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  Abstract 
 

 

For the past decade, SHOALS (Scanning Hydrographic Operational Airborne Lidar Survey) has 

proven to be an efficient and cost-effective means for large-area coastal mapping projects.       

However, its capabilities in the rapid reconnaissance of small underwater obstructions have been 

less appreciated, despite a demonstrated history of successful detection and spatial identification. 

This paper discusses SHOALS‘ object detection capabilities in light of the recent developments in 

object detection algorithms, with multiple situation studies to illustrate its overall performance 

and latest enhancements. Various aspects of object detection using airborne bathymetric lidar are    

discussed to highlight the challenges and advantages of using SHOALS for rapid reconnaissance 

of small underwater obstructions. 

 

 
 
  Résumé 
 

Au cours de la dernière décennie, SHOALS (Scanning Hydrographic Operational Airborne Lidar 

Survey) s‘est révélé être un instrument efficace et rentable en ce qui concerne les projets de carto-

graphie côtière à grande échelle. Toutefois, ses capacités en matière de reconnaissance rapide des 

petites obstructions sous-marines ont été moins appréciées malgré des antécédents  avérés de   

détection réussie et d‘identification spatiale. Cet article traite des capacités de détection d‘objet du 

SHOALS à la lumière des récents développements intervenus dans les algorithmes de détection 

d‘objets, avec de nombreuses études de situations qui illustrent l‘ensemble de ses performances et 

les dernières améliorations. Divers aspects de la détection d‘objets à l‘aide du lidar bathymétrique 

aéroporté ont été abordés dans le but de souligner les défis et les avantages de l‘utilisation du 

SHOALS pour la reconnaissance rapide des petites obstructions sous-marines. 

 

 
   
  Resumen 
 

Durante la última década, SHOALS (Scanning Hydrographic Operational Airborne Lidar Survey) 

ha demostrado ser un medio eficaz y económico en lo que se refiere a proyectos de cartografía 

costera a gran escala. Sin embargo, sus capacidades en materia de reconocimiento rápido de     

pequeñas obstrucciones submarinas han sido menos apreciadas, a pesar de los antecedentes      

manifiestos de una lograda detección y de una identificación espacial. Este artículo trata sobre las    

capacidades de detección de objetos del SHOALS a la luz de los recientes desarrollos acaecidos 

en los algoritmos de detección de objetos, con múltiples estudios de situaciones para ilustrar su 

funcionamiento general y sus últimas mejoras. Se han abordado varios aspectos de la detección de     

objetos que utilizan el lidar batimétrico aerotransportado para destacar los retos y las ventajas del 

uso del SHOALS para un reconocimiento rápido de pequeñas obstrucciones submarinas. 
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1. Introduction 
 

One of the fundamental requirements of hydrographic 

surveys is to detect underwater objects or obstructions. 

IHO-1 surveys require that all features larger than 2-m 

cubes be identified in water depths up to 40 m, whereas 

the corresponding requirement for IHO Special Order is 

to detect 1-m cubes (IHO 2008). 

 

Although SHOALS has been widely accepted as an 

efficient and cost-effective means for large-area coastal 

mapping projects, whose depth measurement accuracy 

meets and exceeds IHO-1 requirements (Lockhart et al. 

2005; LaRocque et al. 2004), there has been consider-

able debate over its capabilities in the rapid reconnais-

sance of small underwater obstructions and targets, 

partly because of misunderstanding and ambiguity in 

communication. It can be argued that poor   perception, 

rather than technological limitations, has been the limit-

ing factor on applications of airborne lidar in hydro-

graphic surveys (West, Lillycrop 1999). 
 

Since the ability to detect underwater objects is crucial 

for SHOALS to perform as a fully functional hydro-

graphical survey tool, Optech has made further efforts 

to improve SHOALS‘ object detection capability. Test 

results revealed that SHOALS is not only capable of 

reliably detecting 2-m cubes to meet IHO-1 require-

ments, but also capable of consistently detecting 1-m 

cubes under normal clean water conditions and poten-

tially 0.5-m cubes under ideal circumstances. 
 

This paper will examine SHOALS‘ enhanced object 

detection capability, and provide both analytical and 

empirical results. The analytical discussions are based 

on the sensor configuration and associated parameters 

of the current SHOALS-3000 system. Case studies are 

presented to illustrate automatic identification of under-

water features using the SHOALS ground control soft-

ware (GCS). 
 

2. Overview of  SHOALS object detection 
 

In bathymetric lidar, many factors contribute to the abil-

ity and probability of detecting underwater objects, in-

cluding water depth, water clarity, object dimensions, 

object/bottom reflectivity, system configuration, survey 

planning, and data processing, as well as sophisticated 

algorithms to automatically identify underwater anoma-

lies. 
 

