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The equidistance line has held pride of 
place in terms of maritime boundary 
delimitations -  if not for the actual 
boundary, then for a starting point for 
discussions. Yet, many people do not 
understand the mathematical complexi­
ties of such a line when it is placed 
along the surface of the earth. The 
paper compares the strict equidistance 
line to the geodesic, the normal section 
line, the rhumb line and the great circle. 
The paper also evaluates the equidis­
tance line against straight lines on vari­
ous map projections.

Introduction

The 1958 Geneva Convention on the 
Continental Shelf put more weight on 
the use of the equidistance line method 
of determining a maritime boundary 
beyond the territorial sea than on other 
methods. The equidistance method 
continues to hold pride of place in many 
judicial decisions and in State Practice 
as well as Article 15 of the United 
Nations Convention on the Law of the 
Sea (UNCLOS) for delimitation between 
overlapping Territorial Seas. But do the

Map showing the geographic magnitude of the sample equidistance line used in this 
paper. The line is equidistant from the two points marked by bold circles



legal advisors, programme administrators, even the 
technical experts really understand the geodetic 
properties of the equidistance line?
There are few, if any, published papers investigat­
ing the geodetic properties of an equidistance line 
in a quantified manner. This paper confirms the 
author’s intuitive knowledge, but also highlights a 
few surprises.
The world is not a fiat plane: Christopher Columbus 
(circa 1492) was convinced of that, and Ferdinand 
Magellan led the flotilla that proved that one could 
circumnavigate the globe (1518-1521). Navigators, 
whether using chronometers (developed by John 
Harrison, 1735-1765) or using the angular distance 
between the moon and either the sun or stars to 
determine time, and hence longitude, presumed that 
the earth was a sphere (Sobel, 1995). During the 
1800s, geodesists determined that the earth was 
actually flattened at the poles; thus, proving a theo­
ry developed by Sir Isaac Newton. From a layper­
son's point of view, if a ball of bread dough were 
spun rapidly for a long enough time, it would flatten 
out into a pizza shell.
Geodesists often consider that the earth is an 
ellipsoid (a solid created by revolving an ellipse 
about its minor axis). In fact, there are varying con­
centrations of rocks of differing densities through­
out not only the solid crust of the earth, known as 
the mantle, but also the molten rock within the 
core, which is generally denser than the mantle. In 
addition, the mantle tends to have a deep root 
where there is high topography and is thin in the 
ocean depths. That means that the sea-level sur­
face of the earth is more like a nubbly pear. The 
vertical separation of the geoid (the real mean sea 
level surface) and the mathematical ellipsoid 
ranges from -40 to +40 metres. For many calcula­
tions, these perturbations can be neglected.
In plane, Euclidean, geometry, the strict equidistance 
line between two points is a straight line at right 
angles to the line joining the two points, by the rules 
of congruent triangles. Thus, the equidistance line, 
being straight, is the shortest distance between two 
points on that line. In spherical geometry, the 
equidistance line can be proved to be a great circle, 
again by the rules of congruent spherical triangles. 
The great circle is known to be the line of shortest 
distance between two points on a sphere. But on an 
ellipsoid where the radii of curvature of the sides of 
these same triangles are different, the angles at the 
vertices may not equal the corresponding angles of 
the other triangle although the three sides corre­

spond. Thus, there is not the automatic link between 
an equidistance line and a geodesic (the shortest 
line between two points on an ellipsoid).

Test Data

The typical maritime boundary delimitation speci­
fies a line of a specified geometric character 
between a series of turning points. Sometimes, 
delimitation lines are supposed to represent an 
equidistance line between these turning points. 
Therefore, it is necessary to compare an equidis­
tance line against the various geometric lines. To 
create a test case, the author computed a series 
of points that were exactly equidistant from 2 base- 
points (one at 45°N, 60°W, and the other 47°N, 
57°W). The ellipsoid used was the Geodetic 
Reference System 1980 ellipsoid (GRS 80) used in 
the computations of the North American Datum 
1983 and the World Geodetic System 1984. The 
semi-major (equatorial) diameter (equatorial 
radius) is 6,378,137 metres and the semi-minor 
diameter (distance from centre of the earth to 
either Pole) 6,356,752.314 m. The intermediate 
points along the equidistance line are at intervals 
of a half degree of latitude from 51° 30’N to 40° 
OO’N and are designated ‘A ’ through ‘X ’, inclusive. 
The end points (‘A’ and ‘X ’) are over 900 km 
(almost 500 n.m.) from the two basepoints. This

