methods for the detection of 
abnormal data in marine survey. The main idea is to combine the conventional 
interpolation comparison test with robust estimation, and then a so-called robust 
interpolation comparison test based on robust M-estimation by an iterative 
calculation procedure is proposed.



THE ROBUST METHOD

As mentioned above, the conventional least-squares estimation is not 
robust. It means that the least-squares procedure tends to smooth blunders into 
good (normal) observations. In other words, the blunders will be spread to other 
(good and bad) observations and thus the sizes of the actual blunders will be 
distorted. As a result, incorrect decisions may be derived from the statistical test 
based on the conventional methods, i.e., a good observation may be rejected or a 
bad (abnormal) observation may not be detected at all. The advantage of robust 
estimation is that the negative effect of the blunders on the estimator is greatly 
softened or even eliminated altogether when making the solution, although the 
statistical properties of a robust estimator are not as clearly defined and also the 
efficiency of the estimator is inferior to a least-squares estimator when no blunders 
are present.

As we know, robust estimation, on the whole, can be classified into three 
kinds (see H u a n g , 1990; Y a n g , 1993). One is the maximum likelihood type 
estimation, shortly called M-estimation. Another is the linear combination of order 
statistics estimation, shortly called L-estimation. And the third one is the rank 
estimation, shortly called R-estimation. Among the three kinds of robust estimation 
above, robust M-estimation is the most often used one in geodesy. The method 
suggested in this paper for the detection of abnormal data is just based on the M- 
estimation by an iterative calculation procedure. The basic principle of this 
estimation method with equivalent weights is first summarised as follows:

Where X  is an m x 1 estimate vector of unknown parameters; L is a n x 1 
observation vector with a nxn  weight matrix P  ; V is a n x 1 residual vector of L\ 
vi and L t is the /th element of V and L  respectively; A is a nx m design 

matrix, and aj is the /th row vector of A . The M-estimation with equivalent weights

mentioned above means that a suitable function /? (v) is chosen to satisfy the 
following condition

Differentiating the expression above with respect to the unknown X  yields

Consider a general error equation

V =  A X  - L (1)

v, =  a,X -  L,

Y * P i P ( vi) =  min (3)

Where ^ ( v f ) is the derivative of p{yt ).



Let
P, = />,</( v( ) /v,

Then by substituting (5) into (4), we have 

A'  P V = 0 

Or A'  P A X  -  A ‘ P L =  0

And A' -  ( A' PA) ' A 1 PL

(5)

(6)

(7)

(8)

Where P is called equivalent weight matrix The calculation of (8) can be made by 
iterations. Suppose we have obtained the Wh estimates of unknown parameters

A 'U | and the residuals V a> , then from equation (8), we get the (7<+7jth robust 
estimates

A (£- n = (A'  P tk,A) ] A ‘ P {k)L (9)

The robustness of the estimates above is mainly dependent on the 
determination of the equivalent weights Some expressions for equivalent weight, 
which were derived and modified from conventional p ( v )  and ^ ( v )  functions, 
have been proposed by statisticians and geodesists (see H u a n g , 1990; Y a n g ,
1993). Here we use the following equivalent weight function based on the IGG 
scheme which was originally developed by Z h o u  (1989) (Y a n g , 1994):

P,

P,

P,kA(k\ - | ' \ |) / (* i “ M l 2 /|v,| 
0

v, < k„

k 0 < v , | < * ,

> k,

( 10)

Where v ' = v, /  <r, , and ô y  =  & l  /  p i ; â „ is the estimate of unit weight variance. 

The constant k 0 is proposed to be 1.0-1.5 and tobe2.0~3.0.

The so-called robust interpolation comparison test suggested in this paper 
can be described as a three-step process. First each raw observation takes a turn 
being the comparison observation, or the observation currently under evaluation. 
Then the comparison observation is examined relative to the robust weighted 
average of the neighbour observations taken from the neighbourhood of the 
comparison point. And finally, a criterion is used to accept or reject the observation 
based on this comparison.

According to equation (9), the expression of the robust weighted average 
by an iterative calculation procedure can be directly written as



(11)

Where L ^ i  = 1,2,...,n) represents the neighbour observations taken from the 

neighbourhood of the comparison observation L It can be seen from (11) that, 
formally, the general formula of the robust weighted average is identical to that of 
the conventional weighted average. The only difference is that the weight factor p: 
of the conventional weighted average is now replaced by the equivalent weight 
factor p i of the robust weighted average. Whereas it is this substitution that can 
make the robust weighted average resist the influence of blunders.