One of the most obvious factors affecting bathymetric 

lidar surveys is water clarity, which not only limits the 

maximum measurable depth, but also considerably af-

fects underwater object detectability. For detecting un-

derwater objects with limited dimensions, lidar point 

density also plays a significant role. In general, two key 

factors define object detectability: 1) the probability that 

the object will be illuminated (wholly or partly) by the 

laser footprint, which depends on the effective laser 

footprint size and lidar point density; 2) the ability to 

identify the object return signal from its surroundings, 

which depends on the significance of the object return 

signal and the sensitivity of the object detection algo-

rithm to discern object signatures.  
 

In practice, the criteria for selecting objects from vari-

ous bottom anomalies and features (with variable di-

mensions) also play a part in the final result of object 

identification. This can sometimes cause confusion 

when comparing detection lists from different methods 

or from those manually selected by different individu-

als. We distinguish between object detection, which 

depends upon the hardware parameters, environmental 

conditions and algorithms, and object selection, which 

is more dependent upon subjective items such as the 

methodology and selection criteria.  The focus of this 

paper is more on object detection. 
 

In 1996, an analytical study was conducted on the per-

formance of bathymetric lidar in underwater obstruction 

detection, based on parameters and algorithms in use at 

that time (Guenther et al. 1996). Multiple scenarios with 

different object dimensions, water conditions, and lidar 

point densities were discussed in that study, which re-

sulted in predictions of target detection probabilities 

under various scenarios for the SHOALS system. As an 

example, Figure 1 shows the analytical results of detec-

tion probabilities for 4-m2 circular cylinders in various 

water clarities, with 1-m and 2-m target heights, using 4 

m × 4 m lidar point density. Apparently, objects with 2-

m height and 4-m2 surface area can be detected with 

almost unit probability in clear water conditions, even 

with 4 m × 4 m spot spacing, which meets IHO-1 re-

quirements. It is noteworthy that the criteria for positive 

object identification are based on either distinctive bot-

tom peak separation (Type-1 detection) or a correct 

reading of least depth from the merged bottom peak 

(Type-2 detection). Type-1 detection occurs when the 

return signals from both the object and the water bottom 

can be discerned separately and measured using the 

traditional depth extraction algorithms. Type-2 detection 

occurs when the return signal from the target surface 

area overshadows that of the water bottom. 

Figure 1: Detection probabilities for 4-m2 circular   

cylinders in various water clarities, with 1-m and 2-m 

target heights, using a 20° nadir angle and 4 m × 4 m 

lidar point density (Guenther et al 1996). 
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The practical experience of several SHOALS users 

supported and frequently exceeded the performance 

expectation of the analytical predictions and demon-

strated that airborne lidar bathymetry is commonly ca-

pable of detecting small features and objects to meet 

IHO-1 requirements (West, Lillycrop 1999) (Guenther 

2007) (Lockhart et al. 2005). 
 

One of the unique design parameters of SHOALS was 

to have two depth channels. One was optimized for 

deep water to 50 meters and one was optimized for 

shallow water from zero to ~ 17 meters. The deep chan-

nel has a large receiver Field of View (FOV) and the 

shallow depth channel has a smaller FOV of ~ 15 mrad. 

This enhances object detection capability as discussed 

later. 
 

Since 1996, SHOALS has undergone substantial up-

grades in hardware, software and algorithms 

(LaRocque et al. 2004) (LaRocque et al. 2005) (Yang 

et al. 2007), which has also enhanced its performance 

in underwater object detection. With the addition of 

higher point densities, up to 2 m × 2 m spot spacing, 

the geometric searching capability has drastically im-

proved, with virtually 100% bottom illumination by a 

single coverage. Most important, Optech‘s latest efforts 

to improve the object detection algorithm, whose 

predecessor was merely a by-product of traditional 

depth extraction algorithms, have revealed that the 

SHOALS system is much more capable than was ini-

tially predicted (Guenther et al. 1996) in terms of ob-

ject resolution and detectability when the sophisticated 

algorithm is used. The significant enhancement in 

SHOALS‘ object detection capability is therefore pri-

marily due to algorithmic advances in identifying ab-

normal bottom returns, with experience built upon Op-

tech‘s latest success with the shallow water algorithm 

(SWA) (Yang et al. 2007). 
 

3. Enhanced object detection and categoriza-

tion 
 

3.1. Enhanced object detection 
 

The SHOALS laser beam strikes the air/water interface 

with a footprint size of about 2 m and a constant inci-

dent angle of about 20° (LaRocque et al. 2004).          

 

 

 

 

 

 

 

 

 

 

 

 

 

Although such a configuration originally considered  

eye-safety, depth penetration, water surface detectabil-

ity, and minimization of propagation biases, it is also 

beneficial for underwater object detection in terms of 

geometric searching, object differentiation and consis-

tency across the scan swath. Because the laser beam 

further expands in the water column, often significantly, 

owing to scattering from entrained particulates, it en-

sures that 100% bottom illumination is achievable even 

with a lesser lidar point density, such as 3 m × 3 m. Fur-

thermore, with the current configuration of the 

SHOALS-3000 system, the programmable scanner pat-

terns allow lidar point density to vary from 2 m × 2 m to 

5 m × 5 m (LaRocque, Yang 2010) (Table 1). This 

means that SHOALS-3000 is virtually a complete     

bottom imager from shallow to deep water, capable of   

illuminating single rocks or objects sitting on top of a 

relatively flat bottom surface. 

