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i

This paper presents the CUBE (Com­
bined Uncertainty and Bathymetry Esti­
mator) algorithm. Our aim is to take 
advantage of statistical redundancy in 
dense Multibeam Echosounder data to 
identify outliers while tracking the 
uncertainty associated with the esti­
mates that we make of the true depth 
in the survey area. We recognise that a 
completely automatic system is 
improbable, but propose that signifi­
cant benefits can still be had if we can 
automatically process good quality 
data, and highlight areas that probably 
need further attention. We outline 
CUBE and its associated support struc­
tures, and apply it to a dataset from 
Woods Hole, MA, USA. We illustrate 
CUBE'S output surfaces, show that the 
algorithm faithfully maintains signifi­
cant bathymetric detail, and how the 
algorithm's auxiliary outputs can be 
used in the decision-making process. 
Comparison with a selected sounding 
set shows that CUBE’S outputs agree 
very well with traditional approaches.

Introduction

The Data Processing Challenge
Processing of Multibeam Echosounder 
(MBES) data is a challenging task from 
both hydrographic and technological 
perspectives. There has been an 
emphasis in the past on improving 
methodologies and technologies for

the collection of data without a corre­
sponding emphasis on new methods 
for data processing. We are now faced 
with the situation that we can collect 
data much faster than we can conve­
niently process it. With modern shallow 
water systems running at up to 9,600 
soundings/second, data collection at 
the rate of approximately 250 million 
soundings/day/system is possible. 
Processing at that rate using conven­
tional methods is more difficult: it is no 
longer realistic to continue with the tra­
ditional hand-examination processing 
methodology.
We have to find some acceptable solu­
tion to handle automatically as much of 
the data as possible. Ironically, collect­
ing dense MBES data may be the best 
solution to the problem of MBES data. 
Multibeam systems and operating pro­
cedures have advanced to the stage 
where most data is mostly correct 
most of the time. With suitably dense 
MBES data, we should be able to con­
struct statistically robust estimates of 
depth in almost all cases, and use the 
consistency of the data to indicate 
areas where there are difficulties that 
require further attention. An automatic 
method also provides an objective 
approach to the problem. Human oper­
ators are currently making subjective 
decisions about every single sounding 
that they select as ‘not for use’, with 
the time burden and quality assur­
ance/control concerns that this subjec-



tivity implies. Regardless of training, experience 
and dedication, this will eventually lead to mis­
takes that may be untraceable. An objective auto­
matic method should mean that the operators only 
have to examine the data that does not correspond 
to the norm. That is, we should have the operators 
examine only the data that really needs work, not 
routinely examine every sounding being gathered. 
In this way, we reduce the number of subjective 
decisions that have to be made, reduce operator 
fatigue and burnout, and facilitate faster process­
ing of data.
The traditional hydrographic approach has been to 
consider the quality of the component soundings 
that are represented on the smooth sheet (i.e., the 
primary archive of the survey). Previous work on 
automatic processing has maintained this idea, 
whether attempting to simulate the human opera­
tor [Du et al., 1996], nominate dubious soundings 
by a robust measure of local neighbour properties 
[Debese, 2001; Debese & Michaux, 2002; Eeg, 
1995], or by looking at statistical consistency in an 
area [Ware et al., 1992; Gourley & DesRoches, 
2001] (see [Calder & Mayer, 2002] for a more 
extensive discussion). However, what this 
approach answers is the question 'How good is 
this measurement?’ and not the question ‘How 
well do we know the depth at this point on the 
seafloor?’ We contend that this latter question is 
the one that we should be answering; that is, the 
processing goal is to determine the depth in the 
survey area, rather than select soundings. Once 
we have determined the depth sufficiently well 
across the survey area to build a suitable surface 
model, we may make hydrographic decisions on 
what is significant and what is not.
The restatement of the hydrographic question 
above is intuitively appealing. It is inherently sta­
tistical in nature, accepting that our knowledge of 
the depth may be limited, and subject to update as 
we gather more data. It implies that we can and 
should use more than one sounding (if available) to 
update our information on depth, using redundancy 
to deal with the noise inherent in each measure­
ment. And it focuses directly on the quantity that 
we want to measure, aiming to get as close as pos­
sible to the ‘correct’ answer directly, before subse­
quently applying any safety constraints mandated 
by good hydrographic practice (see, e.g., [Smith et 
al., 2002]).
However, it also poses some problems. How do we 
estimate the errors in the measurements? How do

we distinguish normal statistical variations from 
outliers? How do we utilise information from a set 
of neighbouring soundings to estimate the 'true' 
depth? The extent to which we can resolve these 
problems defines the advantages we can expect 
from an automatic processing method.

