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 Résumé 

  

 
 Resumen 

In classical hydrographic surveying, the use of GPS is limited to providing horizontal control for   

survey vessels. More recently, an alternative practice has evolved, which determines depth values 

relative to a geodetic datum and then relate them to tidal datums through a series of vertical datum 

transformations. Although it has a number of advantages over classical hydrographic surveying, this 

practice requires accurate 3D positioning information. Unfortunately, accurate 3D positioning       

solution may not always be available as a result of communication link problems, GPS outages, or       

unsuccessful fixing for the ambiguity parameters. This paper examines the use of wavelet analysis to 

spectrally combine the GPS/INS height data series and the heave signal to bridge the height data 

gaps. In addition, a neural network-based model is developed to precisely predict the horizontal    

component of the survey vessel. 

Dans les levés hydrographiques classiques, l‘utilisation du GPS est limitée à la fourniture d‘un 

contrôle horizontal pour les bâtiments hydrographiques. Plus récemment, une autre pratique est ap-

parue et celle-ci détermine les valeurs de profondeur par rapport à un système géodésique puis les 

rapporte au niveau de référence des marées par le biais d‘une série de transformations du système 

géodésique vertical. Bien que ceci offre un certain nombre d‘avantages par rapport aux levés hydro-

graphiques classiques, cette pratique nécessite des informations exactes sur la détermination de la 

position en 3D. Malheureusement, une solution exacte de détermination de la position en 3D n‘est 

pas toujours disponible à cause de problèmes de liaison en matière de communications, de défaillan-

ces GPS, ou de réparation infructueuse des paramètres d‘ambiguïté. Le présent article examine l‘uti-

lisation d‘une analyse des ondelettes pour combiner de manière spectrale les séries de données de 

hauteur GPS/INS et le signal de pilonnement afin de combler les lacunes en données de hauteur. En 

outre, un modèle inspiré d‘un réseau neuronal est en cours de développement en vue d‘une prédic-

tion précise de la composante horizontale du bâtiment hydrographique. 

En los levantamientos hidrográficos clásicos, el uso del GPS está limitado al suministro de control 

horizontal para los buques hidrográficos. Más recientemente, se ha desarrollado una práctica alterna-

tiva, que determina los valores de la profundidad relativos a un datum geodésico y los relaciona pos-

teriormente con los datums de mareas a través de una serie de transformaciones del datum vertical. 

Aunque tiene una serie de ventajas con respecto a los levantamientos hidrográficos clásicos, esta 

práctica requiere una información precisa del posicionamiento en 3D. Desgraciadamente, puede que 

una solución de posicionamiento preciso en 3D no esté siempre disponible como resultado de los 

problemas de enlaces de datos, los cortes GPS, o un ajuste infructuoso de parámetros de ambigüedad. 

Este artículo  examina el uso de un análisis de ondas pequeñas para combinar espectralmente la serie 

de datos de altura GPS/INS y la señal de oleaje para superar las deficiencias de datos de alturas. 

Además, se ha desarrollado un modelo basado en la red neural para predecir con precisión la compo-

nente horizontal del buque hidrográfico. 
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Introduction 

 

The current state of technology in hydrographic surveying 

makes use of multibeam echo-sounding systems, which pro-

vide digital hydrographic data with near-full coverage of 

the seabed. Traditionally, in multibeam hydrography, the 

use of GPS has been limited to providing horizontal posi-

tioning of the survey vessel. Depth values relative to tidal 

datum were obtained using the bathymetric data corrected 

for a number of vertical translations including vessel‘s 

draft, squat, settlement, heave and tide. Unfortunately, 

however, not all vertical translations can be accurately 

measured or modelled, which affects the accuracy of the 

final hydrographic products. An alternative practice has 

recently evolved, which takes advantage of the improved 

3D positioning, attitude and heave solutions through the 

use of RTK-based GPS/INS systems. With this practice, 

depth values are determined relative to a geodetic datum and 

then are related to tidal datums through a series of vertical 

datum transformations. Unlike classical hydrographic sur-

veying, vertical translations such as vessel‘s draft, squat, 

settlement and heave are not required with this practice. 

