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  Abstract 

 
Résumé 

  
 

Resumen 

Modelling depth measurement uncertainty during data collection and processing has become                   

common practice since the release of S-44 4th Edition (IHO, 1998). Hydrographic Offices have also            

attempted to model uncertainty of legacy bathymetry in order to determine their fitness for various 

uses. Additional uncertainty can be introduced into representative bathymetry models by various 

gridding techniques that interpolate depths between measurements. This article reviews sources of 

measurement uncertainty, looks at methods for estimating uncertainty in legacy data sets and uncer-

tainty that is introduced into bathymetry (digital elevation/depth) models (DEMs/DDMs) by                   

gridding. Applications that could benefit from bathymetric/DEM/DDM uncertainty information  

include bridge risk management and tsunami inundation modelling. 
 

Keywords: bathymetry, uncertainty, digital elevation models 

La modelización de la incertidumbre de las medidas de profundidad durante la recogida y el procesa-

do de datos se ha convertido en una práctica común desde la publicación de la 4ª Edición de la S-44 

(OHI, 1998). Los Servicios Hidrográficos han intentado también modelar la incertidumbre de la     

batimetría tradicional para determinar su idoneidad para varios usos. Puede introducirse una incerti-

dumbre adicional en modelos de batimetría representativos mediante varias técnicas de reticulado 

que interpolan profundidades entre las medidas. Este artículo revisa las fuentes de incertidumbre en 

las medidas, estudia métodos para estimar la incertidumbre en las colecciones de datos tradicionales 

y la incertidumbre que se introduce en modelos de batimetría (elevación digital/profundidad) 

(DEMs/DDMs) mediante el reticulado. Las aplicaciones que podrían beneficiar de información             

relativa a una incertidumbre batimétrica/DEM/DDM incluyen la gestión de los riesgos de puente y la 

modelización de las inundaciones causadas por los tsunamis. 
 

Palabras clave: batimetría, incertidumbre, modelos de elevación digitales. 

La modélisation de l‘incertitude des mesures des profondeurs pendant la collecte et le traitement des 

données est devenue pratique commune depuis la publication de la 4ème Edition de la S-44 (OHI, 

1998). Les Services hydrographiques se sont également efforcés de modéliser l’incertitude de la  

bathymétrie traditionnelle afin de déterminer leur aptitude à différentes utilisations. Une incertitude 

supplémentaire peut être introduite dans des modèles de bathymétrie représentatifs au moyen de           

différentes techniques de quadrillage qui interpolent les profondeurs entre les mesurages. Cet article 

passe en revue les sources d‘incertitude dans les mesurages, examine les méthodes d‘estimation de 

l‘incertitude dans les ensembles de données traditionnels et l‘incertitude introduite dans les modèles 

d‘élévation ou de profondeurs numériques (DEM/DDM) bathymétriques à l‘aide du quadrillage. Les 

applications qui pourraient bénéficier d‘informations sur l‘incertitude bathymétrique/DEM/DDM 

incluent la gestion des risques sur la passerelle et la modélisation des inondations en cas de tsunami. 
 

Mots clés : bathymétrie, incertitude, modèles d’élévation numériques 
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Introduction 
 

The ocean floor is the last great, largely unsurveyed area 

of Earth. Many coastal areas have not been surveyed for 

decades, if at all, and the uncertainties in sounding                  

position and depth can be large. Worse, many applica-

tions that require accurate depths or shape fidelity of the            

seafloor, such as tsunami modelling, can magnify errors 

in underlying bathymetry models. 

It has been shown (MacEachren et al., 2005) that                   

decisions made with knowledge of data uncertainty are 

more effective than decisions made without that                 

knowledge, e.g. for bridge risk management when under-

taking passage planning. The same could be said about 

decisions made using bathymetric uncertainty informa-

tion when modelling coastal processes. 