Hydrographic Concerns
As conscientious hydrographers concerned with 
safety and charting, the notions of ‘estimated’ 
depths, surface models and combinations of meas­
urements should raise some concern, if not eye­
brows. It is important to point out, therefore, that we 
do ail of these things already. For example, we esti­
mate depth by measuring travel time of sound and 
converting it, more or less well, into range, and 
thence through some ray approximation of acoustic 
refraction into depth and distance. We make an 
implicit prediction of surface continuity in every 
chart constructed through the use of selected 
soundings or contours. We combine measurements 
from a myriad of systems to make every MBES 
measurement. Each one of these measurements is 
in error, and so therefore is any combination of 
them. Hence, it makes no sense to talk of any one 
sounding as being the depth -  all of the soundings 
have some error, and this error is not uniform 
across the swath, between systems, or across all 
survey environments. Consequently, unless we take 
account of these errors, we may be deceived about 
the depth in an area due to noise in the MBES sys­
tem, in the motion sensors, or in the GPS. 
Currently, we deal with data by experience and 
practice. We expect certain MBES to fail in certain 
ways; we ask operators to make subjective deci­
sions on what is real and what is not; we strip out 
data past a certain off-nadir angle, even though it 
appears to be ‘normal’, based on a qualitative or 
roughly quantitative observation that outer beams 
are more noisy. However, none of these solutions 
is really adequate as data volumes increase -  with 
a modern MBES survey, can we really affirm that 
we have inspected every sounding?
We suggest that a statistically justified estimate of 
depth is not only a reasonable method of proceed­
ing, it is a required method [Smith et ai., 2002]. It is 
certainly a more objective solution to the problem.

The CUBE Algorithm
We propose an algorithm that takes uncleaned 
MBES data and attempts to estimate the true 
depth at a collection of point locations arranged in a



network over the survey area. At each point, or 
node, we maintain an estimate of the true depth and 
the a posteriori variance of this depth, which we 
update as more data becomes available in the area. 
In order to deal with noise or outlier data, we imple­
ment a monitoring scheme that checks new data 
against current estimates; if the data is inconsistent 
(outwith limits based on the expected error associ­
ated with the data), then it is modelled and tracked 
separately. Hence, each node is represented by a 
collection of potential depth estimates, or hypothe­
ses, each with an estimate of depth and its posteri­
or variance. After all data is assimilated (or on 
demand), we attempt to choose the most likely 
hypothesis at each node according to a suitable 
metric -  our goal is to determine the true depth by 
choosing the hypothesis that appears most likely 
given, e.g., number of depth soundings which agree 
on the depth, closeness to neighbouring depths, or 
consistency of data. We thereby construct a set of 
point estimates over the survey area, each theoreti­
cally representing the best statistically supportable 
estimate of depth in its location. These point esti­
mates may then be connected into a surface 
description of the area, which is more readily manip­
ulated and processed. Since the heart of the algo­
rithm is concerned with the estimation of uncertain­
ty in the measurements, we call the algorithm CUBE 
(Combined Uncertainty and Bathymetry Estimator). 
The rest of the paper outlines the CUBE algorithm 
(for a more detailed mathematical development, 
see [Calder & Mayer, 2002]), and describes the 
trial implementation that has been built to test the 
ideas presented. We then describe a hydrographic 
survey in Woods Hole, MA, which illustrates the

behaviour of CUBE, and the use of diagnostic indi­
cators to guide operator effort.

