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A b s tra c ts
Previously, when comparing LiDAR datasets to other LiDAR or acous­
tic datasets, comparisons have always presumed that one control 

dataset is ultimately correct, with no errors. All error is attributed to the second 
dataset. Surface and target analysis methods have therefore been somewhat 
subjective. The use of TPU takes into account the fact that each depth point is an 
estimate with an associated uncertainty. This paper discusses a method to derive 
TPU for LiDAR sensors, so that CUBE may be used to perform an objective compari­
son of LiDAR bathymetry and acoustic datasets.

Résum é
Æ  Auparavant, lorsque l'on comparait des ensembles de données LiDAR 

à  d’autres ensembles de données LiDAR ou accoustiques, on présu­
mait qu'un ensemble de données de contrôle était finalement correct, sans aucune 
erreur. Toute erreur était attribuée au deuxième ensemble de données. Les méth­
odes d’analyse de surface et d'objectif étaient toutefois quelque peu subjectives. 
L'utilisation du TPU prend en compte le fait que chaque point de profondeur 
représente une estimation à laquelle est associée une incertitude. Cet article traite 
d'une méthode en vue de dériver le TPU pour les capteurs LiDAR, de façon à ce que 
CUBE puisse être utilisé en vue d’établir une comparaison objective de la bath­
ymétrie LiDAR et des ensembles de données acoustiques.

Resum en
Previamente, cuando se compara la base de datos LIDAR con otras 
bases de datos LIDAR o acüsticos, las comparaciones siempre pre- 

sumen que una base de datos de control es finalmente correcta, s/n errores. Todo 
error es atribuido a la segunda base de datos. Los métodos de anâlisis de blancos 
y superficie han sido por lo tanto en cierta medida subjetivos. El empleo de TPU 
toma en consideracion el hecho que cada puto de profundidad es una estimaciôn 
con una incertidumbre asociada. Este articulo discute un método para derivar TPU 
del sensor LIDAR, de forma taI que CUBE pueda ser empleado para hacer una com- 
paraciôn objetiva delas bases de datos de batimetna LIDAR y  acustica .



In August 2007, Fugro Pelagos collected data with 
the SHOALS-IOOOT bathymetric LiDAR system in 
Shilshole Bay, Seattle, for NOAA Office of Coast 
Survey (OCS). Data were collected at various spot 
spacings, altitudes, and times of day, over an area 
previously surveyed with an 8101 multi-beam echo 
sounder. In addition, the area contained targets of 
known size, built and placed on the seafloor by Fugro 
Pelagos in 2005. Data were collected to study the 
Total Propagated Uncertainty (TPU) of the SHOALS- 
IOOOT LiDAR measurements and the system’s tar­
get detection capabilities.

Target detection tests have been conducted previ­
ously over the Shilshole area, for the LADS, SHOALS- 
400 and SHOALS-IOOOT sensors (McKenzie et al., 
2001; Lockhart et al., 2005). However previous 
comparisons, have always presumed that the multi­
beam control dataset is ultimately correct, with no 
errors. Therefore, all error is attributed to the LiDAR 
dataset. Surface and target analysis methods have 
consequently been somewhat subjective. In addition 
in areas with many targets, they 
can become very labour inten­
sive. Target detection for hy­
drographic surveys is currently 
specified by the International 
Hydrographic Organization (IHO)
Special Publication No. 44 (IHO,
1998).

The use of Total Propagated 
Uncertainty (TPU) takes into ac­
count the fact that each depth 
or elevation point is an esti­
mate with an associated meas­
urement uncertainty. These un­
certainties can then be used by 
the Combined Uncertainty and 
Bathymetry Estimator (CUBE) 
algorithm developed at the Uni­
versity of New Hampshire (Cal- 
der and Mayer, 2001) to build 
an attributed bathymetry surface: now a required 
standard deliverable for NOAA OCS.
If surfaces can be built, with knowledge of the uncer­
tainty, then there is the potential to use the CUBE 
algorithm to compare these different density multi­
beam and LiDAR datasets more objectively, including 
for target detection. In theory this would allow the 
analysis of the final surfaces to see if they represent 
the same seafloor, and targets, once the uncertainty

of the measurements is taken into account.