 

Measurement uncertainty estimation 
 

Sources of measurement uncertainty 

The basic sources of uncertainty for most of today‘s 

depth and elevation measurement systems, i.e. single-

beam and multibeam sonars, and bathymetric and            

topographic lidar, are quite well known. There are: 

sources of uncertainty that contribute only to vertical un-

certainty, such as tides, draft and heave; sources of uncer-

tainty that contribute only to horizontal uncertainty, such 

as horizontal positioning system and heading sensor; and 

sources of uncertainty that contribute, through some  

mapping function, to both vertical and horizontal          

uncertainty, such as range and beam angle uncertainties 

due to measurement methods and refraction in multibeam 

echosounding.  

Sources of uncertainty can be broken down by: 

  Platform: 
static draft, vessel (ship or aircraft) speed, changes 

in draft with loading and speed changes, location of 

sensors, vessel dynamics (amount of roll, pitch, 

heave and yawing); 

 Sensor measurements: 

sonar, sound speed profiler (sometimes SVP), roll, 

pitch, heading, heave and positioning (including     

horizontal datum); 

 Environment: 

tides (including vertical datum), sound speed                

structure, sea state; 

 Integration: 
the time synchronization of all the sensor measure-

ments on a highly dynamic platform; and 

 Calibration: 
the misalignment angles between the instrument and 

the motion sensor, measured during a patch test or 

other calibration method. 
 

There are still other sources of uncertainty that are more 

difficult to quantify and are different from the probabilis-

tic forms of measurement uncertainty discussed above. 

There is uncertainty in what object is actually being              

detected in each sonar/lidar measurement, such as 

whether the system detects the actual seafloor or ground 

surface, or intermediate features such as biological layers, 

the water surface, suspended sediment, vegetation/tree 

canopy, etc. Imperfect processing to remove tree canopy 

and water column returns may leave such objects in the 

data set. There may also be some uncertainty in the             

seafloor penetration due to instrument frequency and the 

acoustic impedance of the materials making up the                

seabed.  
 

If the instrument beam footprint is larger than the micro-

relief of the seabed, e.g. in the case of sand waves, then 

some averaged value within the beam footprint may be 

returned. This is especially true in deep water where the 

sonar beam footprints may cover hundreds of metres. 

Bathymetric lidar can also suffer from this problem with 

beam footprints being several metres, whilst topographic 

lidar footprints are much smaller. Perhaps just as impor-

tant is the potential failure to survey morphologic features 

such as pinnacles that may be located between sparse 

measurements. Such terrain uncertainty occurs where the 

footprint of the sounding is much smaller than the            

distance between soundings and is amplified in areas of 

high rugosity where the wavelength of significant terrain 

variability is shorter than the measurement spacing.  
 

When it comes to making inter-comparisons between data 

sets, temporal changes between two survey epochs may 

play a role in expanding the uncertainty of the differences, 

especially where the seabed is known to be highly mobile 

or dynamic (Dorst, 2005). Precise geo-registration of the 

data sets is also essential, since any uncertainty in the       

positions in each will contribute to an inflationary uncer-

tainty in the differences. This uncertainty will be further 

exaggerated over rugged or steeply sloping seabeds.  
 

The surface detection, terrain and temporal change              

uncertainties mentioned above are not measurement             

uncertainties, so cannot be estimated by the legacy data 

techniques described in the next section. They may,              

however, contribute significantly to derived model               

uncertainty. 
 

As summarized by the IHO Standards for Hydrographic 

Surveys, S-44 5th Edition (IHO, 2008), uncertainties                

associated with the development of the position of an    

individual (sonar/lidar) beam must include the following: 
 

a) Positioning system uncertainty; 

b) Range and beam angle uncertainties; 

c) The uncertainty associated with the ray path model 

(including the sound speed profile for sonars) and 

the beam pointing angle; 

d) The uncertainty in platform heading; 

e) System pointing uncertainties resulting from sensor 

misalignment; 
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f) Sensor location; 

g) Platform motion sensor uncertainties, e.g. roll and 

pitch; 

h) Sensor position offset uncertainties; and 

i) Time synchronisation / latency. 
 