Method

Estimation at a Point
The basic element of CUBE is an estimation node, 
defined at a point location with respect to some 
fixed projected co-ordinate system. We can define 
the location of a node absolutely, and the node 
therefore represents a true point in space. An 
immediate consequence is that the node only has 
to consider a single depth, since there can only be 
one seafloor at a point location. Therefore, the 
node does not need to track horizontal uncertainty 
(its location is known exactly), but only vertical 
uncertainty in the true depth at the location. Anoth­
er immediate consequence of this basic definition 
is that the estimator we build only has to deter­
mine an unknown constant, which makes the esti­
mation task significantly simpler.
A final consequence is that, under the null hypoth­
esis that all of the depth soundings in the area are 
unbiased (i.e., on average, report the true depth), 
then it does not matter in what order we process 
the data. That is, we can take it all at once or one 
point at a time, and in any order. We can, in par­
ticular, sequence the data by the order in which it 
is recorded. Each node thus receives a sequence 
of data points representing the soundings in its 
immediate vicinity. The estimator then has to deter­
mine the best estimate of true depth from this 
sequence, and we may treat the problem from the 
perspective of time-series estimation.
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Figure 1: Typical error performance of an MBES system in shallow water. These graphs show performance for a 
typical MBES on a small survey launch using differential GPS for basic positioning and a high-accuracy attitude 
sensor. Target depth is 25 metre



Error Models, Information Propagation and Opti­
mal Estimation
CUBE'S estimator starts with a quantitative esti­
mate of the errors associated with each sounding. 
For each data point, we determine the predicted 
horizontal and vertical error using the model of 
Hare et al. [1995], which utilises a propagation of 
variance argument to convert errors in the MBES 
itself and those of its auxiliary sensors (GPS, IMU) 
into a predicted error for each sounding. The model 
is detailed, requiring many properties of the sys­
tems in use to be known (e.g., sample rate, accu­
racy of attitude measurement and patch test, etc.) 
The configuration is also specific to the survey plat­
form in use since it depends on the offsets 
between the various instruments; once configured, 
however, the computation is straightforward. A typ­
ical error model response is shown in Figure 1, 
although this will of course change with MBES in 
use among many other factors, and should only be 
taken as illustrative.
The error model provides the basic error measure­
ments required, and is the heart of the rest of the 
system, but it only provides information about the 
errors at the nominal location of the sounding, and 
contains both horizontal and vertical components. 
Since we are using a set of fixed nodes that have 
no horizontal errors, we must propagate the infor­
mation implicit in the soundings to each estimation

node location, and combine the vertical and hori­
zontal errors. Our propagation of information 
method is based on a local bathymetric model that 
assumes that the local surface consists of at 
worst a constant slope; as long as we only use 
soundings that are sufficiently close to the estima­
tion node, this is a reasonable assumption (Figure
2). To ensure that we do not use soundings inap­
propriately, we also increase the uncertainty asso­
ciated with a propagated sounding as a function of 
distance through which the sounding has been 
propagated. This is implemented by scaling the 
vertical uncertainty associated with the sounding 
by a factor that increases quadratically with dis­
tance (Figure 3a). To incorporate the horizontal 
uncertainty, we assume that the sounding could be 
up to a fixed fraction of the horizontal uncertainty 
associated with the sounding further away from the 
estimation node than the nominal location (Figure 
3b). Augmenting the distance by this fraction fac­
tors in horizontal uncertainty in a reasonable man­
ner: the higher the uncertainty, the larger the dis­
tance scale factor and hence the higher the 
reported uncertainty at the node. Indeed, the scal­
ing process provides many desirable features: 
soundings with higher initial vertical uncertainty 
are given lower weight; soundings farther away are 
given lower weight; soundings with higher horizon­
tal uncertainty cause the uncertainty to scale
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Location

Figure 2: Propagation of information. Estimation at a point implies that we need to know the depth there; soundings, 
however, occur essentially at random. Hence, we must propagate the information to the location of the estimation 
nodes, taking care to model an increase in uncertainty associated with the fact that we are using the sounding at 
some distance from the nominal location
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Figure 3: Uncertainty in propagation. The uncertainty associated with a sounding must increase the further we move 
from the nominal resolved location; in this case, it is modelled as a quadratic function o f distance. Horizontal 
uncertainty is taken into account by assuming that the sounding may be up to the maximum likely distance away, 
rather than at the nominal distance. The difference is a linear function of the estimated horizontal uncertainty

faster, and hence have lower weight.
After the soundings are propagated to all nodes in 
their vicinity, each node has to determine how to 
assimilate them with the current state of knowl­
edge about the depth in its location. The first stage 
is to run the soundings through a median ordered 
queue that implements a permutation of the nor­
mal input sequence to ensure that anomalously 
deep or shallow soundings are delayed before they 
go to the estimator proper (Figure 4). Since the