Unfortunately, although has a number of advantages over 

classical hydrographic surveying, this practice requires accu-

rate 3D positioning information, which may not always be 

available as a result of communication link problems, GPS 

outages, or unsuccessful fixing for the ambiguity parameters. 

This paper examines the use of wavelet analysis to spectrally 

combine the GPS/INS height and heave data to obtain con-

tinuous, precise high-rate height information. It is shown that 

the maximum error in the case of a 60-second data gap is 9 

cm, which indicates that the height data can be recovered 

with high accuracy even when relatively long data gaps 

are encountered. To recover the horizontal positioning 

component, a neural network-based prediction method 

was developed. A three-layer feedforward neural network 

trained with the back-propagation algorithm was em-

ployed for this purpose. It is shown that, for an outage 

period of 60 seconds, the maximum absolute errors in the 

easting and northing components are in the order of 2.1 

cm and 4.3 cm, respectively. 

 

Vessel Positioning and Orientation 

 

Traditionally, the vessel‘s heading (yaw) was measured 

by a mechanical gyrocompass (or a magnetic compass), 

while the roll, pitch and heave information were obtained 

from a motion sensor. Gyrocompasses provide heading 

measurements with an accuracy level of 0.75˚ or better. 

However, accuracy degradation can be expected under 

dynamic conditions or with the increase in the vessel‘s 

latitude. Magnetic compasses provide heading measure-

ments at a relatively lower accuracy level (about 1-2 de-

grees or less). The first generation motion sensors em-

ployed a two-axis damped pendulum to obtain the pitch 

and roll information and a vertical accelerometer to obtain 

the heave information. That series of motion sensors was 

succeeded by another series, which used the                     

measurements of a strapdown array of tri-axial linear   

accelerometers and three angular rate gyros to estimate 

the pitch, roll and heave. Unfortunately, both generations 

of motion sensors suffered from accuracy limitations. The 

most noticeable limitation is the incapability of those sen-

sors to adequately measure the roll component in the pres-

ence of strong horizontal acceleration, as a result of, for 

example, sharp turns (Dinn and Loncarevic, 1994). Multi-

antenna GPS systems were also developed in early 90s for 

the purpose of vessel attitude determination (Lachapelle et 

al., 1994). These systems have the advantage that they 

sense the attitude in a purely kinematical mode, which 

means that they are immune to external forces. This is 

particularly important when the survey vessel makes a 

sharp turn. They suffered, however, from some accuracy 

limitations; with the noise due to the short distances be-

tween the GPS antennas being the most challenging. Ac-

cording to Kleusberg (1995), the noise level increases by 

a factor of 10 if the distances between the antennas are 

reduced from 10 meters to one meter. Therefore, this 

method did not find wide acceptance within the hydro-

graphic community. 

 

More recently, a GPS-aided inertial navigation system 

was developed, which aimed at improving the positioning, 

attitude and heave solutions by taking advantage of the 

complementary nature of the GPS and the INS systems. 

This integration improved the accuracy and reliability of 

positioning, roll and pitch solutions significantly. How-

ever, the accuracy of the heading and heave solutions 

were relatively low. As shown by Skaloud (1995), the 

accuracy of the heading solution is limited by both the 

horizontal accelerometer biases and the gyro biases. To 

overcome this limitation, some manufacturers have re-

cently developed integrated GPS/INS systems that utilize 

two GPS receivers and antennas, e.g., Applanix POS/MV 

systems and Seapath 200 RTK. The two GPS receivers 

are used to determine the initial GPS-based heading of the 

survey vessel, which is then blended with the inertial data 

to produce smoothed final heading information. Reported 

heading accuracy is in the order of 0.01° (1s) for a 4m 

antenna separation, which is about one order of magnitude 

better than that of the single GPS-aided INS system. A 

newer version of Applanix system, POS/MV Elite, was 

recently introduced, which does not require a second GPS 

receiver to obtain high-accuracy heading (Applanix, 

2009). To achieve this, the POS/MV Elite system uses a 

higher grade inertial measurement unit (IMU) than prede-

cessor. 