Contributing factors to the vertical uncertainty include: 
 

a) Vertical datum uncertainty; 

b) Vertical positioning system uncertainties; 

c) Water level measurement uncertainties, including 

co-tidal uncertainties where relevant; 

d) Instrument uncertainties; 

e) Sound speed uncertainties (for sonars); 

f) Ellipsoidal / vertical datum separation model              

uncertainties; 

g) Platform motion uncertainties, i.e. roll, pitch and 

heave; 

h) Vessel draught, settlement and squat (for sonars) 

i) Seabed slope (bathymetry systems); and 

j) Time synchronisation / latency. 
 

All of these contributing elements can be combined by 

applying the Law of Propagation of Variances, provided 

all the assumptions that underpin that law are met. This 

results in estimates of total propagated uncertainty (TPU) 

for both the vertical (depth/elevation) component               

(TPU-V) and its corresponding horizontal position             

(TPU-H). The precise methodology has been well              

documented for swath (multibeam) systems (Hare, 1995). 

The same methodology could easily be applied to lidar 

data sets, provided a suitable lidar measurement                

uncertainty model or other estimates were available. The 

single-beam echosounder TPU can be computed as a             

special case of the multibeam echosounder, where only 

the nadir beam is considered. 
 

Estimating uncertainty in legacy data sets  
 

For legacy data, estimating the uncertainty of position and 

depth may prove somewhat more challenging. One simple 

way to obtain a crude estimate is by seeking out the              

standards that were used to classify the survey at the time 

it was done. The presumption is that the survey met the 

standards of the day; therefore all the positions and depths 

must be at least as good as the specification to which they 

attempted to adhere. But one must use caution, since           

assuming a particular standard was met can lead to              

incorrect estimates (Calder, 2006).  
 

Many surveys, in their original form, e.g. fair sheets, field 

sheets, plans, etc., may have had good metadata as part of 

their title blocks or reference notes, or recorded in surveys 

reports. Often, information about position accuracy or 

method of positioning will be available in the metadata. 

Typical accuracies for many positioning systems and 

methods have been tabulated (Hare, 1997) and can be 

used as a guideline for TPU-H estimation. 
 

 

The metadata may also include information about the 

method of depth measurement or the type of echosounder 

used. These, together with any information about how 

depths were corrected for tides, draft and other biases or 

scale factors, may lead to a crude estimation of the               

TPU-V. The method used in S-44 5th Edition (IHO, 2008) 

can be applied here, using both fixed (a) and variable (b) 

contributions to TPU-V as follows: 

 

 
 

where d represents water depth. Note that the coefficients 

a and b must be the quadratic summation (i.e. the root-

sum-square or RSS) of all the contributing fixed and vari-

able uncertainty components respectively. 
 

For analogue survey data, the data may have become  

digital through table digitization and may have been   

transformed from other units, e.g. fathoms, and from older 

datums, e.g. North American Datum of 1927 (NAD 27). 

Processing errors during these steps may contribute to an 

expansion of the TPU values estimated above. The            

process by which this expansion occurs also generally 

follows the Law of Propagation of Variances. Methods to 

compute uncertainty contributions from digitization and 

processing errors can also be found in the literature (Hare, 

1997). The method used to combine any number of uncer-

tainty contributions to position is similar to the equation 

above and is expressed as follows: 

 

 
 

where i, j and k, etc. are the positioning, digitizing and 

processing errors that contribute to the total propagated 

horizontal uncertainty. 

All of the TPU values discussed above can, of course, be 

scaled to any confidence interval (C.I.) that is needed 

(often the 95% C.I. is used) using an appropriate expan-

sion factor. For TPU-V, this is 1.96 for normally               

distributed univariate errors; for TPU-H, a circular              

distribution is often adopted, and an expansion factor of 2 

is used to obtain a 95% C.I. estimate, where the radius of 

the circle is often referred to as twice distance root-mean-

square, or 2drms. See Calder (2006) for a more detailed 

approach. 