original sequencing of the soundings is arbitrary, 
this reordering does not change any significant 
aspect of the remainder of the estimation, but it 
does significantly improve robustness by protecting 
the estimator until it ‘learns’ about the true depth. 
The final stage is the estimator proper. CUBE utilis­
es an optimal Bayesian estimator described by a 
Dynamic Linear Model (DLM, [West & Harrison, 
1997]). This estimator is causal and recursive, so 
that it can start making predictions as soon as the
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Figure 4; Permutation of input soundings. Since the ordering o f data is not important in CUBE, we can resequence  
the inputs before they reach the Bayesian estimator in order to delay what appear to be outlier points. This is 
implemented using a moving median window, which delays any soundings that are shoaler or deeper than the rest of 
the data in the window
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Figure 5: Update procedure at a node with a single depth hypothesis. The current estimate is updated with the 
information implicit in the new sounding. Since the new sounding is believed to be less accurate than the current 
estimate (i.e., has higher variance), the updated estimate is mostly determined by the current estimate

data starts to arrive, and only requires the current 
data estimate to assimilate the next data point. 
This is the basis of the real time implementation of 
CUBE, and ensures that we do not need to 'back­
track’ into the data as each new point arrives. Each 
sounding that makes it into the estimator is 
weighed according to its propagated, combined 
uncertainty against the current state of knowledge 
of the depth at the node, represented by a depth 
estimate and measure of a posteriori variance. The 
weighting factor used balances the variances of 
the measurement and current estimate so that if 
the estimate is much more accurate than the 
measurement, it is only incrementally affected; if 
the measurement is very accurate, it will have a 
very significant effect (Figure 5). After the current 
state is updated, the sounding is no longer 
required (all of the information implicit in it has 
been used) and hence it may be discarded; in 
implementation, it is retained in a backing data­
base for further analysis.

Model Monitoring and Intervention
In CUBE, we have explicitly set up the model to 
expect a constant depth. In practice, we observe 
that many soundings are not consistent with this 
hypothesis: outlier points violate this assumption by 
implying multiple alternative depths in the same 
location. Untreated, these points would corrupt the 
true depth estimate, provoking modelling failure. We 
use the error estimates of the soundings to provide 
a calibration point for model monitoring; that is,

under the null hypothesis that the data is consistent 
with the model, the sounding and the current esti­
mate should agree to within the sounding's predict­
ed error. If they do not (to a statistically significant 
degree), then we may conclude that there is suffi­
cient evidence to mistrust the sounding (Figure 6). 
To make this system more useful, we must also 
observe long-term drifts (i.e., where the data and 
model drift apart slowly), and sequential failure, 
where the model is judged as being marginally inad­
equate for a significant number of samples. All of 
these may be implemented using the sequential 
Bayes factor monitoring of West & Harrison [1997]. 
After failure is indicated, our intervention scheme 
is to assume that the inconsistent sounding is 
another potential depth estimate, and to initialise 
another DLM to represent it. All models are main­
tained simultaneously and are treated equally until 
we are required to make a choice as to which one 
we believe to be the true depth. Maintaining a 
monotonically increasing list of models gives us 
some theoretical difficulty, since we have to deter­
mine against which model to compare the incoming 
sounding. We resolve this by choosing the model 
that is closest to the sounding in a least weighted 
error sense, with weighting function determined by 
the predicted error that would result were the 
sounding to be assimilated. Hence, if the model 
monitor indicates an outlier, we may safely build a 
new model track, since the sounding was com­
pared to the best available model and found want­
ing (Figure 7).
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Figure 6: Model monitoring scheme. CUBE predicts that the next depth will be the same as the current estimate, 
and then uses this as the null hypothesis to test the incoming data (against a simple alternative of a step change in 
depth). If  the null hypothesis cannot be rejected, the Bayesian data assimilation takes place. Otherwise a new depth 
tack is started

Hypothesis Resolution
Allowing multiple hypotheses provides robustness, 
but also ambiguity about which depth should be 
reported. CUBE implements a configurable disam­
biguation engine to choose a ‘best’ hypothesis on 
demand, using predefined metrics on what consti­
tutes ‘best’ reconstruction.
The simplest method chooses the hypothesis that 
has assimilated the most data points (i.e., which is 
best supported by the data). This works in most 
cases, although since it involves no context other 
than the data points, it can fail under significant 
noise content (e.g., if there are a burst of errors). 
Our second method finds neighbouring nodes 
where there is only one hypothesis, and uses this

certain reconstruction as a guide as to the proba­
ble true depth. Then, the hypothesis closest in 
depth to the guide node depth is used for recon­
struction. The final method constructs context 
using another, potentially lower resolution, sur­
face, constructed either from a previous survey or 
from the current one. Since this surface is only 
used as a guide to what the depth is, it does not 
have to be hydrographically correct and we can 
take more liberties with its compilation. For exam­
ple, we can use a simple median bin at low reso­
lution, or interpolate between smooth-sheet sound­
ings from the previous survey, or even from the 
chart if no other information is available. As long 
as the surface is in approximately the correct loca-

