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An efficient algorithm of tidal harmonic analysis and prediction is presented in this 
paper. The analysis is strengthened by utilising known relationships between tidal 
constituents found at a neighbouring reference site. The system of linear equations 
of the least-squares solution is enhanced with included constraint equations. In the 
case of inadequate data, ill-conditioning in the system of equations that has 
appeared in other algorithms is conveniently avoided. In solving the resultant normal 
equations, Goertzel's recurrence formula is adopted so that the whole computa­
tion time is dramatically reduced.

List of symbols

A design matrix Z , X , x , Ÿ , y unknowns

B , B. R, R constraint matrices

C, F, G, S submatrices Greek letters

D constraint relationship a amplitude ratio

f node factor A T sampling time interval

9 epoch e phase shift

H mean amplitude A, A LaGrange multipliers

M number of tidal con­
stituents

p dummy variable

N number of observed 
data

a angular velocity

R amplitude phase

t time X astronomic argument

V, v random errors Subscripts

W,w measured data j , k , l ,m ,n indexes
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Tides and tidai currents offer clean and inexhaustible energy sources. Better prediction and analysis of 
tides and tidal currents are crucial to utilise hydro-dams more efficiently as energy generators. Tides are 
cyclic variations in the level of seas and oceans, while tidal currents are cyclic variations in the motion of 
seas and oceans. The present understanding of tides and tidal currents as natural phenomena due to the 
gravitational forces of the sun and moon acting on a rotating earth came from the development of 
Newton's gravitation theory. Harmonic techniques were first used to analyse and predict tides and tidal 
currents by Thomson and expanded by Darwin, Harris and Doodson. Tides and tidal currents may be con­
sidered as the sum of tidal constituents according to harmonic analysis. With the development of digital 
computers the least-squares technique is used to evaluate the tidal constituents from observed data and 
this is a principal method used today. The harmonic method of tidal analysis has been further refined for 
improvement in accuracy of tidal prediction. A method for superfine resolution of tidal harmonic con­
stituents has been developed by Amin adding a corrective step into the harmonic method. The species 
concordance method has been developed by George & Simon and Simon using relationships between 
species of the tide at the studied station and at a reference station where the tide is well known or eas­
ily predicted. Here we re-examine the harmonic method from a practical point of view and propose an effi­
cient algorithm of tidal harmonic analysis and prediction.

Harmonic Method for Regular Observations

Let us consider real-time regular observed data of tidal height wn =  w(to +  n A T ) ( n= -N, -N +1........ N),
where r„is the mid-point time, 2N +1 is the number of the real-time observed data, and A T  is the sam­
pling time interval. The tidal height can be expressed as a sum of cosine functions plus random errors 
denoted by vn -  v (t0 +  n A T ) .

M

Wn = X0 + R m COs($m -  Vmtn) + V n, U =  - N ,  - N  +  1, - • • , N  (1)
m=1

Where

in  "I" T lA T ,  R m  — fm ^ m i 4*m 9m X m i TTl — 1,2, • • • , Af.

fm , H m, Om, 9m, and Xm are the node factor, mean amplitude, angular velocity, epoch, and astronomical 
argument of the mth tidal constituent respectively. M  is the number of tidal constituents resolved. Eq. (1) 
can be rewritten as 

M

wn =  Z0 +  [xm COS (amn A T )  +  ym sin (amn A T ) ] + v n, n =  - N , - N  +  1, ■ ■ ■, N,  (2)
m=1

where

Vm} Rm [COS ( ( Om^n) 7 §in (0ro —  15 2, • • • , M.