 

Unfortunately, although state-of-the-art RTK-based GPS/INS 

systems meet the IHO specifications under normal operation 

conditions, they may not do so under GPS outages. For ex-

ample, although the recently developed Applanix POS/MV 

Elite provides sub-decimeter-level accuracy under normal 

operation conditions, its accuracy is reported to deteriorate 

to 0.5m (1s) after a 60-second GPS outage (Applanix, 

2009).  
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In fact, the accuracy deteriorates at a much higher rate with 

longer GPS outage as a result of the INS drift. Considering a 

60-second GPS outage and given that the vertical posi-

tioning component is always worse than the horizontal 

component, the POS/MV Elite system may not meet the 

vertical uncertainty requirements of IHO Special Order. In 

addition, depending on the water depth and the accuracy 

of other vertical translations, the vertical uncertainty re-

quirements of IHO Order 1 may not be met as well. Other 

systems on the market are expected to have a similar or a 

poorer performance. 

 

Wavelet Analysis 

 

A wavelet is a waveform of finite interval and zero mean 

(Mathworks, 2002). Wavelet analysis is a relatively new 

way of modeling and processing signals, which have tra-

ditionally been done by Fourier analysis. While Fourier 

analysis breaks up a signal into sine and cosine functions, 

wavelet analysis breaks up a signal into translated (i.e., 

shifted) and scaled versions of the original wavelet. Trans-

lating a wavelet means shifting it forward (or backward) 

in time. Scaling a wavelet, on the other hand, means 

stretching (or compressing) it to obtain low and high fre-

quency wavelets. Smaller scale factors correspond to 

more compressed (or high frequency) wavelets and vice 

versa. There exist many wavelet families that can be used 

for various purposes, including Daubechies, Haar, Meyer, 

Morlet, and others. In this paper, we used the Daubechies 

(db) family of wavelets. There are some advantages of 

wavelet analysis over Fourier analysis, including the abil-

ity of the former to analyze non-stationary signals and 

signals with more localized features (Boggess and Nar-

cowich, 2001; Mathworks, 2002). 

 

A wavelet-based filtering is accomplished by first decom-

posing the signal to obtain the wavelet coefficients, both 

approximations and details. The approximations constitute 

the low-frequency constituents of the signal, while the 

details constitute the high-frequency constituents. It 

should be pointed out that a suitable decomposition level 

must be used, which would depend on the signal charac-

teristics (Mathworks, 2002). Once the wavelet coefficients 

are obtained, the unwanted coefficients (i.e., details in the 

case of POS altitude and approximations in the case of 

heave) are removed or modified. The last step is to                

re-construct the signal using the approximation               

coefficients of the POS altitude data and the details coeffi-

cients of the heave signal. 

 

Artificial Neural Network Model Development 

 

Artificial Neural Networks (ANN), or simply neural            

networks, are computational models that imitate the          

human brain in performing a particular task (Haykin, 

1999). They have the capability to solve complex prob-

lems through learning, or training, and then generalizing 

the network outputs for other inputs. A neural network 

consists of processing elements, or neurons, that are mas-

sively          interconnected. Each of the connecting links 

is characterized by its own weight, or strength. Figure 1 

represents a block diagram of a simple model of a neuron 

showing the weights of the various links. An activation 

function, such as a sigmoid function or a hyperbolic tan-

gent function, is applied to limit the amplitude of the neu-

ron. The sigmoid function is an s-shaped function, which 

is used widely in the construction of the neural networks 

(Haykin, 1999). The logistic function represents an              

example of the sigmoid function, which is defined as: 

 

 (v) = [1 + exp(-av)]-1 (1) 

 

where the parameter a represents the slope of the sigmoid 

function. Finally, an external bias, bk, is applied to           

increase or lower the net input of the activation function. 