 

If 100% bottom illumination is assured by using suit-

able point density patterns, object detectability relies on 

the capability of identifying an object from its return 

signal, which is usually compounded by the return sig-

nal from the water column and bottom. Traditionally, 

the approach to identifying an object involves resolving 

distinguishable return signals from both the object and 

bottom. This works in cases where the object dimen-

sions are greater than what can be resolved by the tradi-

tional pulse location algorithms (Guenther et al. 1996). 

Because the laser footprint is usually greater than 2 m in 

diameter when reaching the bottom, depending on water 

depth and water properties, objects the size of 2-m 

cubes (or smaller) are usually covered entirely by laser 

footprints, introducing distortions to the return signal 

normally dominated by the bottom return signal. If such 

distortion is significant enough to produce a separate 

and resolvable return signal from the object surface, it 

will be recognized as an object by the traditional 

method. In cases where an object is significantly larger 

than the laser footprint, the return signal from the object 

may be reflected entirely from the top of the object with 

no sign of distortion.  

Table 1: Scan patterns for SHOALS-3000 
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However, such objects will also be identified in the lidar 

point clouds because of their raised elevations. In      

general, objects larger than the laser footprint will al-

ways be captured, whereas objects comparable to the 

size of the laser footprint will usually be recognized by 

the traditional method of object identification. 

 

The traditional method of object detection is limited by 

its ability to identify smaller objects that are insufficient 

to produce separate object and bottom returns. Figure 2 

shows two waveforms from two underwater objects 

sitting side by side at a depth of about 9 m. These two 

targets were man-made objects with known dimensions. 

 

In Figure 2 the waveform on the left is from a 1-m 

cube, whereas the waveform on the right is from a 2-m 

cube. The 2-m cube produced clear separation between 

the bottom return (marked with a blue dot) and the   

target return (marked with a red dot), and would be 

identified by the traditional method of object identifica-

tion.  

However, the waveform produced by the 1-m cube 

showed only a single peaked bottom return with an 

inflection at the leading edge of the bottom signal.  

 

This kind of waveform would not be tagged by any of 

the traditional algorithms; therefore it would derive a 

normal bottom elevation (or water depth) without no-

tice. As a matter of fact, the location of the blue dot 

indicates that this waveform will result in an elevation 

(or water depth) referenced to the true bottom, which 

means the existence of the target is totally ignored. No 

matter how carefully the bottom surface and lidar point 

clouds are examined and analyzed, this 1-m cube would 

be completely invisible. 

 

The enhanced object detection algorithm takes into 

consideration the situation shown in Figure 2, as well 

as many other variants of distorted bottom return     

signals from bottom features. The basic approach of the 

enhanced object detection algorithm is that any illumi-

nated objects will distort the waveforms, which will 

then trigger a sophisticated algorithm for object recog-

nition. 

 

3.2. Object categorization and case definitions 

Case 1: These objects are features that are larger than 

the laser footprint. Figure 3 illustrates the categoriza-

tion of Case 1 objects, where the sizes are significantly 

larger than the laser footprint size (~ 2 m). The numer-

ous features on the sea floor are easily identifiable in 

the lidar point clouds; although individual waveforms 

reflected from these features do not show any differ-

ences than those from flat sea bottom, such as the sam-

ple waveform inset in the image. The Case 1 features 

represent the conventional objects that many people 

refer to (Smith 2006), but they only account for a very 

small portion of the  objects detectable by the SHOALS 

system. Identification of the Case 1 object is based on 

spatial analysis, and it is applicable for larger features 

as well as cases where return signals from the object 

surface area overshadow those of the water bottom in 

optically deep water.  The Case 1 identification also 

depends on object definition and selection criteria. 

Case 2: Any objects of comparable size to the laser     

footprint (i.e., similar to a 2-m cube) will mostly be 

identifiable by the traditional method of object detec-

tion. In Figure 4 we show detection of a Case 2 object.  

The  sample  waveform  clearly  shows  a  separation     

between object return and bottom return, which is the 

criteria for Case 2 object detection. This object detec-

tion strategy works very well when the object size is 

comparable to the laser footprint size on the bottom.  

This ability to detect an object within the laser footprint 

is one of the major characteristics of the airborne bathy-

metric lidar (such as SHOALS) compared to the multi-

beam echo sounder (MBES), although the latter has 

much greater point density to detect Case 1 objects. 