Now Next

. —r— ■ 11 __ j  11 (
' 2 ------------- ‘5 t

Pseudo-
Time

Data-L

Consistent

Now Next

iData

Inconsistent

Pseudo-
Time

Initialize
New
Hypothesis

Figure 7: Model selection for monitoring and test assimilation. Use of a minimum predicted error distance ensures 
that the 'best' model is chosen, and hence that if  the data is found to be inconsistent (see Figure 6), then we can 
start another depth track since no other model would choose to assimilate the data either



Figure 8: First-pass flow diagram for CUBE processing. We interface to HDCS data so that all normal CARIS/HIPS 
tools are still available, although for flexibility, we use a separate visualisation suite to display the data, and do the 

remediation in spatial mode o f HIPS 5.2

tion, it should help CUBE, on the average, work out 
which hypothesis is the correct one. Many other 
potential solutions exist, and are currently being 
researched.

Output Products
In addition to the depth, CUBE is capable of pro­
viding additional metrics, in particular the uncer­
tainty associated with the depth estimate, the 
number of hypotheses available at the node, and a 
measure of how certain the algorithm is about the 
choice of hypothesis that was made. Each of these 
is a scalar quantity, and hence may be represented 
as a surface, or more usefully as auxiliary infor­
mation on top of another surface (Figures 14-16).

Combinations of these with the depth surface 
allow the user to see problems in context, and 
hence make decisions more reliably.
The outputs of CUBE’S processing are therefore a 
set of data vectors per node. It is natural to repre­
sent these as separate surfaces, but it is impor­
tant to note that CUBE’S estimates are strictly only 
estim ates at a point, and any interpolation 
between those points must be considered sepa­
rately.

Remediation and Iteration
It is unrealistic to expect that any algorithm will 
make the correct decision under all conditions. 
Therefore, it is imperative that there is an operator

Figure 9: Second-pass flow diagram for CUBE processing. This is essentially the same as the first pass, except that we 
move directly to products from the MapSheet (SHT) database through automatic methods, rather than through some 
intermediate cartographic extraction. A more detailed description of this process is outlined in Smith et al. [2002]
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Figure 10: Woods Hole, MA (H11077), conducted by the NOAA Ship WHITING, 2001 [Barnum et al., 2001]. Both 
chart and data are reprojected to UTM Zone 19N, WGS-84 ellipsoid. Depth range is (2,30) m, and coverage is 
approximately 1 .7 km2

to check the decisions which have been made, and 
to rectify the problems evident in any area where 
CUBE either made no decision, indicates that the 
decision was in doubt, or made what the expert 
hydrographer believes to be the wrong decision, 
irrespective of the statistical distribution of data 
and noise. Our initial implementation uses the tra­
ditional data-flagging paradigm to assist CUBE in 
making decisions where the density of noise is 
such that the correct depth estimate is not evident 
to the algorithm. It is also potentially possible to 
work at the level of CUBE’S hypotheses, or in a lay­
ered approach (e.g., edit hypotheses, and then 
data only if the problem is not resolved).
After remediations are made, an iteration of CUBE 
is required to integrate the modifications with the 
rest of the data. CUBE is, in this sense, a one-way

trapdoor: once the soundings have been assimilat­
ed into the estimates, there is no way to back them 
out except to start again. However, the speed of 
the algorithm is such that this is not a significant 
concern. In practice, since the processing is main­
ly local, we need not re-run the algorithm every­
where -  just in regions where modifications have 
been made. This significantly reduces the compu­
tational burden, particularly when the number of 
modifications is expected to be small.