As noted in the first section, older analogue surveys may 

represent a significant undersampling of the true             

variability of the seafloor due to the limitations of the map 

medium and scale, and then-available technologies. Prior 

to the advent of swath mapping multibeam sonars,            

single-beam depths were collected under-ship with gaps in 

the seafloor coverage to the next survey line perhaps           

including significant, missed seabed-protruding features. 

For example, dangers to navigation are occasionally              

discovered in areas where single-beam hydrographic           

surveys had been conducted in the past. Legacy data may 

also suffer from a shoal bias, whereby shoal depths were 

preferentially recorded for charting purposes. 
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Legacy data also suffer particularly from uncertainty             

introduced by morphologic change in dynamic areas. 

While this temporal change uncertainty does not apply to 

the data at the time of collection, such data being valuable 

to change analysis, it does contribute to derived model 

uncertainty where the model may be implied or stated to 

represent modern morphology. 
 

Model uncertainty estimation 

Computer models of bathymetry (digital elevation models 

or DEMs) represent Earth‘s solid surface to some varying 

degree of accuracy. They are used in modelling of ocean 

processes, coastal and marine spatial planning, ecosys-

tems and habitat research, and hazard mitigation and          

community planning, especially when integrated with 

coastal topography.  

The models represent, and are derived from, the source 

measurements. However, they are typically required to be 

continuous (i.e. a blanket or surface that has no gaps) so 

that ocean phenomena may be modelled using them. As 

such, some type of interpolation is often required to            

estimate depths in areas without measurements. They are 

often also intended to represent modern bathymetry and 

may be forced to rely on legacy data in areas without   

recent surveys. 

 

 

 

 

 

 

 

 

Individual cells of uniform size and regularly repeating 

patterns make up the most common type of DEM, with 

each cell having an assigned elevation value that is              

expected to be representative of the average elevation of 

the seafloor or ground surface within the footprint of the 

cell. Some bathymetry models may use alternative values, 

such as minimum depth to support safe navigation, while 

others may depict a particular epoch for documenting 

coastal change (Buster and Morton, 2011).  

The model vertical uncertainty associated with each cell‘s 

elevation value depends upon three principal factors 

(Figure 1; Desmet, 1997):  

1) the uncertainty of the source measurements, in-

cluding temporal change uncertainty if data are 

from different survey epochs;  

2) the gridding technique used to build the model and 

interpolate between measurements; and  

3) terrain variability within each cell‘s footprint, and 

between measurements.  

Model uncertainty is, in turn, propagated into uncertainty 

in products derived from their use. 

 

 

 

 

Figure 1 - Cross-section of factors contributing to 

each cell’s total model vertical uncertainty. A) Source 

data uncertainty is TPU-V of measurements, as well as 
temporal change and datum conversion uncertainty. 

Between data points, the data uncertainty is inferred to 

be  an  average  of  surrounding  data  uncertainties.         
B) Gridding interpolation uncertainty grows with dis-

tance from source data regardless of technique.  It 

should encompass the range of  all  possible model 
surfaces created by various gridding techniques and 

their adjustable parameters. Gridding uncertainty may 

be zero in cells constrained by data points if the grid-
ding technique is an exact replicator of source data 

(e.g. triangulation). C) Terrain variability at wave-
lengths shorter than the cell footprint or shorter than 

the distance between measurements contributes addi-

tional uncertainty, though it decreases with decreasing            
variability, potentially reaching zero in flat areas with 

no variability. D) Total model uncertainty for each cell 

is the sum of the contributing factors for that cell.  
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The primary challenge of integrating bathymetry with 

topography at the coast, say for modelling inundation 

from a tsunami or hurricane storm surge, is that bathymet-

ric soundings are typically sparse compared to topog-

raphic measurements (e.g. dense lidar surveys may have 

point spacings of 1 metre or less). The distance between 

depth measurements may be 10 or 100 times that of land               

measurements, and even larger far offshore. Development 

of a model that matches the resolution of topographic 

data, for detailed inundation mapping, may thus require 

extreme interpolation of bathymetry (over tens to              

hundreds of unconstrained model cells). Assessing the 

uncertainty introduced by gridding techniques when             

interpolating over such large distances is described in the 

next section.  
 