the 24 equidistance points. Basepoints 1 and 2 are 174 
n.m. apart; ‘A ’ and ‘X ’ are about 950 n.m. apart



length might be the extreme situation for an 
equidistance line throughout an extended conti­
nental shelf under Article 76 of the UNCLOS. The 
total length of the test line from one end to the 
other (i.e., from ‘A ’ to ‘X ’) is in the order of 950 
n.m. It is intentional that the line is oriented at 
roughly 45° (actually 135° / 315°) and also that 
the line is centred at approximately 45°N. These 
conditions should maximise the rate of change of 
the mathematical functions involved.

Description of Various Geometric Lines

As well as the equidistance line on the surface of 
the earth, there are other lines that have recognised 
geometric properties that are commonly used by 
geodesists. A short description of each follows.

Great Circle
A few maritime boundary delimitations are defined 
by series of great circles between the turning 
points.1 Great circles assume a spherical earth. 
They are also the perimeter of slices through the 
centre of the sphere. The great circle has the geo­
metric property of being the shortest distance 
along the surface of the sphere between the end­
points. If one assumes the earth to be a sphere, 
the equator and all meridians of longitude would be 
great circles. A parallel of latitude, other than the 
equator, is a small circle, since its radius is small­
er than the radius of the sphere. For the computa­
tion of the equidistance line on the sphere, the 
radius can be any measurement; however, dis­
tances listed in Table 1 and Appendix A were com­
puted using geodetic (ellipsoidal) parameters.

Rhumb Line
Many maritime boundary delimitations are defined 
as series of rhumb lines (or loxodromes),2 Rhumb 
lines have their origin in early navigation. Mariners 
wished to travel in a single direction from one point 
until they arrived at the next turning point. They 
would sail that course until they arrived at that 
point not knowing the distance travelled with as 
much precision as their course. They did not mind

sailing some extra miles than the shortest dis­
tance. A rhumb line is defined as the line that cuts 
each meridian at the same angle. Thus, it spirals 
towards each pole, but never actually gets there. 
Gerhardus Mercator developed a map projection in 
1569 where the meridians of longitude are per­
pendicular to the parallels of latitude. The former 
are uniformly spaced whereas the latter spread out 
in proper mathematical relation to compensate for 
the fact that the meridians get closer together as 
they approach the pole. It took the development of 
calculus and the integral of the secant of an angle 
by Edward Wright in 1599 before the map projec­
tion was perfected (Sebert, 2001). Thus, a rhumb 
line on a Mercator projection map is a straight line. 
Although originally formulated for a spherical earth, 
the equations have since been modified for an 
ellipsoidal earth.

Normal Section
To the author’s knowledge, the normal section has 
not been used for maritime boundary delimitations. 
The normal section is the line traced on the ellip­
soid by the plane that contains the two points on 
the earth’s surface and the vertical at one of the 
points. Because there is a centrifugal force acting 
on all bodies on the earth’s surface as well as the 
pure gravitational attraction between bodies, the 
direction of the total force (i.e., the vertical, also 
known as the normal) acting on a body is not 
towards the centre of mass of the earth. In fact, 
the vertical intersects the axis of rotation of the 
earth on the opposite side of the equator from the 
point in question. Except in the unique case where 
the end-points have identical latitudes, or are 
North-South of each other, the usual normal sec­
tion from one end towards the other end does not 
coincide with the normal section in the reverse 
direction. The normal section line is the projection 
onto the ellipsoid of the visual line of sight of a dis­
tant point from the observation point. The lateral 
separation of the two normal sections for the test 
line (A-X) is about 28 metres. Various geodesists 
over the past 200 years have developed equations 
to calculate the length between points and the 
azimuths at each end of the line given the geo-

1 Sam ple boundaries are: 1970 Italy/Yugoslavia, 1975 France/Spain, 1980 N orway/United Kingdom , and 1987 Libya/M alta (ICJ 
award).