Because SHOALS maintains a surface laser footprint of 

approximately 2 m that expands further in the water 

column, often significantly, the return signal from an 

object with size comparable to the laser footprint is 

usually followed by a signal reflected from the sea bot-

tom. Such a physical phenomenon does not stop the 

feature from being detected by properly-designed pulse

-detection software. Indeed, this very beam spreading 

actually increases the feature detection probability in 

shallow water for limited spot spacing. As part of the 

SHOALS object  detection strategy,  any waveforms 

with reliable second returns are categorized as object 

waveforms, which trigger the Case 2 object detection. 

Figure 4 shows the detection of a 2-m cube under 

about 11 meters of water 

Figure 2:  Sample waveforms from two targets of different size 

sitting side by side under about 9 m of water.  
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Figure 3: llustration of a Case 1 object in a lidar point cloud of a complex sea bottom topography, with a sample 

waveform from the object surface. 

Figure 4: Detection of a 2-m cube under about 11 m of water  
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Case 3: All objects other than those captured by Case 1 

and Case 2 will be designated as Case 3 objects, which 

include  objects  with  dimensions  ranging from 2-m 

cubes (not captured by Case 2) to objects as small as 

0.5-m cubes.  For Case 3 objects, there are many exam-

ples and variants, which are characterized by object 

signatures  other  than  clear  separation  between  the    

object return and bottom return. Figure 5 shows a case 

where four lidar soundings were identified and auto-

matically highlighted as small objects by the enhanced 

object detection algorithm, with waveforms (from two 

different flightlines) displayed under the point cloud.  A 

sub-meter small object is detected and automatically 

highlighted by the yellow triangles. 

Figure 5: Lidar points from two overlapping flightlines (300 

m altitude, 3 m × 3 m spot spacing).  
 

In the past, this kind of feature was not detectable; 

therefore, the corresponding small object would be    

totally ignored. However, with the enhanced object   

detection algorithm, the subtle signatures of even sub-

meter objects can be detected in the bottom return sig-

nals. If a survey is properly planned to ensure 100% 

bottom illumination, objects larger than a certain detec-

tion threshold will be captured. Such detection thresh-

olds are currently set at 1 m and 0.5 m respectively for 

different detection sensitivities in the enhanced object 

detection algorithm. 

 

Noteworthy also is that the recognition of Case 2 and 

Case 3 objects is based on a single waveform, which 

means that the SHOALS enhanced object detection  

algorithm observes small objects within the small field 

of view (FOV) of the receiver telescope. This is an inno-

vative concept in contrast to the conventional wisdom of 

applying the ―Nyquist criterion‖ (Guenther 2007) 

(Smith 2006). The SHOALS configuration of relatively 

large laser footprint and multiple FOV has effectively 

increased the object detection capability if the return 

signal from each individual lidar sounding is carefully 

analyzed. Based on the understanding that the transmit-

ted laser pulses have constant shape and that the propa-

gation-induced pulse stretching is reasonably small and 

predictable, the enhanced object detection algorithm is 

capable of detecting distortions to the bottom return 

induced by bottom features in the scale of 0.5 m (about 

5 ns in the digitizer waveform scale). This allows the 

detection of small objects at similar scale. 
 

Overall, the enhanced capability of SHOALS object 

detection is a result of both hardware advancement and 

algorithm development. The hardware advancement 

results in higher laser pulse repetition rates, higher point 

density and complete bottom illumination, whereas the 

algorithm enhancement ensures effective identification 

of bottom features from their subtle signatures. 
 

4. Situation studies 
 

There are numerous examples to demonstrate SHOALS‘ 

ability and efficiency in detecting bottom features and 

anomalies, including field trials using manmade targets 

as well as comparison analysis between lidar and MBES 

surveys. 

In the 2003 acceptance tests of the SHOALS-1000     

system in Florida (LaRocque et al. 2004), ten 2-m cubes 

and six 1-m cubes were constructed and placed on the 

sea bottom in two east-west lines named ―southern    

target line‖ and ―northern target line‖ at depths ranging 

from 5 m to 28 m, as illustrated in Figure 6. Overall, 

there were four 2-m cubes placed in the ―northern target 

line‖, and six 2-m cubes and six 1-m cubes placed in the 

―southern target line‖.   Multiple flightlines were flown 

over these two target lines with various survey patterns. 

Figure 6: Placements of the bottom targets.The red dots 

mark the planned locations for target placements, and the 

green dots are the actual locations of the target. 
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During the one month period of the 2003 acceptance 

tests, multiple flights in different days were conducted 

along the two target lines in order to study the 

SHOALS object detection capability.  
 

Other than the variable water depths of target place-

ments (i.e., from 5 m to 28 m) and target sizes (i.e., 1-m 

cube and 2-m cube), different survey patterns were cho-

sen for various flight missions, with point densities of 2 

m × 2 m, 3 m × 3 m and 4 m × 4 m. Such arrangements 

had the intention of examining the system‘s target de-

tection capability under variable conditions. 