Before the CUBE analysis can be conducted how­
ever, TPU models must exist for each dataset. Al­
though TPU is now commonly used for multibeam 
data processing, a TPU model did not exist for the 
SHOALS-IOOOT data. Therefore the first step was to 
develop this uncertainty model.

Data Acquisition

Shilshole Bay in Puget Sound, Washington has been 
used extensively in the past by NOAA OCS and Fu­
gro Pelagos to conduct multibeam sonar and LiDAR 
verification surveys. For this study, multibeam data 
was acquired with a Reson 8101 multibeam echo- 
sounder (MBES) in 2005, shortly after manufac­
tured targets were placed on the seafloor. Figure 1 
shows a colour-coded DEM of the MBES coverage, 
the location of the targets and the planned extents 
of the LiDAR acquisition.

The targets themselves are boxes constructed 
from steel, as shown in Figure 2. Three sizes were 
constructed: 2x2x2m, 2x2xlm and l x lx lm .  One 
target of each size was placed in 7m water depth 
(reduced), and another set of targets was placed at 
approximately 12.5m water depth, as indicated in 
Table 1. Although initially reflective, over time these 
targets reflectivity has become very similar to that of 
the surrounding seafloor (Figure 2).

Figure 1: Survey Location, Shilshole Bay, Puget Sound (WA, USA).



Target ID Target Description Latitude Longitude Approximate Depth (m)

A 2x2xlm 47-40-16.42N 122-25-12.67W 7

B 2x2x2m 47-40-16.06N 122-25-13.47W 7

C lx lx lm 47-40-15.53N 122-25-14.46W 7

D 2x2xlm 47-40-17.45N 122-25-21.19W 12.5

E 2x2x2m 47-40-16.38N 122-25-23.01W 12.5

F lx l x lm 47-40-15.25N 122-25-25.10W 12.5

Table 1: Shilshole Target Descriptions.

mean high water (MHW) line out to 
the 20m depth contour. The sur­
vey limits included the area where 
targets were set on the seabed in 
2005.

The SH0ALS-1000T survey took place on 27 to 29 
August 2007 during which the following data were 
collected:
• Bathymetric LiDAR data from the SHOALS-IOOOT
• Digital Aerial Photography from the SHOALS- 

IOOOT
• GPS Ground Control

A complete description of the SHOALS-IOOOT can 
be found in Guenther et. al. Meeting the Accuracy 
Challenge in Airborne Lidar Bathymetry. This docu­
ment is generally available on line.

The hydrographic LiDAR flight lines were planned to 
collect data from the approximate location of the

Figure 3: SHOALS-IOOOT as installed. The operator console 
is to the left, power and cooling are in the center stack, and 
the laser, IMU and camera are to the left.

Survey flight missions were con­
ducted at various spot spacing, flight 
altitudes, flight line directions and 
time of the day as shown in Table 2. 
In all instances lines were planned 
with 20% overlap. These multiple 
datasets were collected so that per­
centage of data coverage (i.e. 100%, 
200%, 300%, etc...), flight altitude, 
flight direction and time of day could 
be assessed to see how each factor 
may or may not affect bathymetric 
LiDAR target detection.Figure 2: Targets: Constructed and on the Seafloor in December 2007.



Mission Spot Spacing (m2) Altitude Direction Time of Day

1 3x3 400m E -> W Day

2 3x3 400m W -> E Day

3 3x3 400m E -> W Day

4 3x3 400m E —» W Night

5 3x3 400m W ->  E Night

6 3x3 300m E -> W Night

7 3x3 300m W —> E Night

8 2x2 400m E W Day

9 2x2 400m W -> E Day

10 4x4 400m E —> W Day

11 4x4 400m W -> E Day

Table 2: Bathymetric LiDAR Acquisition Missions

LiDAR Data Processing

Raw SH0ALS-1000T data from the airborne sys­
tem were downloaded into the Optech SHOALS

Ground Control System 
(GCS) on Windows XP work­
stations. GCS includes links 
to Applanix POSPac software 
for GPS/inertial processing 
and to IVS Fledermaus soft­
ware for data visualization 
and 3D editing. GCS was 
used to apply the KGPS/in- 
ertial solutions, apply tide 
data, auto-process the LiDAR 
waveforms, edit data and 
export point cloud files to 
ASCII XYZ format files. The 
ASCII XYZ files were used for 
TPU calculations.