2 Sam ple boundaries are: 1966 Den mark/Norway, 1975 France/United Kingdom , 1976 The G am bia/Senegal, 1985 
Guinea/Guinea-Bissau (ICJ award), 1988 Dom inica/France (G uadeloupe & M artinique), 1989 Guinea-Bissau/Senegal. (Tribunal 
was of the view that the 1960 boundary line of 240° dem arcated by the 1960 agreem ent for the Territorial Sea & continental shelf 
was not geodetic, but loxodromie.)



graphic coordinates of the two points (inverse prob­
lem), and the geographic coordinates of the end 
point given the length and the starting azimuth (for­
ward problem). Depending on their complexity, the 
equations replicate the normal section condition to 
various accuracies, degrading with length. Theory 
says that there should be a miniscule difference 
between the length along the normal section and 
that along the geodesic, increasing with length of 
line, with the former being slightly longer. As a test, 
the author used the data set in this paper, used 
Clarke’s ‘best’ formula (Clarke, 1880) for the nor­
mal section lengths and Sodano’s formulae for the 
geodesic lengths, and computed the differences 
between the two. The differences built up to 5 cm 
at 900 km (as was expected), then started to 
decrease so that the difference was -0 .5  m at 
1782 km (950 n.m.), i.e., the normal section 
length being shorter than the geodesic, which was 
not the expected result. Other formulae, other geo­
metric conditions, and different computers might 
give different comparisons.

Geodesic
In geodesy, the term ‘geodesic’ is understood to 
mean the shortest line on a surface between two 
points on that surface. The geodesic between two 
points on a plane is the straight line segment 
between those two points. The geodesic between 
two points on a sphere is the shorter arc of a great 
circle joining the two points. The geodesic on an 
ellipsoid is, in general, more complex than a second- 
degree curve (National Geodetic Survey, 1986). It is 
also reversible -  going from A to B is the same line 
as the line from B to A. The geodesic is based on the 
international interpretation of ‘straight’:
Straight line: Mathematically the line of shortest dis­
tance between two points in a specified space or on 
a specified surface (Int. Hydrographic Org., 1993).

Any geodesic has the mathematical property of:

N • Sin a  • Cos <p = a constant,
Where: N = Radius of curvature in the Prime 
Vertical; i.e., at right angles to the meridian 
(a slowly varying number with respect to latitude) 

a  = instantaneous azimuth 
(p = instantaneous latitude.

The accepted best equations for computations 
using the geodesic are those developed by E.M. 
Sodano.3 The equations are reportedly accurate for 
lines that are up to half way around the earth. The 
computations are much more complex than those 
for the normal section, taking noticeably longer to 
compute, even with modern computers.
The geodesic has been used in several maritime 
boundary delimitations.4

Strict Equidistance Line
The strict equidistance line is the locus of points 
such that each point has exactly equal geodesic 
lengths to the two basepoints. This is because the 
geodesic is the line with the shortest possible 
length over the surface of the earth. As mentioned 
earlier, the equidistance line is not exactly a geo­
desic line itself because computations are being 
performed on an ellipsoid and not on a sphere or 
flat plane.

Results

The intercepts of the strict equidistance line, the 
geodesic, the normal section lines both from the 
northwest ( ‘A ’) to the southeast (‘X ’) end and vice 
versa, the rhumb line (or loxodrome) and the great 
circle as they cross various latitudes (i.e., latitude 
fixed, longitude varied) are listed in Appendix A. In 
summary, the greatest separation between the 
strict equidistance line and all the others, taken 
individually is summarised in the Table 1.
The mid point between Basepoints 1 and 2 was 
46° 00’ 35.74488”N, 58° 31’ 37.31242’’W. The 
azimuths from the midpoint to the two basepoints 
were computed to be 46° 15' 01.07990” and 226° 
15' 01.08060” - a miniscule difference from being 
exactly 180° opposite each other. Using plane 
Euclidean geometry, the perpendicular would have 
an azimuth of 316° (or 136°) 15’ 01.08025”. The 
actual azimuth to the points on the strict equidis­
tance line varied from -0.01013” to +0.00513” 
from this theoretical value, except at point ‘L’ 
which is only 1.5 km away. These small azimuth dif­
ferences amount to less than 0.045 metres of off­
set from the strict equidistance line. The offset at 
‘L’ is less than 0.001 metre.