 

The data collected in the 2003 field trial were lately 

processed for object detection analysis, using our      

enhanced object detection algorithm, combined with 

the technique of second depth recognition. Our results 

indicated that almost all of the underwater targets were   

successfully identified by our automated algorithm. As 

an example, Figure 7 shows the 3D lidar point cloud of 

a dataset collected over the ―northern target line‖, with 

three targets clearly detected and highlighted (in red 

color and circled), which are 2-m cubes placed in water 

depths from about 12 meters to 21 meters. A camera 

picture is inset to illustrate the size of the 2-m target, 

and a sample waveform is also displayed to exemplify a 

typical signature in the target waveform. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Overall, more than 80 flightlines were flown over the 

targets in various days throughout the field trial period. 

After processing all flightlines using our latest object 

detection algorithm, we can summarize the probabili-

ties of detecting the 2-m cubes and 1-m cubes, under 

different lidar point densities and varying water depths. 

The detection probability of a target was calculated 

based on the ratio between the number of flightlines 

detecting the target (using the criterion that at least one 

or more target waveform was automatically identified 

and highlighted by our automated object detection algo-

rithm) and the number of flightlines flown over the 

target area when the target is in place. According to the 

SFTF (South Florida Testing Facility), a few of the 

shallow targets collapsed or shifted positions during the 

trial period, especially due to tropical storm Erika 

which occurred in the middle of the trial period. Our 

analysis took into consideration that some targets might 

be absent during the specific surveys (with specific 

survey patterns). Therefore, the detection probabilities 

were labeled as ―N/A‖ under the scenario when a mis-

sion with multiple flightlines collected over a presumed 

target location showed no sign at all of any target signa-

tures. We are very confident that the cubes were simply 

not present for the N/A cases.  

 

 

Figure 7: 3D view of lidar points from the “northern target line”. Three 2-m targets are automatically identi-

fied and highlighted. 
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Table 2 summarizes our analysis on the detection prob-

abilities for the 2-m cubes, which are those outlined in 

Figure 6. The six 2-m cubes in the southern target line 

are labeled from ―1S‖ to ―6S‖, with ―S‖ denoting the 

―southern target line‖ and the incremental numbers 

indicating their sequence from the closest to the farthest 

off shore. With the same naming convention, the four 2

-m cubes in the northern target line are labeled from 

―1N‖ to ―4N‖. The second column shows the water 

depths where individual targets were located, and the 

third, fourth and fifth columns display the detection 

probabilities of all targets under different survey       

patterns. The numbers in brackets are the number of     

automatic detections divided by the number of flightli-

nes over the target (each flightline or pass is allowed a 

maximum of one detection). The 2-m cubes were     

analyzed with a 1-m detection sensitivity; the 1-m cube 

data were analyzed with a 0.5-m sensitivity. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that water clarity did play a role in the detection 

of the cubes. The SHOALS systems have been demon-

strated to measure water depths more than three times 

the Secchi Depth (LaRocque, et al. 2004). For the test 

cases above, we used the criteria of the cube Bottom 

Depth being no deeper than approximately 2/3 of the 

lidar bottom extinction depth for that day. Essentially, 

we are saying that with a lidar performance of three 

times the Secchi Depth, the cubes will be found reliably 

within two Secchi depths. It is evident from Table 2 

that SHOALS has almost 100% probability to detect 

automatically the 2-m cubes under the specified condi-

tions, with water depths ranging from 5.5 m to 28.3 m 

and lidar point density from 2 m × 2 m to 4 m × 4 m. 

Although there is indication that the detection probabil-

ity decreases once spot spacing exceeds 3 m × 3 m, it is 

almost certain that SHOALS is capable of meeting the 

IHO-1 requirement for object detection if the water 

clarity is such that the cube depth is within 2/3 of the 

extinction depth. 

 

 

Table 2 Notes:  
A The 2 × 2 pattern has a narrower swath than the 3 × 3 and 4 × 4 patterns. Some of the 2 × 2 swaths 

missed the cube locations, leading to a smaller sample set. 
B This 1S target collapsed, was repaired and reinstalled on Aug 11. The 2 × 2 flights were flown on the 

12th. The 3 × 3 and 4 × 4 flights were flown before Aug 11 when the target was not present or after 

Tropical Storm Erika of Aug 14. It is suspected the cube was moved out of the search area by the 

storm. 
C The location of the 2S target was moved NW by 70 meters by TS Erika. The 3 × 3 and 4 × 4 flights 

were after the storm and found the cube in this different location from the 2 × 2 flights. 
D The smaller sample numbers for these cubes in the 20 to 30-m depth range is due to the decreased 

water clarity after Aug 14. 
E This 1N target also collapsed. The 2 × 2 flights occurred when the target was not present. 
F These targets were not observed again after flights on Aug 5. The later flights were after the storm 

and if the target was reinstalled, it must have moved as it was not detected at all. 

Table 2: Target detection percentages for 2-m cubes 
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Table 3 summarizes our analysis on the detection prob-

abilities for those 1-m cubes placed in close proximity 

to the 2-m cubes along the ―southern target line‖, as 

outlined in Figure 6. All six 1-m cubes identified in 

our analysis are associated with 2-m targets from 1S to 

6S, therefore these 1-m cubes are labeled accordingly. 