Letting <70 = 0 and using matrix notation, Eq. (2) can be expressed as the data equations (observation 
equations) in matrix-vector form

V =  W -  AZ.  (3) 

The residuals are\7 =  ^ >Vl). . . iU2Ar_ 1;tï 2| j  the observations are W = ,w 2n - i ,  .

and the 2M + 1 unknowns are z T =  ^X T  where 

X  (x0, Xi , ■ ■ ■, x M ) , Y  =  (yi , x2, ■ • •, Dm ) ■



The column vectors of the measurement matrix (or also termed the design matrix") A, which is 2N +1 rows 
for the observations W  and 2M + 1 columns for the unknowns Z  , are yf0l A i , ■ ■ ■, A i m ,

where

-, cos [ffm (N  — 1) A T ] , -^= cos [amN&T]

m =  0 ,1 , • • • ,M ,

We make the sum of squares of residuals as the mathematical symbol form 

| | ? | | !  =  | | t f - v i 2 | | 2 = m in ,

where 111/112 is an Euclidean norm (2-norm) of V ■ By taking partial derivatives and setting these to zero, 

dxo dim. o ym

to minimise the ‘performance function l iy ib ’ , also called the objective function, penalty function, or min- 
imand. The derivation yields a set of normal equations

At AZ  = At W. (4)

We arrive at

' F O ' 'C
a t a  = At W =

0 G S

where

1 N
c .  =  =  £  cos [oi (n — 1) A T ] +  cos [a jn A T ]} , J =  0,1, ■ ■ ■, M , (5)

n = - N + 1

1
s ‘ =  2 2 J  {îü n + ^ -i sin[(T( (n -  1) A T ] +  w „+ Arsin [u zn A T ]} , I =  1,2, ■ ■ ■, M.  (6)

n—— .V+l

There are analytical expressions, for faster arithmetic,

F  „  1 f  sin [N ( a t -  a m ) A T ] sin [N ( a t +  <rm ) A T ] 1 
lm 2 j  tan [ i  (cr( -  <7m) A T ] tan [| ((Ti+<7m) A T ]  J ’

Q  -  1 (  SitI f a  ~ Sin f a  + gm) \
lm 2 j  tan [| (af -  am) A T ]  tan [ i  (cfj +  <rm) A T ]  J ’

rather than the usual numerical accumulation of column-vector dot products for F  and G, parts of the 
measurement matrix of the normal equation of the least-squares solution. Please note that by taking lim­
its the answer here for the special case when I = m, the first terms appear to come to 2N in the analyti­
cal expressions for F j™ and Gi,«. Here the formations of the submatrices F  and G  of the normal equations 
are derived in the Appendix for clarity. The normal equation Eq. (4) for unknowns x» parts and unknowns 
>  parts is separable and thus can be decomposed into two separate linear equations

l,m = 0,1, • • •, M, 

l ,m  =  1 ,2 ,--  ■, M ,

F X  =  G , GŸ -  S. (7)



The accuracy of tidal prediction can be improved as longer data time series are analysed and more tidal 
constituents are selected in Eq. (7).
The assessm ent of the solution quality can be done by computing V T V ,  the sum of squared residuals, 
as minimised. Then the variance factor is found by ( V T V  ) /(number of observations - number of 
unknowns), an estimate of measurement error. In order to examine the solution quality, the covariance 
matrix of the solution vector of unknowns Z  can be computed based on the inverse of AT A. The main 
diagonal values give the standard deviation squared of resolved values of the solution vector 
Z, i.e. the accuracy of the resolved constituents, x .  and > . From the off-diagonal values, the correlation 
between resolved constituents can be found. Large values of correlation indicate a weakness in resolving 
the distinction between tidal constituents.

Goertzel's Recurrence Algorithm for Computing C and S

In terms of complex form 

1 N
Ci +  i S i -  -  {w n+/v-i exp [iai (n

n = - N - f  1

Using Goertzel's recurrence formula [11],

Pk -  Wk + 2/9*+i c o s  (a ; A T )  -  pk+2 k
<

Po = - +  2Pi cos {ai A T )  -  p2, 

under initial conditions
r ,  W 2 N

P 2 N + 1  - 0 ,  P-2N  =  — 2 - •

After 2Aftime recurrences, whence 

Ci + iS i — [po — pi exp (—iai A T ) ]  exp ( —ia iN A T ) .

In this method, only 2N multiplications are needed. The above take advantage of the equally-spaced data sam­
ples of the observed time-series, to yield algorithms with faster arithmetic. Usually these steps are performed by 
directly number-crunching the matrices.