As usual, the initial weights pt(i = 1,2.... n) used for the calculation of (10) can
be assigned according to their horizontal distances to the interpolated point as 
follows:

Where d t indicates the horizontal distance between the observation point Z,. and 

the interpolated point (i.e. comparison point) L p . c is an arbitrary constant to deal

with /?, approaching infinitude as the denominator of the weight function
approaches zero. In practical computation, we can set e =0.01. It can be seen from
(12) and (10) that the observations near the interpolated point, in normal case, have 
a great influence on the interpolation. Whereas when some observation is 
contaminated by blunder, the residual of the observation will increase, and the 
corresponding equivalent weight calculated from (10) will decrease. It means that 
the influence of the abnormal observation on the interpolation will be descending 
even if the observed point is so much close to the interpolated point. When

|VJ > ^ i^ ,  • P, ~ 0 , that is to say, the significantly abnormal observation has no 
influence on the interpolation.

Suppose X  p to be the convergence value of equation (11) and L  the 

corresponding comparison observation ( L p does not take part in the calculation of 

X p ). Then the predicted residual can be defined as

Finally, the absolute value of AL p can help us make a decision 

concerning the observation L p based on a comparison between | A L p | and a 

critical value or threshold AZ, . Here the critical value AZ,,,. is defined to be themax

maximum acceptable residual. The magnitude of AZ,max is dependent on the 
accuracy of observation and the perfection of interpolation model. In practical

P, = 1/(d, + s) (12)

(13)



application, A L max is usually chosen as two or three times the standard deviation of 
observation.

The key to the above robust method for the detection of abnormal data 
lies in the determination of a starting value of the unknown parameter. For some 
cases, the starting solution even can determine whether or not a usable M-estimator 
is obtained. In our opinion, the starting value of robust solution should be chosen to 
be robust in order to get a reliable convergence. The median of observations, in this

paper, is suggested to be taken as the starting value of X  for the calculation of
(11). That is

X *  = m e d { L i ) (14)
/

Where med  denotes median over /. It is known that the estimator defined

by equation (14) has the highest possible breakdown point of 0.5 (Yang, 1993). So it 
can ensure the stability of the iterative procedure. Yang (1997) suggested that the 
variance factor used for the iterative procedure be calculated by

ct0<A) = mecd { ^ P ,  v / * ’ ) / 0 . 6 7 4 5  (15)

And (T,(A>= ( J 0 ik ) l ^ j p ,  (16)

According to our experiences in application, it is found that when the 
equivalent weights are calculated through equation (10), the observations near the 
comparison point might be rejected to take part in the calculation of the interpolation
due to their having a larger weight factor p i , i.e., a smaller variance factor ¢7,, and

a bigger ratio of |v ( | /< t , . As a result, it may cause the loss of interpolation
efficiency. The reason for the above result is that we have chosen a special initial 
weight function (see equation (12)) which gives a great difference among the 
observations. Whereas such a initial weight function is essential to the improvement 
of interpolation accuracy in the normal case. In order to resolve the contradiction 
above, here the variance factor is suggested to be calculated directly by

<jj k) = m e d {  |v,(A) I } /0 .6745  (17)

In this case, the initial weight factor p , has no more direct influence on

the determination of cr( i ) . And as a result, all of the variance factors <r, are kept 
stable in the whole iterative procedure.



NUMERICAL EXAMPLES

In order to show the efficiency of the robust method proposed above, two 
numerical examples are given to test its performance. The first example is a 
simulation study where a set of data are simulated, firstly, which consist of twenty- 
five observations with an equivalent interval and follow a normal distribution
N (jU  =  10, cr2 = 1) . The order numbers and magnitudes of the simulated 
observations are given in Table 1 :

Tab.1 The distribution of the simulated data(order number/magnitude)

1 2 3 4 5
8.18 8.42 9.00 9.49 10.16

6 7 8 9 10
8.49 8.64 9.14 9.79 10.54

11 12 13 14 15
9.19 9.38 9.93 10.46 10.96

16 17 18 19 20
10.20 10.55 10.76 11.11 11.49

21 22 23 20 25
10.47 10.81 11.11 11.69 11.94

Then each of the initial observations takes a turn being the interpolated 
point. And two interpolations for each point are performed by using the robust 
weighted average and the conventional weighted average, respectively. Based on 
the predicted residuals (see equation (13)), two standard deviations corresponding 
to the two methods are computed as: a  (robust)=0.50 and a  (conventional)=0.53. It 
is shown that, in the normal case (without blunders), the prediction accuracies of the 
two methods are nearly the same. Finally, to get bad observations, four blunders are 
added to four initial observations, respectively. Two cases are treated:

Case one— 4 a  size of blunder is added on observation 8, 12, 14 and 18 at the 
same time.

Case two— 4 a  size on observation 8 and lO crsize on observation 12, 14 and 18, 
respectively.