Where source bathymetry data are present, the uncertainty 

associated with each sounding is propagated into the 

bathymetry model, as is the terrain uncertainty. Where 

multiple soundings are averaged into a single cell value, 

as is typically the case with swath data, their individual 

uncertainties can be combined into the cell data uncer-

tainty. In legacy data, where the soundings may be sparse 

compared to the bathymetry model‘s cell size, one sound-

ing may contribute to a single cell. The cell‘s uncertainty 

will almost certainly exceed the sounding‘s uncertainty 

due to the likely mismatch between footprints of sounding 

and cell, and to uncertainty contributions from terrain and 

temporal change, as well as that introduced by the grid-

ding technique. 

Finally, because bathymetric and topographic data are 

typically referenced to different vertical datums, e.g. mean 

lower low water or North American Vertical Datum of 

1988, the data need to be converted to a common vertical 

datum prior to model development. This vertical datum 

conversion introduces additional uncertainty into the 

model. 
 

Uncertainty introduced by gridding techniques 
 

Where no soundings constrain the depth in an individual 

cell, interpolative gridding is often required to infer the 

depth based on known surrounding depths; the modelling 

of ocean processes typically requires each cell to have an 

elevation value to prevent modelling instabilities. Com-

mon gridding techniques include: spline, kriging, inverse           

distance weighting (IDW), nearest neighbour, and triangu-

lation (Maune et al., 2007). Each technique estimates the 

depth values using particular constraints, such as a               

minimum curvature surface for spline, or a linear distance

-based weighted average of known soundings for IDW 

(Burrough and McDonnell, 1998).  
 

DEMs are a model of reality and deviations from the true 

seabed or land surface constitute errors. DEM errors      

originate from both the source measurement (e.g.                

multibeam sonar, lidar) and the interpolative gridding. 

Guo et al. (2010) found that interpolation errors are as 

significant as source errors and should be considered 

when generating and using DEMs. The magnitude of   

interpolation errors is often unknown and the lack of 

knowledge about these errors represents the uncertainty 

introduced by the gridding process (Wechsler, 2007). 
  

Numerous studies indicate that the accuracy of interpo-

lated DEMs is inversely related to terrain complexity 

(Kubik and Botman 1976; Li, 1992; Gao, 1995; Gong et 

al., 2000; Erdogan, 2010; Guo et al., 2010). All interpola-

tors are more accurate in areas of low relief as there is a 

higher degree of spatial dependence between source             

elevation measurements and the true elevations of nearby 

unconstrained cells requiring interpolation. In areas of 

complex terrain, interpolation errors typically increase in 

magnitude because the true, and unknown, elevation to be 

interpolated can deviate greatly from nearby source        

measurements. Consequently, morphometric parameters 

including slope and curvature can provide insight on the 

magnitude of interpolation uncertainty. Aguilar et al. 

(2005) found that the greatest predictor of the accuracy of 

interpolation was morphology, followed by sampling  

density and interpolation method. Other studies also            

indicate that the uncertainty of interpolated elevations 

increases in areas of heterogeneous terrain and with           

increasing distance from source measurements (Figure 2; 

Chaplot et al., 2006; Erdogan, 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

In addition, approximate gridding techniques, such as 

trend surfaces, may force cell values derived from source 

soundings away from their average elevation value,              

adding further uncertainty to those cell values. Exact             

interpolators (e.g. triangulation, IDW) create surfaces that 

pass exactly through the source data (Desmet, 1997). 