Edited data were also import­
ed to CARIS HIPS for analysis 
with the CUBE algorithm.
In order to assess athe affect 
of data coverage percentage, 
flight altitude, flight direction 
and time of day, on target de­
tection, flight missions were 
organized into processing 
datasets (Table 3) prior to 

data editing,. Each dataset was processed inde­
pendently, so that the data editor did not gain ad­
ditional knowledge by looking at all flight missions 
at once.

Dataset Missions Included

A 400 m @ 3x3 200% coverage with flight in opposite directions

B 400 m @ 3x3 200% coverage with flight in same directions

C 400 m @ 3x3 200% coverage with flight in opposite directions at night

D 400 m @ 3x3 300% coverage

E 400 m @ 3x3 400% coverage

F 400 m @ 3x3 500% coverage

G 300 m @ 3x3 200% coverage with flight in opposite directions

H 400 m @ 2x2 200% coverage with flight in opposite directions

1 400 m @ 4x4 200% coverage with flight in opposite directions

Table 3:
Processing
Datasets.



Derivation of SHO ALS-IOO OT TPU Model

The TPU can be understood as the sum of all ran­
dom and systematic uncertainties in the measure­
ment process, including the uncertainty contribution 
of all sensors embedded in the SHOALS-IOOOT 
system. Determining each sensor’s uncertainty in­
dependently to develop a TPU is a work in progress. 
Due to the complexity of the physical interaction of 
the laser pulse with the sea surface, sea water and 
sea floor an analytical TPU may not be possible. 
Therefore, at this time, an alternate method must 
be used to derive a TPU estimate for the SHOALS 
1000T system.
This study uses depth variance as a proxy for an 
analytical TPU. Because the bathymetric LiDAR foot­
print spreads with depth, as the light scatters and 
absorbs in the water column, the SHOALS data were 
separated into ASCII XYZ files with discrete depth 
ranges, starting at 2m water depth down to 16m, at 
2m step increments. For each depth interval, vari­
ance is estimated as a function of horizontal radius. 
This variance function is then calculated for a radius 
of zero giving vertical variance for that depth inter­
val.

zero radius, which cannot be resolved directly. A vari- 
ogram is used to determine the node variance when 
the constant of a polynomial fit is found, as shown in 
Figure 5. Variance functions for each depth interval 
are shown in Figure 6.

n

Figure 5: Variogram for Determining Node Variance.

1.0

Figure 4: Variance as a function of distance.

Figure 3 shows the increase in variance with in­
creased radius of investigation. The red dots show 
sounding depths and there is an apparent slope from 
left to right. In this study, the variance is initially as­
sumed to be isotropic; and assumption that is clearly 
in error. Slopes and other features such as sand 
waves will result in anisotropic variances. An effort is 
made at a later step to identify and account for geo­
graphically associated anisotropy. There is no effort 
in this study to identify instrument based anisotropy. 
For all depth intervals, total variance is expected to 
grow with each incremental search radius; however, 
variance growth as a function of distance, defines 
a function that allows the estimation of variance at

Figure 6: Variance Function for each Depth Interval (includ­

ing Zero Radius).

Figure 7: Variance as a Function of Water Depth.
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Calculated node variances for each depth interval 
are shown in Figure 7. From this, one can see that 
variance fluctuated between 0.07-0.09m to 15m wa­
ter depth and then grew to about 0.125 m at 20m 
water depth.