3 E.M. Sodano, "A  Rigorous N on-Iterative Procedure for very rapid Inverse Solution o f very long G eodesics", Bulletin 
Geodesique, Vol. 48, 1958.

* Sam ple boundaries are: 1970 Iran/Qatar, 1972 M exico/U SA, 1974 Canada/G reenland, 1978 Italy/Spain, 1984 Canada/USA (Gulf 
of M aine, IC] decision), 1992 Canada/France (St-Pierre and Miquelon).



Greatest separation of the following lines from 
the strict equidistance line:

Geometric line Greatest separation between 
the line defined in column 1 
and the strict equidistance 
line.

Rhumb Line 45.017m SW
Great Circle 145 m SW
Normal Section, 
X to A 15.6 m SW
Normal Section, 
A to X 13.4 m NE
Geodesic 0.033 m NE

Table 1

Interim Conclusion
The conclusion to draw from this data, particularly 
from its full version in Appendix A, is that the geo­
desic line is so close to the strict equidistance line 
as to be able to say that it can be considered the 
equidistance line for ALL practical purposes. As a 
check, the geodesic constant (equation given 
above) for the points on both the strict equidis­
tance line and on the geodesic line was computed. 
Although not dead exact, the value was far closer 
to being constant with the geodesic line than with 
the strict equidistance line.
To put some perspective on these results, modern 
satellite positioning in its most refined operating 
methodology can only define a static position in 
terms of latitude and longitude to an accuracy of 
about 0.1 m. At sea, using real-time positioning and 
differential corrections from a monitor station on 
shore, satellite positioning is only good to 2 metres.

Map Projections

Maritime boundary lawyers and technical advisers 
are always wanting to see what the line ‘looks like’ 
so that they can make assessments of the practi­
cality of that particular type of line. This means 
that the line has to be portrayed on maps. But 
maps can be of many different projections.
Here, it is perhaps best to stop and realise that a 
map is ‘a conventional representation, usually on a 
plane surface and at an established scale, of the 
physical features (natural, artificial, or both) of a 
part or the whole of the Earth’s surface. Features 
are identified by means of signs and symbols, and

geographical orientation is indicated.’ A map pro­
jection is ‘a function relating coordinates of points 
on a curved surface and a coordinate system on a 
plane.’ A map projection cannot preserve all geo­
metric relationships on the curved surface, but it 
can preserve one or more of them. A conformai 
map projection preserves angles; an equal-area 
projection preserves areas; an azimuthal map pro­
jection preserves azimuths from a point; and an 
equidistant map projection preserves distances 
from a particular point or line. Map projections 
often map the ellipsoid onto a plane by using a 
developable surface as intermediary. In a cylindri­
cal map projection the ellipsoid is first mapped 
onto a cylinder; in a conical map projection the 
ellipsoid is first mapped onto a cone. Projections 
directly onto a plane are not designated as such, 
but are classified according to the location of the 
centre of projection, location of the plane, etc. 
(National Geodetic Survey, 1986)5.
Nautical charts are usually Mercator projection, but 
atlases can use many varieties - some very sophisti­
cated - and selected to portray the world with minimal 
distortion in some aspect; be it lengths (scale), direc­
tion, area. For example, the National Geographic Atlas 
(Revised Sixth Edition) issued in 1992 used 16 dif­
ferent projections, ranging from the 1569 Mercator 
projection to the Robinson projection devised in 1963.