Gridding techniques may also introduce artefacts into the 

model, including false oscillations introduced by spline 

interpolation (Almansa et al., 2002), or ―bull‘s-eye‖             

patterns from IDW interpolation (Gonçalves, 2006).  

Figure 2 - Increase in cell elevation uncertainty 

(u) with interpolation distance (d) from known 

soundings. Trends A and B may represent either 

different gridding techniques (e.g., IDW or spline) 

or  areas  of  different  terrain  (e.g.,  smooth/

continental  shelf  or  heterogeneous/submarine 

canyon). 
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There are a number of techniques that can be used to 

quantify the errors of interpolated elevations using known 

measurements, e.g. split-sample (also referred to as cross-

validation), jack-knifing, and boot-strapping (Erdogan, 

2009; Paquet, 2010). Using a split-sample approach, a 

percentage of the data is omitted, an interpolation method 

is applied, and the differences between the interpolated 

elevations and the original omitted elevations are calcu-

lated (Figure 3). In order to quantify the errors of the in-

terpolation method at every data point, this process is re-

peated and the differences between the original omitted 

elevations and the interpolated elevations are aggregated. 

The interpolation errors can be quantitatively assessed by 

several descriptive statistics including the minimum, 

maximum, mean, root mean squared error (RMSE), and 

standard deviation. The split-sample method is often used 

to assess the stability of various interpolation methods by 

omitting increasingly greater percentages of the original 

data and analyzing changes in the interpolation errors 

(Declercq, 1996; Smith et al., 2005).  

 

Many studies that quantify interpolation errors using a 

split-sample approach are based on topography DEMs 

where dense lidar surveys are reduced by a small percent-

age (< 10%) and interpolation is only performed over one 

or a few cells (Hodgson and Bresnahan, 2004; Palamara et 

al., 2007; Grebby et al., 2010). On the other hand, 

bathymetry models are often derived from soundings with 

much greater point spacing, which requires extreme              

interpolation over tens to hundreds of unconstrained 

model cells in order to be consistent with the resolution of 

coastal lidar surveys.   

Studies also indicate that statistical measurements, such as 

RMSE and standard deviation, are insufficient in fully 

characterizing interpolation errors (Desmet, 1997; Er-

dogan, 2009). These global descriptive statistics assume 

uniform values for the entire DEM, which is often not the 

case (Erdogan, 2009). Consequently, it is also important 

to investigate the spatial pattern of interpolation errors 

that result from distance from control points in heteroge-

neous terrain (Chaplot et al., 2006). The combination of 

statistical measurements and spatial patterns of interpola-

tion errors is being used in an ongoing research project to 

quantify the uncertainty introduced by each gridding    

technique as it relates to distance to control points and 

surface characteristics such as slope and curvature,            

quantitative results of which will be published separately. 

   

 

Figure 3. Flowchart depicting the split-sample methodol-

ogy for quantifying interpolation errors. A) The original 

data are averaged to have exactly one elevation value per 

grid  cell.  They  are  then  randomly  split  by  a  fixed               

percentage (e.g., 50%) into control data and data subset. 

B)  An  interpolation  method  (e.g.  spline,  triangulation, 

IDW) is applied to the data subset to build an interpolated 

DEM. C) The interpolated DEM is compared to the control 

data to quantify the interpolation errors.  Steps A to C are 

repeated  at  the  same  split  percentage  (randomness               

resulting in  different  control  data and data subset)  to             

determine  interpolation  error  at  every  grid  cell  and            

account for bathymetric variability. The method is rerun 

iteratively using different split percentages to evaluate the 

stability (e.g. ability to reproduce the principal topogra-

phy) of the chosen interpolation method with various data 

densities.   
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Applications for bathymetric DEM with uncertainty 
 

Coastal inundation modelling 
 

A primary use of DEMs that integrate bathymetry and 

topography is the modelling of coastal inundation from 

either tsunamis or hurricane storm surges (Eakins and 

Taylor, 2010). The hydrodynamics of the particular           

phenomena are modelled upon the DEM, and the location 

of the resulting maximum inundation line is then used for 

hazard mitigation planning or operationally during           

real-time events to help define evacuation areas.  
 