This total variance estimate (a2T) calculated as 
described above, includes the variance from the 
sensor measurements as well as the variance in­
herent in the seafloor (ct2s) due to slope and rough­
ness. Therefore to produce an estimate of sensor 
measurement variance (cr2m), an estimate of seafloor 
variance needs to be calculated or modeled and re­
moved from the total variance, as presented in the 
form:

2 _ 2 2 
(3 <3 t CT s

To model the natural seafloor variance in the LiDAR 
data, introduced by slope and bottom roughness, 
a morphology trend was observed and determined 
from the gridded multibeam DEM surface. The slope 
gradient, and the amplitude and frequency of the 
general bottom roughness, were used in the creation 
of a synthetic surface grid model. Variance analysis 
was conducted on the synthetic surface using the 
variogram approach to provide an estimate of vari­
ance solely from the slope and bottom roughness. 
Different synthetic surface point densities (0.5m, 
lm , 2m and 3m) were used to account for potential 
sub-sampling effects. Figure 8 shows the results 
of the synthetic surface variance analysis showing 
clearly that variance as function of distance remains 
constant and follows a linear trend not affected by 
different point density. It was found that the vari­
ance for the modeled synthetic seafloor averaged 
0.015m. However, due to the use of a synthetic sur-
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Figure 8: Variance of the Synthetic Seafloor at Varying Point 
Density.

face, it is likely that this is a low estimation of actual 
seafloor variance. Estimated seafloor variance was 
then removed from the total variance to provide an 
estimate of the sensor variance. The square-root of 
final sensor variance (standard deviation) was then 
used as the TPU estimate, with the value varying 
dependent on water depth.

Table 4 shows the calculated TPU for the Shilshole 
Bay survey, where maximum bottom depth detection 
was at about 16 meters. TPU was attributed to each 
LiDAR depth in CARIS HIPS and used to create at­
tributed uncertainty DEM products.
It should be noted that uncertainty calculated still 
includes any uncertainty present from the tide ap­
plication. It would be beneficial to repeat this exer­
cise using PPK GPS LiDAR data on the ellipsoid, to 
provide a result which more closely represented the 
sensor uncertainty alone.

Table 4 also shows for comparison the depth ac­
curacy specification for IHO Order 1 given, in the 
form:

Da = yja2 + ibxd /

where Da is water depth, and values for a and b ar e 
0.5 m and 0.013 m, respectively.
Comparing numbers in columns 5 and 6, it can be 
deduced that accuracy for the SHOALS-IOOOT bathy­
metric LiDAR depths in Shilshole Bay are within the 
acceptable accuracy limits of IHO Order 1.

It is important to note that TPU estimation using 
the method presented above is valid for the water 
conditions at the time of the survey. Bathymetric 
LiDAR measurement uncertainty will vary depending 
on local water column conditions and seafloor re­
flectance. In this study, what we are calculating can 
be better described as a local estimate of TPU. We 
do not have enough data from one survey to sam­
ple the entire bandwidth of the uncertainty. If water 
conditions and depth of bottom detection are very 
similar in other locations sharing common environ­
ments, this model can be applied. To use in a differ­
ent environment, TPU would need to be recalculated 
using this same method.
This method can also be refined by the use of Krig- 
ing, which will allow uncertainty relationships in the 
along-track and across-track direction to be mod­
eled. This is currently being examined by Fugro Pela­
gos.



1 2 3 4 5 6 7 8 9

Depth
(m)