Cylindrical
The cylindrical projection has been used on some 
very old British Admiralty nautical charts of small 
areas done at large scale. The construction tech­
nique is simple and leads to easy construction of 
the survey manuscript in the field. One of the two 
standard parallels (commonly near the mid-lati­
tude) is shown as a straight east-west line, and 
other parallels of latitude are spaced at distances 
north or south of that scaling latitude based on a 
uniform scale. Longitude intervals are derived from 
the fact that one minute of longitude = one minute 
of latitude x cosine (scaling latitude). The meridi­
ans of longitude are laid down at right angles to the 
parallels. Thus, the map sheet is uniformly spaced 
north-south and east-west. The map sheet is only 
conformai at the mid-latitude where both the east- 
west and north-south scales are the same. A map 
projection is said to be conformai when the instan­
taneous scale in any direction is the same, and the 
instantaneous directions at a location are true. By

’ N ational Geodetic Survey. 1986. G eodetic Glossary. U.S. Dept, of Com merce, Rockville, MD.



that, West is exactly 90° counter-clockwise from 
North, etc. In the British Admiralty application, one 
minute of latitude was assumed to be a constant 
value. This meant that the earth was being 
assumed to be spherical. In the data presented in 
this paper, the north-south distances between par­
allels are based on the GRS-80 ellipsoid used by 
the WGS-84 coordinate system. For the test, the 
standard parallels were 42°N and 42°S, so that 
one minute of longitude equaled 1380.846 m.

Mercator
Mercator is probably the most common map pro­
jection used. Certainly it is for nautical charts and 
often for other applications - even when other pro­
jections would be more appropriate. Much has 
already been discussed about this map projection 
under the topic of rhumb lines, above. 
Mathematically, the north-south distance is the 
integration of the incremental distances from the 
equator multiplied by the instantaneous scale. The 
distance east or west of the Central Meridian (of 
the map sheet) is the longitude difference convert­
ed into metres at the scaling latitude and multi­
plied by the scale.
For the record, the standard parallel used in the cal­
culations was 47° 20'N, although any distances 
quoted with respect to this projection have been cor­
rected for the instantaneous scale at that latitude.

Transverse Mercator
Transverse Mercator is, as the name implies, the 
Mercator projection turned at right angles. Instead 
of the equator being the starting point, a meridian 
of longitude is used. Distances east or west of the 
central meridian are called Eastings, and dis­
tances from the equator are called Northings. The 
central meridian is a straight line, but parallels are 
curved (concave on the side of the nearer Pole). 
Other meridians are ever so slightly concave on 
the side towards the central meridian and would 
converge at the Pole. To keep the projection from 
getting outlandish scale problems, the maximum 
longitude difference from the central meridian is 
kept to a small value (typically 3° or 1.5°) and a 
scale factor is applied at central meridian so that 
the scale within the 6° or 3° zone is very close to 
the nominal value. The topographic maps of 
Canada, and of many other nations, use this pro­
jection. For this paper, the standard 6° Universal 
Transverse Mercator projection with a Central 
Meridian at 57°W was used, even when some

positions are more 10° away from the central 
meridian.

Lambert Conformai Conic
A conic projection in its simplest form can be visu­
alised by placing a cone on a globe with the apex 
of the cone above the North or South Pole and the 
cone tangent to the globe at a desired latitude. 
Then, consider that there is a light source at the 
center of the earth projecting the image of the 
globe onto the inside of the cone. Next, remove the 
cone, slit the side of it and roll out the cone as a 
flat sheet of paper. The map projection can be 
improved slightly by considering the cone as slicing 
the globe at two latitudes instead of being tangent 
at only one latitude. Parallels of latitude are con­
centric circles and meridians of longitude are 
equally spaced straight lines radiating from the 
centre of these circles.
The Lambert conformai conic projection is a further 
development of this map projection that is some­
times used for topographic maps or for state-plane 
coordinate systems - particularly if the coordinated 
region is narrow North-South and broader East- 
West. The use of this map projection has not 
devolved into universal sets of standard parallels, 
as has the UTM system's selection of map projec­
tion constants. In deciding what standard parallels 
to use, it is usual to determine the minimum and 
maximum latitudes within the mapping zone, cal­
culate one-sixth the angular distance between 
those extremes, add that value to the minimum 
and subtract it from the maximum and then round 
off the two values. In the examples in this study, 
two sets of standard parallels were selected; one 
following this rule; namely, 42°N and 50°N, and the 
other being a totally inappropriate set; namely, 
10°N and 20°N.