Uncertainty in the cell elevation values directly affects the 

model hydrodynamics, but they also contribute to           

horizontal uncertainty of the inundation line. This last 

piece of information is critical to emergency managers 

planning for, or responding to, hazard events. The current 

practice is to assume some additional buffer area beyond 

the modelled inundation line to use as the basis for              

decision making. A better practice would be to propagate 

DEM uncertainty, along with modelling uncertainty into a 

TPU-H of the inundation line, which would provide more 

realistic uncertainties on which to base decision making. 

A recent study by White et al. (2011) used a stochastic 

(Monte Carlo) approach to estimate the uncertainty of 

lidar-derived shorelines. Beekhuizen et al. (2011) also 

used a Monte Carlo approach to quantify the effect of 

DEM uncertainty on the positional accuracy of airborne 

imagery. It would be worthwhile to apply a similar             

methodology to quantify the propagation of DEM            

uncertainty into storm-surge and tsunami inundation     

modelling uncertainty.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bridge risk management 
 

Another application for bathymetry models with uncer-

tainty is for voyage planning and risk management on a 

ship‘s bridge. Traditionally, this task has been done using 

information contained on the paper chart, such as from a 

source classification diagram (Figure 4), reliability              

diagram or from notes and symbology on the chart itself. 

The diagrams, when present, are always at a much smaller 

scale and contained somewhere within the chart limits, but 

the information about the quality of the data is never           

coincident with the data itself. While bathymetry             

uncertainty is not explicitly stated, it could be crudely 

implied by experienced mariners and hydrographers from 

the information given in tabular form. 

 

Figure 4:  
Example Source Classification Diagram. Areas in the 

map have labels (letters) that refer to the table where 

an  indication  is  given  of  where  the  source  data                

originated, its resolution (as defined by line spacing 

usually) and its age. 
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More recently, electronic navigational charts (ENCs) have 

been encoded with a quality metadata layer in the form of 

zones of confidence, or ZOC. The level of CATZOC, as it 

is called in the ENC encoding world, can be displayed 

coincident with the data, allowing decisions to be made 

with both the data and the uncertainty in context               

(Figure 5).  
 

Still, this is a discrete representation of the uncertainty 

information (a continuous variable) which may not be 

particularly helpful or intuitive for  the  mariner  to   make  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

informed decisions about the level of risk-taking by           

navigating in these areas. The CATZOC describes the 

process by which the data was gathered (what the hydro-

grapher did) rather than what is truly known about the 

area (what the mariner wants to know). This makes 

source, reliability and CATZOC diagrams ineffective in 

conveying the real accuracy of the seabed representation 

to the end user. The tabular representation of ZOCs is 

given in Table 1. 

 

 

Figure 5 - Example ENC with M_QUAL CATZOC layer turned on. M_QUAL zones of               

confidence (CATZOCs) are represented by grey stars (*) surrounded by rounded rectangles or  

inverted rounded triangles, where more stars represents greater confidence that a mariner 

might put in the data. “U” means unassessed. See Table 1 for further explanation. Note that 

this is not a real ENC and is for illustrative purposes only. M_QUAL CATZOCs are for 

bathymetry and would not be coded over land features unless set to unassessed.  

Table 1 -  Zones of Confidence (ZOC) at the 95% confidence interval (CI). All of these ZOC types are represented 

in Figure 5 in diagonal bands from the SE corner to the NW corner. 
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With the implementation of new standards for encoding 

data in ENCs, e.g. BAGs (ONSWG, 2006), S-10x product 

specification (Ward and Greenslade, 2011), etc., it should 

become possible to see and use the depth DEM and its 

associated uncertainty estimate DEM in the same            

electronic chart display (Figures 6A and 6B respectively). 