The neural network is trained to find the optimal values 

for the weights and the biases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Simple neuron model 

 

The above structure for a neuron k can be represented 

mathematically as: 

 

yk = φ (vk)  (3) 

 

where h0, h1, h2, …, hm are the input signals; vk is the acti-

vation potential of neuron k; yk is the output signal, and 

wk0, wk1, wk2, …, wkm are the weights of neuron k. It should 

be noted in (2) that the values of h0 = +1 and wk0 = bk, 

respectively. 

 

Neural networks can be designed in various ways,         

depending on how the neurons are structured and the 

learning algorithms, or rules, used. Network architectures 

may be classified as single-layer feedforward, multi-layer 

feedforward, and recurrent networks (Haykin, 1999).  




m
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Recurrent neural networks are similar to the feedforward 

networks, with the exception that the former have at least 

one feedback loop. According to Schuh et al. (2002), 

feedforward networks have better prediction capabilities 

than recurrent networks. In our prediction model, we used 

the feedforward neural networks. In this case, the output 

signal at a neuron j (either a hidden neuron or an output 

node) can be written as: 

 

yj (n)  = φ (vj (n))      (4) 

where vj (n) is the activation potential of neuron j, which is 

defined by: 

 
where m is the total number of inputs (without the bias) 

applied to neuron j; wji(n) represents the weight connect-

ing the output of neuron i to the input of neuron j at      

iteration n (nth training example); and yi (n) is the output 

signal of neuron i (i.e., the input signal of neuron j). It 

should be clear that yi (n) = hi (n), the ith element in the 

input vector, if neuron j is in the first hidden layer. 

Training a neural network is accomplished through itera-

tive adjustments of the free parameters, i.e., the weights 

and bias, of the network till we obtain the optimal values. 

There exist various learning algorithms, which are funda-

mental to the design of neural networks. Of these, the 

back-propagation-learning algorithm is the most widely 

used for feedforward neural networks (Schuh et al., 2002), 

which is discussed here. 

With the back-propagation-learning algorithm, the output 

signal of a neuron j, yj(n), is compared to a desired (target) 

output, dj(n). The error signal at the output of neuron j, ej

(n), is defined as: 

 

ej(n) = dj(n) - dj(n)  (6) 

 
where n represents the nth training example (i.e., nth pat-

tern). The objective of the iterative adjustments is to make 

yj(n) as close as possible to dj(n), which can be achieved 

by minimizing a cost function (total instantaneous error 

energy over all neurons in the output layer) defined as: 

       
where C represents all neurons in the output layer. The 

weight correction Δwji(n) can now be defined according to 

the delta rule as (Haykin, 1999): 

  
where η is the learning rate parameter; and δj(n) is the 

local gradient defined by: 

 

where               is the derivative of the associated activa-

tion function. This means that for δj(n) to exist, the       

activation function must be continuous, which is satisfied 

by both the sigmoid and hyperbolic tangent functions   

presented above. 

 

The selection of the learning rate parameter η affects the 

rate of learning of the neural network. The smaller the 

value of η is, the smaller the changes in the weights and 

network rate of learning. Smaller η values result in 

smaller changes to the weights in the network, and       

consequently slower rate of learning. If, on the other hand, 

the η values are too large, the network may become      

unstable (i.e., oscillatory) and the algorithm diverges. To 

overcome this problem, the generalized delta rule is used, 

which introduces an additional term to (8) known as the 

momentum constant (see Haykin, 1999 for details). 

 

The weights will be adjusted iteratively by presenting new 

epochs of training examples to the neural network.       

Unfortunately, there is no clear-cut criterion to decide 

when to stop the training, i.e., to consider that the back-

propagation algorithm has converged (Haykin, 1999). If 

the training is not stopped at the right point, an            

over-fitting of the training data (i.e., model does not inter-

polate well between the points) might occur. One         

approach to address this problem is to create a test dataset, 

which tests the neural network for its generalization per-

formance (NeuralWare, 2001). 