The second column of the table shows the water depths   

associated with individual targets, and the third, fourth 

and fifth columns display the detection probabilities of 

these targets under different survey patterns. 

 

Table 3 reveals that SHOALS is capable of automati-

cally detecting 1-m cubes under most cases when the 

survey pattern has a lidar point density of 2 m × 2 m. 

Although the detection statistics for the 1-m cubes are 

not as good as for the 2-m cubes, it is still a remarkable 

performance by the SHOALS system to find most of 

the 1-m cubes located on the sea floor with water depth 

ranging from 5.9 m to 27.6 m, owing to the enhanced 

object detection algorithm. The statistical analysis indi-

cates that SHOALS is capable of meeting the IHO   

special order with 2 m × 2 m point density in water 

depth of more than 20 meters (if the water is suffi-

ciently clear). 
 

The statistical results of target detection for the 2003 

field trial support and surpass what was predicted in the 

analytical studies (Guenther et al 1996). Particularly, 

owing to the enhanced object detection algorithm, the 

capability of detecting 1-m cubes or those objects with 

lower vertical height is drastically enhanced, which 

allows SHOALS to meet IHO Special Order in clean 

water condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another important study to demonstrate SHOALS ob-

ject detection capability is from a comparison analysis 

between MBES and SHOALS in surveying an area full 

of bottom rocks and pinnacles at Saipan in the Northern 

Mariana Islands.  Figure 8 illustrates the two over-

lapped areas surveyed by SHOALS in 2006 and by 

MBES in 2007 (Elenbaas 2008), both of which covered 

a dredged navigation channel west of Saipan. One of the 

major characteristics of these surveyed areas is their 

complex bottom topographies at the west entrance of the 

channel, such as shown in Figure 9. The water clarity at 

the site was favorable for bathymetric lidar surveys, and 

the SHOALS mission was performed with 3 m × 3 m 

spot spacing, therefore the results of the SHOALS     

survey represent a classical performance of the system 

and should meet IHO-1 standards for both position ac-

curacy and object detection. 
 

In 2008, an analysis was presented entitled, ―A Com-

parison of Object Detection Using Airborne Lidar and 

Acoustic Sensors‖ which addressed the Saipan surveys 

at the 9th Annual JALBTCX Coastal Mapping & Chart-

ing Technical Workshop in San Francisco, CA, and 

summarized findings by using a spatial analysis tool for 

object selection developed by NAVOCEANO (Elenbaas 

2008). In this study, an overlapping area of about 1.64 

km2 between SHOALS and MBES was chosen, and then 

the object list selected from SHOALS surveys was com-

pared with the object list determined by NOAA‘s acous-

tic survey team. The findings indicated that SHOALS 

found 535 objects in the area, whereas NOAA‘s team 

only selected 162 objects.  

 

Table 3 Notes: 
G The 3S 1-meter cube was automatically selected well with 2 × 2 spacing. For the 3 × 3 spacing it was visu-

ally observed at least three times in the waveforms but it was not selected by the algorithm because the cube/

bottom was at the limit of the recording of the Shallow Channel. Note also that in the same flightline, the re-

turn signal from this 3S 1-m cube was noticeably and consistently less than the return signal of the deeper 4S 

1-m cube. This indicates either a lower reflectivity of the 3S 1-m cube or perhaps a partial submersion of the 

3S cube. 
H The 4 × 4 spacing data also showed the cube visually at least twice but it was not automatically detected. 

The water clarity after the storm of Aug 14 definitely affected the ability to find the 1-m cubes. 

Table 3: Target detection percentages for 1-m cubes 
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Among the SHOALS selected objects, 133 of them coin-

cided with NOAA‘s object list, with 29 unmatched. 

However, after carefully studying the 29 unselected ob-

jects, they saw that SHOALS actually detected 28 of 

them, but they were not selected due to the criteria used. 

It is noteworthy that the spatial analysis tool for object 

selection used by NAVOCEANO made use of the 

SHOALS‘ post-processing results of the second depth 

detection to aid the spatial object selection, but our latest 

enhancements to the object detection algorithm further 

improved the sensitivity.  

Figure 8: Coverage areas of SHOALS survey in 2006 and 

MBES survey in 2007 at Saipan. 

Figure 9: 3D point cloud of MBES data at the entrance area of 

the Saipan navigation channel.. 

The same SHOALS data was also processed with our 

latest object detection algorithm, together with our own 

object selection tool developed under the envelope of 

the SHOALS GCS package. Figure 10 illustrates a 2D 

point cloud at the west entrance area of the dredged 

channel, color-coded by water depth. The red dots mark 

locations of the GCS-selected objects that were detected 

multiple times by waveforms with object signatures 

(highlighted with yellow triangles around the lidar 

points) and the blue dots locate those GCS-selected   

objects that were detected by a single object waveform.  