Implementation
We have avoided, whenever possible, redeveloping 
tools that are available in COTS software, prefer­
ring to interface to available applications for data 
reformatting, display and manipulation. The essen­
tial support requirements for a host system are



that it should have an API for data retrieval, prefer­
ably a spatially based one (i.e., that can provide all 
data within a given radius of a particular point). It 
should also contain a manipulation system for data 
so that remediations can be done, and a suitable 
display system that is capable of displaying multi­
ple surfaces simultaneously. No one system cur­
rently available has all of these, so we have built a 
hybrid system using CARIS/HIPS for data conver­
sion, manipulation and display, GeoZui3D for fast 
turn-around display of multiple surfaces with over­
laid colour-coded data, and Fledermaus/PFM for 
advanced visualisation, spatially-indexed data 
retrieval and area-based editing. A combination of 
bash shell scripts, peri and the GMT package are 
also used in development and implementation of 
the various stages of the algorithm and product 
preparation.
The CUBE process occurs in two passes when used 
in post-processing mode (i.e., when all data is avail­
able). The first pass (Figure 8) generates preliminary 
surfaces for the user to examine; the second pass 
(Figure 9) takes any user modifications and gener­
ates final product surfaces. We read directly from 
HDCS data using the HIPS/IO interface libraries, 
and store CUBE’S results in a specialist data struc­

ture called a MapSheet (SHT). This intermediate 
store provides extra flexibility, and allows us to 
maintain state between data availability.
From the MapSheet, we can generate both HIPS 
Weighted Grids (HWGs) and GeoZui3D GUTMs. The 
HWGs are inserted back into a HIPS Fieldsheet, so 
that they can be seen in conjunction with the raw 
data; we typically attempt to display the HWGs and 
data on one screen of a dual-monitor system, and 
the GUTMs on the other. We have found that it is 
significantly easier to manipulate data if both rep­
resentations of the data are available simultane­
ously, since it is difficult to ‘fuse’ the information 
mentally in many cases, and cumbersome to trans­
fer by hand the information from the 3D visualisa­
tion, where problems are obvious, to the manipu­
lation system where they can be rectified. It is our 
experience that getting the implementation of this 
coupling correct can significantly affect the ease- 
of-use of a system and hence the potential benefits 
that can be achieved.
In real-time mode, it is not sufficient to have this 
‘once-through’ model of processing, since we want 
to be able to work data incrementally as it is being 
gathered, typically on a daily cycle. We currently 
resolve this by maintaining two MapSheet struc-

Figure 11: Reconstructed bathymetry in southwest corner of Woods Hole data, looking west. The main sand ripples 
have amplitude approx. 0.5m, and wavelength approx. 10m, although they are overlaid with sand ripples of smaller 
wavelength and amplitude. The rougher texture to the right is thought to be a dumping area overlaid on the sand ripples



Figure 12: Man-made objects. Thought to be the remains o f a floating dock and a floatplane, these objects occur in 
the northwest corner of the survey, ju s t west o f the WHOI dock. The many small features on the area around the 
dock are probably mooring blocks or rocks

Figure 13: Example of track-line oriented artifacts that are only obvious at high resolution, but which are 
symptomatic of a problem with the data acquisition system. Feedback like this from CUBE'S outputs as the survey 
progresses could help with the early detection and remediation of such problems in the field, where the cost of 
correction is significantly less



Figure 14: Number of hypotheses at each estimation node colour-coded over the reconstructed bathymetry; hot 
colours indicate that several self-consistent hypotheses were formed. From the pattern of hypothesis clusters, it is 
immediately obvious that these were caused by pilings for the associated dock structure. This is not obvious from 
the bathymetry alone

tures, one for ‘daily’ use and one for ‘cumulative’ 
use. At the start of each day, the cumulative Map- 
Sheets are used to initialise the daily set, and the 
current day’s data is then assimilated. Once any 
changes to the data have been made based on the 
intermediate results, the second pass of CUBE is 
used to assimilate the day’s data into the cumula­
tive MapSheets. In this way, the cumulative Map- 
Sheets should always represent the ‘best avail­
able’ information on the survey. Working in this 
incremental mode saves considerable time in pro­
cessing, although the cumulative MapSheets can 
always be re-constructed at any time simply by re­
running the data from the start.