 

Under certain circumstances, for example when encoun-

tering a prediction problem, it might be better to use the 

modular neural networks (NeuralWare, 2001). A modular 

neural network has the capability of dividing a problem 

into sub-problems and resolving each sub-problem rather 

well. It consists of a group of back-propagation networks, 

sometimes referred to as ―local experts‖, each has the 

same architecture. This group of networks compete to 

learn the various aspects of the problem, which is then 

controlled by a ―gating network‖. The number of local 

experts is determined by the number of output neurons of 

the gating network. In this work, a modular three-layer 

feedforward neural network trained using the back-

propagation algorithm was selected to predict the horizon-

tal position of the survey vessel during GPS outages. 

 

Results and Discussion 

 

To verify the proposed spectral fusion and neural network 

techniques, we used the 2005 Common Dataset, which 

was collected in Plymouth Sound, UK, in August 2004. 

POS/MV 320 RTK with a 4m antenna separation was 

used to provide reference positioning, attitude and heave 

data. A total of eight tracklines were used to verify the 

proposed technique. The results of one trackline are pre-

sented in this section as an example. Similar results were 

obtained for the other tracklines.  
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To ensure adequate results, preprocessing of the data was 

necessary. While the POS altitude data was sampled at 

approximately 0.1 sec, the heave data was sampled at   

approximately 0.02 sec (so were the roll and pitch). As 

such, we used the Matlab toolbox to interpolate the above 

data sets, along with the heading data, to bring them at 

exactly 0.02 sec sampling rate. It should be pointed out 

that the interpolated POS altitude data are only initial   

values for the high-rate altitude data. Obtaining precise 

high-rate altitude data, however, is dealt with at a later 

stage of processing as shown below. As well, gaps in the 

POS altitude data, which essentially result from the GPS 

outages, are left without interpolation. The second        

preprocessing step involved a time offset correction, 

which was detected between the POS altitude and heave 

data sets. To determine the time offset, we performed a 

cross-correlation analysis between the POS altitude and 

heave data sets. Figure 2 shows the correlation function 

for trackline 56. As can be seen in Figure 2, the peak of 

the cross-correlation function is shifted by 0.84 seconds, 

which indicates that there is a time shift between the two 

data sets. Table 1 shows the time shifts for all tracklines. 

Once determined, a time shift correction was applied to 

the POS altitude data. The final preprocessing step        

determined the altitude of the IMU reference point (RP) in 

the North-East-Down (NED) reference frame. This was 

achieved based on the WGS84 coordinates of the master 

shipboard GPS antenna, the sensor offsets (lever arm) and 

the vessel attitude parameters. This step enables the     

combination of the IMU RP altitude data and the heave 

signal. 

Figure 2. Cross-correlation function showing time shift 

Table 1. Time shift for all tracklines 

 

a. Height Recovery Results: 

 

Artificial outages of 15, 30 and 60 seconds, respectively, 

were introduced to the continuous IMU RP altitude data 

series obtained above. As the heave signal represents the 

vertical translation relative to a local mean water level, we 

considered the line connecting the last point before an 

outage and the first point after the same outage as the 

heave datum. The recovered altitude value at any time 

during an outage is then obtained by adding the heave 

datum value, relative to WGS84, to the heave value at that 

time. Table 2 shows the minimum and maximum residual 

values (i.e. recovered minus reference) and the standard 

deviations for the various outages. As can be seen, the 

maximum residual values are less than 3cm and 9cm for 

outages of 30 and 60 seconds, respectively. This means 

that the altitude data can be recovered with high accuracy 

even for data gaps of up to 60 seconds. 