‘Summation of Normals’ Method For Segments of Irregular Observations

For K  segments of observed data (overlapping is allowed, but not preferred). wP (n=-Nk, -M + 1 , ..., M, k= 
1,2,..., K) are observations with the different length M and different sampling time interval A S .  For Mi 
segment we have

A kTAkZ k =  Akr Wk

where Ai'Ak is the information matrix, sometimes called the ‘Gram matrix’ . We add the matrices, for each 
of the data segments k = 1 to K:

K

Y .  AkTAk =  total [ATA)
k= 1

and the right-hand side vectors:
K

Y^AkTWk =  total ^ATW)  . 
k= 1

1) A T ]  +  w n + N  exp \iainAT}} I =  1 ,2 , • • •, M.
(8)

2N -  1,27V- 2 , --- ,1

(9)



The information content of each is combined by summing the information into a total information matrix. 
Although the number of constituents for the fcth segment may have a different number M», we can set 
M  = max^=1 Mk for a maximal number of constituents to be chosen for our harmonic analysis. Then the 
final vector of unknowns Z  can be found by solving the combined total set of normal equations:

total (^4t .4) Z  =  total ^AT Ŵ j .

As shown in Eqs. (4) to (7), the normal equations for each data segment are separable. The part for unknowns x» 
is independent of the part for > . Thus the normal equations can be decomposed into two separate linear equa­
tions. This is also true for the combined total set of normal equations found by summation.

Constraints Applied to Strengthen the Solution
In the circum stances of analysed data with insufficient-length (mainly tidal currents), the tidal con­
stituents can not be separated effectively due to ill-conditioning appeared in Eq. (7). Some constraints 
must be provided. For a pair of tidal constituents, the constraint expressions are as formulated in 
Dronkers1 proposal [12]

D i j - 1 X 2j - l

D z j mV 2 j - l  .

C O S02j  —1,2j  Sin 02j - l , 2 j  

— sin#2 j —jy2j cos 0‘2j~ \ ,2j

’ x 2 j ' 0 '

V2j  . _ 0 _

where J  is the number of tidal constituent pairs, each linked by a constraint relationship to be chosen 
among the M  tidal constituents. As two functions of j ,  (*2j - i , 2j  is an amplitude ratio and @2j - i , 2j  re­
presents the rotation of a phase shift, which together characterise the relationship between the pair con­
stituents 2j  - 1 and 2j .  In matrix notation, the constraint equations (11) are most often stated as

B  =

where

R\(i)

R.(i)

R'(i)

0 0 

0 0

0 0

B Z  =  O,

■ ■ 0 R {*]

. . .  o R.(2)

0 0 

0 0

R {J ] 0 0

( M + 1 ) K - 2 J

(1 2)

M K - 2 J

R (i)
' 1 — & 2 j- l,2 j COS 0 2 j-l,2 j

R {2) =
' 0 —a 2j - l , 2j  sin(?2j - l , 2j

_ 0 a 2 j- l ,2 j Sin02j-l,2j 1 — Ot2j- l ,2 j  COS 02j - l ,2 j  _

1 ,2 , - - ,7 .

In the full panel of B, the purpose of the zero-fill elements is to accommodate the tidal constituents not 
to be chosen in Dronkers' proposal. If taking 

2 J

\\V\\l + YlXiDj = min’
3=1

and by taking partial derivatives with respect to x», ym and X, and setting these to zero. The derivation 
yields a set of normal equations

(13)
■ AT A B t ~ ~ Z ~AT W~

B 0 _ A Ô



where the vector of LaGrange multipliers Xj is

A =  (Aj, A2, - ■ - , A2j) ■

In order to eliminate unknown A in Eq (13), we take

where

B  =

R (i)

(M + \ ) K

(2)

R f }

a ?