Example: Woods Hole
During the 2001 field season, the NOAA Ship WHIT­
ING conducted hydrographic survey operations 
around Cape Cod, including Woods Hole, MA 
(41°31'N 70°40'W, registry number H11077), from 
Great Harbor to Vineyard Sound, Figure 10. Over 
approximately five survey days, the WHITING’S multi­
beam survey launch covered approximately 1.7km2 
in depths from 2m to 30m with full coverage from a 
Reson 8101 MBES. In total, 37.9xlOfi soundings

were gathered and archived. A POS/MV 320 was 
used for attitude measurement and positioning was 
derived from a Trimble DSM212 differential GPS 
receiver (corrections: Chatham, MA). All of the data 
was archived in XTF format and then converted into 
CARIS/HIPS for processing. Corrections for static 
and dynamic offsets, refraction and tides were 
made, and the resultant HDCS data was provided as 
the starting point for CUBE’S processing. The data 
archive contained edit flags, but these were 
removed from the test set before starting automatic 
processing. We used a depth gate of (2,30)m to 
avoid gross outliers, although we allowed all beams 
to be used rather than applying the standard angle 
gate of ±60° per the Data Acquisition and Process­
ing Report (DAPR) for the survey [Barnum et al.,
2001]. This provided more coverage in very shallow 
areas hence allowing for a more stable reconstruc­
tion, although we did encounter more multiple 
hypothesis areas because of this decision, and 
hence have taken more time to work the data than 
we otherwise might.
We bootstrapped analysis of the data by construct­
ing a 5m median bin using all of the data. This is 
inadequate for hydrography, but provides a suitable



reference for slope corrections and dynamic depth 
ranges. We utilised a blunder filter to remove any 
soundings more than 25 per cent deeper than the 
median estimated depth (with a minimum depth dif­
ference of lm ), and then processed all of the data 
at 0.5m resolution in order to ensure that small 
shoals were reliably estimated, and to provide the 
highest possible resolution surface for the area. The 
resultant surface was inspected and remediations 
made by flagging the original soundings. The CUBE 
algorithm was then iterated to complete the pro­
cessing. The non-interactive processing took approx­
imately 60 min. per pass on commodity PC hard­
ware; the interactive time was approximately 240 
min., although much of that time was spent investi­
gating the many small lumps in the harbour area 
rather than actually editing data. It is important to 
note that the robustness of CUBE'S estimation algo­
rithms allows us to be a little more cavalier about 
editing, in the sense that we do not have to remove, 
every single anomalous sounding in the set, simply 
enough to give CUBE a head start in estimating the 
surface, i.e., to improve the signal-to-noise ratio.

Therefore, we may remove just the obvious outliers, 
and allow the algorithm to process those close to 
the 'true' surface appropriately. This was used to 
preserve the objectivity of CUBE’S estimates.
We found that the majority of the data was 
processed automatically, and the level of detail in 
the results is high (Figures 11-12). Preservation of 
detail is an important concern in automatic pro­
cessing schemes since an over-zealous procedure 
could also remove important small features. The 
dynamic depth gate implemented by the blunder fil­
ter bootstrapped by the median depth significantly 
improves performance in sparse areas for little 
extra cost, although this affects only deep spikes. 
We observed a number of small trackline oriented 
holidays in the data (Figure 13), which were sub­
sequently tracked to dropped packets in the input 
data stream (i.e., missing data not recorded by the 
capture system). Although these holidays are not 
significant with respect to hydrographic coverage of 
the area, they illustrate a problem with current 
data processing methods. There is no way to 
detect these dropped packets without investigating

Figure 15: Uncertainty colour-coded over bathymetry; view from Great Ledge looking north to Woods Hole passage. The 
colour-coding is 95 per cent confidence interval predicted from the posterior variance of the depth estimate chosen by 
the disambiguation engine, with warmer colours indicating higher uncertainty. Prediction variance is a function o f the 
number of soundings assimilated and their component uncertainties. The primary signals evident here are depth range 
and beam angle, shown in the linear features derived from the line-plan used during the survey



Figure 16: Hypothesis strength colour-coded over reconstructed bathymetry: WHOI dock looking north. Hypothesis 
strength is a metric indicating how certain the disambiguation engine is about the hypothesis it reported. Green 
indicates strong evidence for the chosen hypothesis; the scale to red indicates decreasing evidence, implying that there 
are other plausible solutions