The predicted residuals corresponding to the two cases above by using 
the interpolation methods of robust and conventional weighted average are 
calculated and given in Table 2 and Table 3, respectively.



Tab.2 The predicted residual errors corresponding to case one(robust/conventional)

-0.95
-1.44

-0.82
-1.40

-0.73
-1.36

-0.42
-0.92

0.12
-0.30

-0.77
-1.39

-0.84
-1.89

3.54
2.91

-0.64
-1.36

0.23
-0.26

-0.68
-1.39

3.59
3.03

-0.69
-1.85

3.96
3.57

0.27
-0.46

0.03
-0.44

0.10
-0.78

4.14
3.76

0.02
-0.74

0.43
0.05

0.04
-0.30

0.26
-0.25

0.25
-0.47

0.43
0.12

0.75
0.56

T ab.3 The predicted residual errors corresponding to case two(robust/conventional)

-0.94
-1.90

-0.80
-1.86

-0.68
-1.83

-0.42
-1.38

0.13
-0.76

-0.73
-2.08

-0.75
-2.91

3.56
2.05

-0.58 
-2 37

0.26
-0.96

-0.52
-2.59

9.59 
8 51

-0.51
-3.82

9.98
9.05

0.31
-1.66

0.13
-1.26

0.27
-2.37

10.19
9.07

0.21
-2.34

0.51
-0.77

0.10
-0.92

0.30 0.32 
-1.09 -1.75

0.60
-0.73

0.90
-0.06

As shown in Tab.2 and Tab.3, in both cases, the comparison tests based 
on the robust interpolation method proposed in this paper can always find the 
blunders correctly, even for small sizes (4 a ) .  Conversely, the tests based on the 
conventional interpolation are not so satisfactory, especially in case two, where the 
predicted residual of good observation ( number 13) is even larger than that of bad 
observation (number 8). It is shown that when there exist multiple blunders and the 
sizes of them are not uniform, the problem of masking and swamping effect 
mentioned in the previous section may arise by using the conventional method, 
whereas it does not by using the proposed robust method here.

The second example is a set of actual soundings produced by the 
Chinese-developed H/HCS-017 swath bathymetry system. The data set consists of 
38 swathes and a total of 198,928 soundings. By using the robust interpolation 
comparison test to check the data set, a total of 4,742 soundings are found to be 
abnormal, which account for a 2.38% of the total soundings. The statistical results of 
test for the data subsets of each swath are given in Table 4.
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Tab.4 The statistical results of detecting abnormal observations from multibeam
sounding

Swath
number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Total
soundings 4688 4384 4144 6272 5200 4720 4448 4560 4768 4720 4272 3904 3984 5472 4576 4496 4128 4544 4224

Abnormal
soundings 191 195 55 243 135 114 134 85 127 137 17 47 64 18 37 75 113 127 68

Percentag 4.06 4.45 1.35 3 73 2.60 2 42 3.01 1.86 2.66 2.90 0 40 1 20 1 61 0 33 0.81 1.67 2.74 2.79 1.61

Swath
number 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

Total
soundings 4144 4256 4176 6048 7664 7872 6224 5024 3952 5808 7376 6272 4208 7408 6368 5728 7744 6992 4 t6 0

Abnormal
soundings 78 102 35 273 256 252 230 181 87 68 265 181 0 199 109 67 159 153 73

Percentag
1.88 2.40 0.84 4.51 3.34 3.20 3.70 3.60 2.20 1.17 3.59 2.89 0 2 69 1.71 1.17 2.05 2.19 1.75

As shown in Tab.4, the percentages of abnormal observations found in this 
example are a little larger than that listed in H e r l ih y  (1992). Having made a further 
analysis on the detected abnormal data, it is found that more than 90% of abnormal 
observations are located in the border areas of each swath. It gives an indication of 
where improvement should be made in this new sounding system in order to increase 
the accuracy and reliability of soundings.

CONCLUSIONS

High volume data acquisition techniques for mapping the seabed, e.g., 
multibeam echosounding system and airborne laser depth sounding system, have 
recently become available and adopted for use in China. These systems have a number 
of features in common. A high data rate is one of them. As an important part of the 
quality control of data, it is essential for us to develop a valid method in time for detecting 
automatically the abnormal data from the high volume observations. This paper has 
introduced the theory of robust estimation to the data processing of hydrography for the 
first time. The purpose is to promote people to pay more attentions on the quality control 
and reliability of data in hydrography in China. Our proposed procedure for the detection 
of abnormal data is a composite of the robust estimation and the conventional 
interpolation comparison. The simulation study and the practical process of swath 
bathymetry data have proven the new method to be an effective procedure of detecting 
abnormal data. It is especially impressive for the multiple blunder case.
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