Yet still more powerful is the combination of the two  

values into a single layer, with the display customized to 

the draft of the vessel.  

An example might be: 

 Subtract 2 times the uncertainty from the charted depth 

(statistically shoal-biasing it at about the 95% C.I.); 

 Apply predicted or real-time tides (biased with their 

95% uncertainty if available) to charted values to get           

real-time shoal-biased depths; 

 Apply a model of vessel draft variability (biased by the 

model uncertainty for safety) 

 Apply a vessel draft buffer (the captain‘s comfort zone 

of clearance beneath the keel); 

 Colour-code the resultant depths using: 

   Green (or no colour at all) – where the shoal-biased, 

real-time depths exceed the vessel draft plus draft 

buffer (a safe-to-go zone); 

  Yellow – where the biased depths exceed the vessel 

draft, but the buffer is excluded (a cautionary zone); 

and 

  Red – where depths are not sufficient to navigate the 

vessel under any circumstance, given the present state 

of the tide (a no-go zone). 
 

This scenario leads to the traffic-light display shown in 

Figure 6C. Working groups of the IHO are presently    

investigating other options for displaying data quality 

information to the mariner for more informed decision 

making, in preparation for the release of S-101 in 2012. 
 

National survey planning  
 

Knowledge of bathymetry DEM uncertainty can also be 

used by hydrographic offices (HOs) as a tool for               

prioritizing work. The Canadian Hydrographic Service 

(CHS) developed a risk-classification model (Mortimer, 

2002) for its entire catalogue of charts (some 950) in order 

to prioritize charting work in a fiscal environment of 

dwindling resources. This model was based, inter alia, on 

the types and frequency of vessel traffic, the depth of           

water, the complexity of the areas and on records of             

accidents and incidents in the area. The report also recom-

mended that CHS apply risk-management approaches to 

its other planning activities. 
 

One can conceive of using a regional or nation-wide DEM 

of depths with their associated uncertainty estimates in the 

development of a national survey plan. Areas where the 

estimated depth, less its estimated uncertainty, is            

shallower than the draft of expected (or forecast) vessel 

traffic (with a built-in safety margin) would get the          

highest priority for resurvey. Of course, uncertainty esti-

mates would have to also consider the age of the data and 

the dynamic variability of the seafloor when planning a         

resurvey frequency (Dorst, 2005) in order to optimize use 

of scarce survey resources. 

Figure 6. Example of depth (A) and uncertainty (B) of a 

bathymetry model viewed within an Electronic Chart display. 

A "traffic light" display showing "Go" (green), "No-Go" (red) 

and "Cautionary" (yellow) zones is shown in C. Note: this is 

only a representation of the uncertainty in the bathymetry; 

uncertainty in other charted data types that may affect naviga-

tion decisions has not been represented. 
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If appropriately modelled in a GIS, this national planning 

model could be re-run at regular intervals (e.g. annually) 

or each time major changes occur (e.g. due to storms or 

tsunamis) or when changes are proposed to navigation 

routes and port facilities. 
 

Summary and conclusions 
 

We have shown the steps involved in estimating                   

bathymetric uncertainty of the source measurements and 

also those uncertainties due to digitization processes and 

gridding techniques. Additional sources of uncertainty, 

such as surface detection, terrain and temporal change 

may also contribute to the total uncertainty. In addition, 

we have shown several applications for a terrain model 

with associated uncertainty, including bridge risk manage-

ment and tsunami inundation modelling. 

There is certainly the potential for myriad applications of 

a DEM with associated vertical uncertainty estimates. Of 

the applications examined herein, more work needs to be 

done on modelling the bathymetric uncertainty over large 

areas of coastal and offshore North America to support 

safer marine navigation and hazard preparedness. 
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