the timestamp on each packet of input data, which 
is obviously unfeasible, and they are not immedi­
ately obvious in points-mode data displays. To 
demonstrate coverage, only grids at approximately 
5m resolution are required, and under any conven­
tional grid construction scheme, these sorts of hol­
idays would not be observed. Here, CUBE has been 
able to illustrate a potential problem, and provides 
a way to visualise them so that reasoned quantita­
tive decisions can be made (in this case, to ignore 
the holidays as hydrographically insignificant).
A use for the number of self-consistent hypotheses 
is illustrated through the data around the Woods 
Hole Oceanographic Institution (WHOI) dock. The 
dock pilings are sufficiently large to return multiple 
beam hits, and hence CUBE resolves multiple 
hypotheses, as seen in Figure 14. The obvious geo­
metric arrangement of the multiple hypotheses 
clearly indicates that these are man-made, 
although this is not immediately obvious just from 
the surface, since it is constrained to choose just 
one hypothesis as ‘best’ . An objective measure of 
consistency such as this is a very powerful tool in 
making decisions about what to keep, and what to 
ignore. CUBE also provides uncertainty estimates 
(Figure 15) that provide information about the qual­
ity of the chosen hypothesis, and a measure of

‘hypothesis strength’ (Figure 16) that attempts to 
measure how sure the algorithm is about the 
choice of hypothesis that it made. Use of these 
indicators can further inform processing to best 
utilise operator time.
To compare the CUBE output with a traditional 
hydrographic processing chain, we took the prelim­
inary smooth-sheet selected soundings for the sur­
vey, and matched them against the CUBE surface, 
assuming that they are IHO Order 1 accurate (the 
target for the survey) [IHO, 1998]. For each select­
ed sounding, we found the reconstructed CUBE 
depth within the horizontal 95 per cent Cl for the 
sounding that minimised the absolute vertical dif­
ference between sounding and surface. We then 
scaled this difference by the vertical 95 per cent Cl 
for the sounding and computed the cumulative 
probability mass function over the 5902 selected 
soundings (Figure 17). We observe that just over 
95 per cent of the soundings are below the one 
unit Cl limit (135 soundings of 5902, or 2.3 per 
cent are above) as expected, showing that the 
CUBE surface agrees very well with the traditional 
selected sounding approach in this case. The slight 
bias is probably due to a combination of finite sam­
ple effects and the traditional approach of shoal 
biased selection of soundings.
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Figure 17: Cumulative probability mass function for comparison between preliminary smooth-sheet selected soundings 
and CUBE output surfaces. The horizontal scale is minimum vertical difference between the CUBE surface and the 
selected sounding assuming that the soundings are IHO Order 1 accurate (the target for the survey). The axis is scaled 
to the vertical 95 per cent Cl for IHO Order 1 survey, so we expect (and observe) 95 per cent of the selected soundings 
with vertical error less than 1.0

Conclusions

Our current methods of processing Multibeam 
Echosounder (MBES) data are becoming inadequate 
as faster and higher resolution systems come 
online. We have argued that statistical methods of 
processing data are not only useful, but are in fact 
required when we consider the properties of MBES 
data. We have outlined an alternative method for 
processing such data, which attempts to handle the 
majority of soundings automatically by focusing on 
estimation of ‘true’ depth, rather than selecting 
‘best’ soundings, while building in quantitative esti­
mates of data quality and guideline metrics for 
QA/QC. We accept that no method will be complete­
ly automatic. We have therefore also outlined an 
inspection and feedback mechanism that attempts 
to harness the power of automatic methods to boot­
strap operator effort. The algorithm can be run in 
post-processing or real-time mode, and can provide 
interim results as data is being gathered.
Through the data example shown here, we have 
illustrated the CUBE algorithm. We observe that 
the algorithm is suitably robust for typical hydro- 
graphic systems, and that it handles the majority of 
data automatically; the algorithm is also sufficient­
ly fast to keep up with data capture rates, even in 
an experimental research implementation. We 
have found that the algorithm is not sensitive in its 
parameters (given calibration of the error model

through installation and patch test measure­
ments), so that it does not need to be returned for 
each dataset.
We have shown elsewhere [Calder & Mayer, 2001,
2002] that CUBE’S estimates are statistically equiv­
alent to more conventional surface estimation tech­
niques, and here that they agree well with a tradi­
tionally constructed selected sounding set. We are 
currently pursuing a project to show hydrographic 
equivalence (in the sense that the same hydro- 
graphic conclusions would be reached using CUBE’S 
results as for a traditional processing scheme). 
CUBE currently exists as a source code library devel­
oped at CCOM-JHC and is available on a non-exclu- 
sive royalty-free basis to members of the CCOM-JHC 
Industrial Consortium. Our intention is for CUBE to 
be integrated with other processing schemes in 
order to provide the support services and user inter­
faces that we have approximated in these experi­
ments, rather than being used on its own.
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