Total Sea­
floor 

Variance 
(o2t) 
m2

Synthetic
Seafloor
Variance

K >
m2

Sensor
Variance

« )
m2

Sensor 
Variance 

of a 
Mean

(°2J/V2
m2

Sensor
StDev
K )
TPU
m

Sensor
2-StDev

m

IHO 
Order 1 

(2-StDev) 
m

Status

1 0.094 0.015 0.079 0.056 0.236 0.472 0.500 Passed

2 0.083 0.015 0.068 0.048 0.219 0.439 0.501 Passed

3 0.085 0.015 0.070 0.049 0.222 0.445 0.502 Passed

4 0.072 0.015 0.057 0.040 0.201 0.402 0.503 Passed

5 0.072 0.015 0.057 0.040 0.201 0.402 0.504 Passed

6 0.071 0.015 0.056 0.040 0.199 0.398 0.506 Passed

7 0.070 0.015 0.055 0.039 0.197 0.394 0.508 Passed

8 0.064 0.015 0.049 0.035 0.186 0.372 0.511 Passed

9 0.063 0.015 0.048 0.034 0.184 0.368 0.514 Passed

10 0.065 0.015 0.050 0.036 0.189 0.377 0.517 Passed

11 0.067 0.015 0.052 0.037 0.192 0.383 0.520 Passed

12 0.067 0.015 0.052 0.037 . 0.192 0.384 0.524 Passed

13 0.076 0.015 0.061 0.043 0.208 0.415 0.528 Passed

14 0.067 0.015 0.052 0.037 0.192 0.384 0.532 Passed

15 0.092 0.015 0.077 0.054 0.233 0.467 0.537 Passed

16 0.090 0.015 0.075 0.053 0.230 0.460 0.542 Passed

Table 4: Final Sensor Variance and TPU Values Compared to IHO Order 1.

Using CUBE to Identify Targets in LiDAR 
Data

CUBE transforms measured points at relatively ran­
dom locations into regularly spaced depth estimates 
in a grid. On each grid node, four values are pro­
duced: depth, uncertainty (from depth TPU), number 
of hypothesis and hypothesis strength. De­
pending on how close or sparse vertically 
contributing depths are to resulting node 
value, the algorithm develops more than 
one potential depth candidate but selects 
one as the most likely one.
CUBE was designed to aid in the process­
ing of dense multibeam echosounder data­
sets. However it is not commonly used on 
sparser bathymetric LiDAR datasets. Some 
experiments were run to identify suitable 
CUBE parameters to be used with the 
LiDAR data points. In the example below 
(Figure 9), which shows 400% LiDAR cover­
age, there are 5 LiDAR hits on the target.
CUBE successfully generates a likely pri­
mary hypothesis (green cubes) from these

5 data points which represent the target. However 
the primary hypothesis representing the target is 
relatively weak. The cubes in the image indicate the 
uncertainty of the measurement in the vertical, with 
the strength of the hypothesis indicated by the width 
of the cubes. The CUBE algorithm also generates an 
alternate hypothesis, shown by the red cubes.

Figure 9 - CUBE Hypotheses for Target B (2x2x2m) in 7m Water Depth 
with 400% Coverage



In almost all cases, when LiDAR acquired a data 
point on a target, CUBE correctly created a primary 
hypothesis, which in some way represented that 
target. This is likely due to the sparseness of the 
data, which in many cases with 200% LiDAR cover­
age or less, prevents the possibility of multiple hy­
potheses. However the primary hypothesis over the 
targets was usually weak. In a typical product flow, 
the primary CUBE hypothesis is then used to cre­
ate a surface. But if the hypothesis is weak, the 
surface will not be 'pulled' to the top of the tar­
get and will not therefore accurately represent the 
shallow data points. Further work is still required in 
order to identify a set of CUBE parameters that will 
provide a strong primary hypothesis on the targets 
when they are observed in the LiDAR data.

Conclusions

TPU can be estimated for LiDAR depth intervals 
through variance node analysis. The analysis can 
be performed over a small control area in water 
conditions very similar to the actual main sur­
vey area, and therefore could be calculated on a 
project-by-project, or area-by-area basis.

The calculated TPU presented here for Shilshole 
Bay still includes any uncertainty present from the 
tide application to the LiDAR data. It would be ben­
eficial to repeat this exercise using PPK GPS LiDAR 
data on the ellipsoid, to provide a result which 
would more closely represent the sensor uncer­
tainty alone.

This methodology for calculating TPU should be fur­
ther refined and automated with the use of Kriging. 
At the time of writing, CUBE has not been success­
fully used to compare the LiDAR and multibeam da­
tasets. However the authors feel that with further 
effort, particularly in choosing suitable CUBE param­
eters for LiDAR and multibeam hypothesis selection, 
this can be accomplished.
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