 

 

In the case of the red dots, a spatial clustering algorithm 

was used to group the multiple detected lidar points by 

their close proximity, and to mark the centric position of 

the group. 
 

The enhanced object detection algorithm further        

improved the SHOALS capability in detecting smaller 

objects on the seafloor, which resulted in many more 

objects being detected in the Saipan data by SHOALS. 

Analysis indicated that the new object list automatically 

selected by our enhanced object detection algorithm 

encompassed all objects spatially detected by NAVO-

CEANO and also marked 15 of the 29 missing objects 

from the NOAA object list. The locations of the remain-

ing 14 ―missing objects‖ in the NOAA list were also 

examined. For some presumed MBES objects, the selec-

tion was a bit dubious, and for the rest of the fourteen, it 

is clear they could have missed manual selection had 

different criteria been used. 
 

Comparing object lists can be quite subjective, espe-

cially in the case of Saipan, because it depends on the 

definition of objects, including object sizes, dimensions 

and least depths, etc. For our spatial clustering algo-

rithm, the definition of object separation also played a 

role in the final object list, namely, if two objects are 

sitting together, they could be counted as one bigger 

object. Also, our enhanced object detection algorithm 

has user input about the detection sensitivity for objects 

of different sizes. Table 4 and Table 5 summarize our 

findings by using different algorithm settings to process 

one data set from Saipan. It resulted in a variable 

amount of objects detected due to the bottom complex-

ity with numerous objects in very close proximity. 

 

Figure 10: 2D point cloud of SHOALS data in the Saipan 

navigation channel, with red dots identifying objects detected 

by multiple hits, and blue dots identifying objects by a single 

hit. 
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Table 4 shows the object selection statistics with     

different detecting sensitivities, which were set at 2 m, 

1 m and 0.5 m in vertical heights. Obviously, the  num-

ber of detected objects increases when decreasing the 

threshold of vertical height for object identification. 

Also in the table are the statistics about objects with 

multiple lidar hits and a single hit. The criterion for 

object separation in this analysis is about 7.5 meters 

(namely, using a cell size of 5 meters in the spatial 

analysis). 

Table 5 shows the object selection statistics with      

different cell sizes in spatial analysis. The number of 

detected objects decreases when increasing the object 

separation requirement, because some of the smaller 

objects in close proximity could be grouped into a    

larger object. Also in the table are the statistics about    

objects with multiple lidar hits and a single hit. The 

object detecting sensitivity was set at 1 m. 

 

The study with Saipan data demonstrated SHOALS‘ 

ability in rapid reconnaissance of small underwater    

obstructions of variable sizes in natural situations, with 

great efficiency. Although there is no doubt that the   

latest high-resolution multi-beam sonars have much 

greater point density than lidar, thus superior object    

detection performance, SHOALS is very effective in 

detecting underwater objects if a sophisticated algo-

rithm is applied. It is understandable that both sonar 

and lidar have their areas of optimum utility based on 

survey requirements, safety, cost, and speed-of-

coverage considerations. Under clean water conditions, 

SHOALS has supremacy of much greater coverage rate 

than sonar and can easily meet IHO-1 requirements in 

position accuracy and object detection. 

 

There are other situation studies to further demonstrate 

SHOALS‘ object detection capability under varying 

water conditions, including not so clean water.  One of 

those  studies was from Shilshole Bay, Seattle, WA, 

where the extinguishing depth was less than 12 meters 

during two of the SHOALS surveys conducted in 2005 

and 2007. In these two surveys, there were two sets of 

pre-installed targets (in 2005) with dimensions of 2 m × 

2 m × 2 m, 2 m × 2 m × 1 m and 1 m × 1 m × 1 m un-

der water depths of about 7 meters and 12.5 meters 

respectively (Lockhart et al 2005). By using the en-

hanced object detection algorithm, two of the larger 

targets (i.e., 2 × 2 × 2 and 2 × 2 × 1) under 7 meters of 

water were automatically detected and highlighted, 

together with many other natural objects identifiable by 

examining the multibeam coverage (Lockhart et al 

2005). The results from Shilshole Bay, as well as many 

other local flights over Lake Ontario, clearly indicate 

that SHOALS is capable of meeting IHO-1 require-

ments (within its extinguishing depth) even if the water 

clarity is not optimal for bathymetric lidar surveys. 
 

5. Discussion 
 

Small object detection is a very important part of     

hydrographic surveys, but it is also complicated for 

both sonar and lidar because the detection probability 

depends on multiple factors. With the addition of the 

enhanced object detection algorithm, SHOALS has 

significantly improved its capability of detecting 

smaller objects. However, its dependency on water clar-

ity still remains. Empirically, using the shallow depth 

channel, SHOALS is capable of detecting objects 

greater than 1-m cubes within 2-Secchi depths 100% of 

the time. Such empirical results can be explained by the 

fact that the shallow green channel of the SHOALS 

system has a limited FOV of 15 mrad, which enhances 

object contrast in its measurable depth range of about 0-

17 m. The limit of 2-Secchi depths relies on the achiev-

able sensitivity of the enhanced object detection algo-

rithm that allows reliable differentiation of the object 

return from the bottom   return.  As seen in Tables 2 

and 3, the 1-m and especially the 2-m cubes are also 

well detected in the deep green channel which has a 

much larger FOV. Since this particular data set was 

acquired, the detectability in the deep channel has been 

further enhanced by the use of a faster detector 

(LaRocque, Yang 2010). 
 