M K

'1 a 2j -1,2 j  C0S j  — 1,2j

II

'0 Q_1 a 2 j- l ,2  j sin 02j- -l,2 j

0 ~ a 2 j- l ,2 j S*n &2j—l,2j _ 1 a 2 j- l ,2 j COS02 j--1.2j _

The analytic expressions for R ^  and R j 1'1 indicate R ^  R ^  +  R ^ R ^  — 0 .  Then for the compos­
ite matrix of constraints B (and B), we have BBT=0, i.e ., Ë  is orthogonal to B. By a simple premultiplica­
tion step, the constraints are absorbed into a modified set of normal equations to be solved for the tidal 
constituents only, and the unwanted vector of LaGrange multipliers is  eliminated to reduce the size of the 
solution.

B  O  

O  I

A T A  B T

B 0

Z b a t w

À Ô

where I is unit matrix. Now the rank of matrix equation (13) is reduced by an equivalent form
' b a t a ' ~BATW '

Z  =
B Ô

(14)

A novel special method of absorbing the constraints (B Z  = Ô ) into the normal equations (A T A Z  =  A r W ) , 
and eliminating the unwanted vector of LaGrange multipliers from the solution. The problem of 'ill-conditioning’



(‘under-determination’), has been pointed here particularly in case of finding harmonic constituents for noisy 
current observations of short duration. The remedy proposed here for the ‘near-singular’ solution, is to 
import a model of the constituents, and bring in their fine structure from a stronger determination at a near­
by reference station, and use these in form of constraint equations to strengthen the solution. 
Mathematically this is done by formulating a ‘constrained least squares solution’ , by applying observations. 
Constraints are incorporated by the well-known method of LaGrange multipliers. LaGrange multipliers called 
‘correlates' in the least-squares literature.

Concluding* Remarks

The least-squares method has been widely adopted in tidal harmonic analysis. For a concrete problem 
using a computer, a better algorithm not only requests less computing time but is also able to resolve 
more effectively the tidal constituents from observed data. An efficient algorithm of tidal harmonic analy­
s is  and prediction is presented here. It is the algorithm that can calculate coefficients of normal equa­
tions very simply and efficiently. To compute the right-hand terms of the normal equations, Goertzel’s 
recurrence formula [11] is adopted to accomplish the whole calculation processes quickly and accu­
rately. In order to handle the segments of the observed date (mainly adapted to analyse tidal currents), 
a general algorithm for K sets of real-time irregularly observed date in various observing length can be 
derived from above results. The ‘Summation of Normals' method in which a number K of observed data 
series are combined in a composite solution. This provides greater exibility in data acquisition and pro­
cessing. If the above algorithm is used to analyse the tidal constituents, the total analysed data must 
have sufficient length. Otherwise ill-conditioning in the system of equations appears so that conven­
tional algorithm can not separate tidal constituents effectively. Consequently in the circum stances of 
inadequate data (mainly for tidal currents), some constraints can be established based on known 
approximate relationships among the harmonic constants of the tidal constituents. Then the least- 
squares solutions can be obtained with these constraints applied. To various circum stances, the result­
ant linear equations can be deduced from this algorithm in order to avoid appropriately the emergence 
of ill-conditioning. Because the constraints are quite well-defined, the solution usually does not need 
repeated iterations to converge to sufficient accuracy.
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Appendix

The derivation for F  and G can be outlined as follows.
2JV —1

Fim -  A f A m =  £  cos [ (N  -  n) at AT]  cos [ (N  -  n) om A T ]
n=0

2 N - 11 1 .
=  ô { cos [ (N  -  n) (pi -  Om) AT] +  cos [ (N  -  n) (<r( +  am) AT ]} .

n —0

Three are two terms in the above equation.
The first term

sin ^ (oi -  om) A T



=  Hsi
n = 0

sin

sin N  -  n +  -  ) (¢7/ — om) A T — sin AT -  n -  -  ) (¢7/ -  <7m) A T

+  sin j  I ( * i - * m ) A T

sin [N  (<7/ — <7m) A T ] cos {<*1 -  <7ra) A T

By using the same mathematical manipulation for other terms, the formation of F and G can be expressed 
analytically.
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