Table 2. Altitude residuals for various outage periods 
 

To obtain a precise high-rate altitude data we spectrally 

combined the heave data with the no-gap altitude data 

obtained above. In principle, this can be done by applying 

a high-pass filter to the heave data and a matching low-

pass filter to the original (no-gap) altitude data. Adding 

the two filtered data sets produces the required high-rate 

altitude data. Traditionally, the Fourier transform is used 

for this purpose. However, since the heave signal is non-

stationary, wavelet analysis might be a better choice. In 

this research we used the db1 wavelet family with a de-

composition level of 3 for filtering both of the original 

altitude and heave data sets. The final high-rate, precise 

altitude data was then obtained through signal reconstruc-

tion using the approximations coefficients of the original 

altitude data and the details coefficients of the heave sig-

nal. Figures 3 and 4 show a comparison between the re-

covered high-rate altitude data obtained with the wavelet 

method and the correct (without the artificial gaps) alti-

tude data. As can be seen in Figures 3 and 4, the two data 

sets match each other very closely, which proves that the 

wavelet method can effectively be used to recover the 

vessel altitude at a high rate. 

Figure 3. Recovered wavelet-based altitude  

Altitude data 

gap 

(seconds) 

Residuals Standard 

deviation 

(cm) 
Minimum 

value (cm) 

Maximum 

value (cm) 

15 1.0 2.1 0.7 

30 2.5 2.6 1.1 

60 2.1 9.0 2.6 



12 

INTERNATIONAL HYDROGRAPHIC REVIEW                                                                                                                          MAY  2011 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b. Horizontal Position Recovery Results: 
 

In principle, predicting the horizontal position can be  

carried out using differential distance (i.e. distance      

travelled between two consecutive epochs) and heading 

data. However, examining the differential distance data 

series showed that it contains too many spikes, which  

result from missing values. This can confuse the neural 

network, which leads to incorrect results. To overcome 

this problem, we replaced the distance with the vessel 

speed, which is always uniform, and the time difference. 

The heading data were used as the third input to the neural 

network. 
 

As indicated above, we used a modular three-layer             

feedforward neural network trained using the                     

back-propagation algorithm to predict the horizontal             

position of the survey vessel during GPS outages. The 

structure of the neural network was built using the Matlab 

neural network toolbox.  
 

Several tests were conducted to optimize the structure of 

the network.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It was concluded that the modular neural network with the 

structure 3-20-2] gives the best results, i.e., has the lowest 

root-mean-square (RMS) error. Similar to the height data, 

artificial outages of 15, 30 and 60  seconds, respectively, 

were introduced to the speed, differential time, and eading 

data sets. We used a 100-epoch segment of the speed, 

time difference, and heading data sets for training the  

neural network, while the network output was the easting 

and northing increments. Table 3 shows the ANN             

prediction results for the easting and  northing compo-

nents for the three artificial gaps. Figure 5 shows the           

northing and easting residuals for the various outages. As 

can be seen, the designed neural network was capable of 

predicting the northing and easting components at the 

centimeter level regardless of the outage duration. 

 
Table 3. Horizontal position residuals for various  outage periods 

 

 

 

 

 

 

 

 

 

Figure 4. : 

Recovered 

wavelet-based 

altitude for 

various outage 

periods.  

Horizontal 

Position  

data gap 

(seconds) 

Easting Residuals Northing Residuals 

Mean value 

(cm) 

Maximum 

value (cm) 

Mean value 

(cm) 

Maximum 

value (cm) 

15 0.2 0.7 0.3 0.4 

30 0.2 1.1 0.2 1.4 

60 0.3 2.1 0.6 4.3 

Figure 5.  

Easting and     

northing         

residuals for    

various outage 

periods 
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Conclusions 
 

This paper examined the potential use of wavelet analysis 

and artificial neural networks to recover the vessel‘s 3D 

position. It has been shown that the 3D position can be 

recovered with high accuracy even for data gaps of up to 

60 seconds. This allows for a number of applications to be 

developed, including the development of a seamless verti-

cal reference system and coastal zone management. 
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