The analytical study (Guenther et al. 1996) assumed 

infinite FOV of the receiver channel, although the pa-

per mentioned that limited FOV would increase the 

object contrast. As a matter of fact, the FOV plays a 

very significant role in object detection. For example, 

an altitude of 300 m results in an observing window of 

only 4.5 m in diameter with a 15 mrad FOV. This im-

plies that the effective footprint size visible to the re-

ceiver is reduced to a much smaller size than that of the 

expanded laser footprint (Guenther 1985) (Kopilevich 

et al. 2005). Such an impact of the FOV further con-

solidates SHOALS‘ ability to detect objects greater 

than 1-m cubes under most environmental conditions, 

with unit probability to about 2-Secchi depths. 
 

Table 4:  Object Selection statistics with different object           

detection algorithm sensitivities 

Table 5: Object selection statistics with different cell sizes 
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Another point of discussion is laser beam expansion in 

various water conditions, which has sometimes simply 

been assumed to be approximately half of the water 

depth. This assumption is believed to be an overesti-

mate in clear water. Studies (Guenther 1985) 

(Kopilevich et al. 2005) indicate that expansion of the 

laser beam could be as low as 20% of the water depth 

in optically clear water, which significantly decreases 

the effective laser footprint on the water bottom. If that 

is the case, it also explains the enhanced contrast of 

object return signal versus the return signal from the 

surrounding bottom. 
 

Based on the above analysis, combined with the re-

quirement for 100% bottom illumination, the practical 

guidelines for rapid reconnaissance of small underwater 

obstructions would be: 

1) a 300-m altitude, 3 m × 3 m spot spacing pattern is 

efficient and optimized for detecting objects larger than 

1-m cubes; 

2) a 300-m altitude, 2 m × 2 m spot spacing pattern 

provides a thorough inspection of all underwater small 

objects, and has the capability of detecting objects as 

small as 0.5-m cubes in very clean water; 

3) object detectability depends on water clarity, but the 

rule of thumb is that any objects within 2-Secchi depths 

will be reliably detected with unit probability. 
 

The enhanced object detection algorithm is based on a 

signal observed within a small FOV, which assumes a 

flat water bottom. There are cases where distortions of 

bottom returns are triggered by sudden bottom slopes, 

which can lead to mislabeling such bottom anomalies 

as small objects. Usually, mislabeled bottom anomalies 

are associated with very rugged water bottoms or 

neighboring areas surrounding a much larger bottom 

feature, where user inputs through 3D editing are      

required to identify isolated objects. Nevertheless, the 

enhanced object detection algorithm is capable of high-

lighting all suspected lidar points. 
 

During development of the enhanced object detection 

algorithm, major improvements were made to the tradi-

tional method of object identification. Initially, any 

lidar return with a second depth was classified as an 

object, which resulted in a very high rate of ―false 

alarms‖ due to noisy waveforms, especially within the 

water column. Such false alarms, sometimes dominat-

ing the highlighted suspects, overshadowed the ability 

to observe true bottom features, and degraded the over-

all performance of the system‘s object detection capa-

bility. With the new enhanced object detection algo-

rithm, any water column-induced second depth is care-

fully analyzed automatically to reject false alarms. 
 

Overall, SHOALS‘ object detection capability is built 

on successfully identifying three different types of bot-

tom features: Case-1 objects, which are obvious in the 

lidar point cloud; Case-2 objects, which are identified 

by distinguishable object and bottom returns using the 

traditional pulse location algorithms; Case-3 objects, 

which differentiate bottom anomalies by examining 

distortion in the bottom returns. Case-3 handles all 

situations that are not handled by both Case-1 and   

Case-2, and enables detection of objects as small as    

0.5-m cubes. 
 

6. Conclusion 
 

Both empirical and analytical results indicate that 

SHOALS is highly capable of detecting small objects 

underwater. Empirical studies indicate that, under clear 

water conditions, SHOALS exceeds IHO-1 require-

ments for underwater object detection and, with proper 

survey planning, can also meet IHO Special Order   

requirements. 
 

Considering the efficiency and cost effectiveness of 

using airborne bathymetric lidars such as SHOALS, it 

is obvious that this is the technology of choice for the 

rapid reconnaissance of small underwater obstructions 

in shallow coastal water. 
 

The enhanced object detection capability also suggests 

that the SHOALS system has great potential for       

military applications in the rapid reconnaissance of 

underwater mines and any other objects of interest as 

small as 0.5 m in diameter. 
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