Polyconic
As the name implies, a polyconic projection can be 
visualized as a series of cones, all tangent to their 
particular parallel of latitude. The Central Meridian 
is a straight line; all other meridians are concave 
on the side towards the central meridian. All paral­
lels of latitude, except the Equator, are arcs of cir­
cles. A whole globe can be mapped on this projec­
tion but it is normally only used in large-scale 
(small area) applications. One of the advantages of 
the projection is the fact that it can be computed 
by hand - as Canadian hydrographers did for years 
in the preparation of field sheets (the name used



for large-scale plans of all the soundings and 
shoreline detail compiled during a survey). For this 
study, a Central Meridian of 55°W has been used - 
purposely not picking one symmetrical to the data 
set.

Polar Stereographic
Stereographic projection can be visualized as a 
flat sheet of paper placed tangent to a globe at a 
location and having a light source at the point dia­
metrically opposite to the point of tangency. A 
stereographic projection map is conformai, in that 
the instantaneous scale is the same in all direc­
tions. A hemisphere is sometimes shown in 
atlases using a stereographic projection map - 
greatly exaggerating areas near the edges. 
Nautical charts of polar regions often use polar 
stereographic projection (point of tangency at the 
Pole) instead of Mercator projection because the 
Mercator projection is badly distorted in those 
areas.

Gnomonic
Gnomonic projection can be visualized as a flat 
sheet of paper placed tangent to a globe at a loca­
tion and having a light source at the center of the 
earth. It is impossible to show a whole hemi­
sphere on a gnomonic projection map. Since gno­
monic maps are often prepared only at small 
scales, the earth is assumed to be spherical 
rather than ellipsoidal. The advantage of the gno­
monic projection map is the fact that great circle 
routes are straight lines. This was important dur­
ing the Second World War when the Allies tried to 
locate enemy ships by plotting the radio direction 
bearings on the same radio message from sepa­
rated stations. Having a map projection that 
showed great circle routes (the probable route of 
the radio signal) as straight lines was important 
when the targeted ships were in the middle of the 
ocean. In researching for this paper, the author 
could only find the formulae for conversion of lati­
tudes and longitudes to map sheet orthogonal (X, 
Y) coordinates using the spherical earth assump­
tion. For this paper, a point of tangency at 42°N, 
55°W was used. The radius of the assumed spher­
ical earth was:

Radius = V(R • N) evaluated at 42°N 
= 6,275,898.428 m.

Where:R = Radius of curvature in the Meridian, and 
N = Radius of curvature in the Prime Vertical.

Two Studies

There are two studies that can be done using the 
strict equidistance data set from the first part of 
the paper. We can look at how well the map projec­
tion line compares to the strict equidistance line, 
and how well a manually constructed equidistance 
line (using plane geometry techniques on a map 
sheet) compares with the strict equidistance line.

Comparison of Map Projection Straight Line 
with Strict Equidistance Line
First, let us look at how well the map projection 
shows the strict equidistance line as a straight line. 
This is similar to plotting the two end points of an 
equidistance line (950 n.m. apart) on the map sheet 
and drawing the straight line between them and 
comparing that line to rigorously plotting all the inter­
mediate points along the strict equidistance line. In 
this exercise, the map sheet orthogonal coordinates 
(the X, Y coordinates) were computed for the points 
on the strict equidistance line (points ‘A ’ to ‘X ’) for a 
map sheet of a certain scale - usually about 
1:100,000 to a precision of 0.0001 millimetres (1 
cm on the earth’s surface). Using the map sheet 
coordinates of ‘A’ and ‘X ’ to develop the equation of 
the straight line on the map projection, the perpen­
dicular distance off the line of the remaining equidis­
tance points (‘B’ through ‘W’) was calculated, and 
converted that back to distances on the earth’s sur­
face. The full data set is given in Appendix B, but is 
summarised in Table 2.
Even with the earth being assumed as a sphere, the 
gnomonic projection (which portrays great circles as 
straight lines) shows the strict equidistance line as 
a straight line significantly better than do the other 
projections. When one considers these numbers as 
a function of the dimensions of a 1:1,000,000 map 
sheet, the line is 1.8 metres long and the line devi­
ates from being straight by just 0.15 mm. This is 
because, as was discovered above, the strict 
equidistance line and the geodesic are within 33 mil­
limeters of each other over a length of 950 n.m., 
and the geodesic is the ellipsoid’s version of the 
sphere’s great circle. The Lambert conformai conic 
(with appropriately selected standard parallels) 
ranks second, and Transverse Mercator ranks third. 
For several of the projections, the distances off the 
line are approximate since the projection is non-con- 
formal. Where possible, the instantaneous scale at 
the equidistance point locations has been consid­
ered, not just the nominal scale. What is evident



 ̂ Table gives the maximum distance of the strict equidistance line off 
! the straight line on the map projection between the known end 

points of the equidistance line.

Map Projection Maximum distance of strict equidis­
tance line off straight line on map 
projection between ends 950 n.m. 
apart

Cylindrical 
Standard Parallels 
= 42°N, 42°S

70.6 km

Mercator 45.0 km
Lambert Conformai Conic, 
Std. Parallels 10°N, 20°N

28.9 km

Polar Stereographic 17.1 km
Polyconic, Central 
Meridian 55°W

3.0 km

Transverse Mercator, 
Central Meridian == 57°W 1.2 km
Lambert Conformai Conic, 
Std. Parallels 42°N, 50°N

0.6 km

Gnomonic,
Point of tangency 
= 42°N, 55°W 0.14 km

Table 2

from viewing the whole data sets in Appendix B is 
that these separations of the strict equidistance line 
from the straight line on the map 
projection are very much a func­
tion of the parameters used in the 
map projection. Often the equidis­
tance line is a simple parabola 
from one end to the other, but 
some of the lines are 'S ’ shaped 
curves.

expert should use proper geo­
detic formulae to determine the 
equidistance line. The question 
being addressed here is how 
well this manual construction 
using plane Euclidean geometry 
(or analytical geometry) can 
replicate the desired line. 
Knowing the geographic posi­
tions of the basepoints used to 
calculate the strict equidistance 
line, their map sheet orthogonal 
coordinates (X, Y) were deter­
mined and the algebraic equa­
tion of the right bisector of the 
line between the two base­
points. Using that equation, the 
perpendicular distance off the 
line of all the known points on 
the strict equidistance line ( ‘A ’ 
through ‘X ’) was calculated. The 
results are listed in Appendix C 
and summarised in Table 3.
The Lambert Conformai Conic, if 
using standard parallels appro­

priate for the area in question, produces the best 
results. Transverse Mercator ranks second.

Comparison of the Right 
Bisector on the Map 
Projection with the Strict 
Equidistance Line
If, for example, one had the base­
points of the two States on a map, 
one could construct the right 
bisectors that make up the 
equidistance line between the 
appropriate basepoints. Technical 
experts will often do this as expe­
diency when someone wishes to 
know, in a broad sense, the loca­
tion of the equidistance line. 
However, when the line has to be 
computed precisely, the technical

Table gives the maximum distance of the strict equidistance line 
off the graphical right bisector on the map projection between the 
basepoints that defined the strict equidistance line.

Map Projection

 ̂ v -  ̂ ^

Maximum distance of strict equidis 
tance line off the graphical right 
bisector on the map projection 
between the basepoints that defined 
the strict equidistance line

Cylindrical 
Standard Parallels 
= 42°N, 42°S

145 km

Mercator 49.5 km
Lambert Conformai Conic, 
Std. Parallels 10°N, 20°N

32.7 km
-

Polar Stereographic 17.8 km
Poiyconic, Central 
Meridian 55°W

5.6 km

Gnomonic,
Point of tangency 
= 42°N, 55°W

4.1 km

Transverse Mercator, 
Central Meridian = 57°W

2.4 km

Lambert Conformai Conic, 
Std. Parallels 42°N, 50°N

1.6 km

Table 3



Point Latitude Strict
Equidistance

Geodesic Normal 
Section 
A to X

Normal 
Section 
X to A

Rhumb
Line

■

Great
Circle

A 51° 30’N 67° 26’ 36.6269”W given given given given given
B 51° OO'N 66° 20' 26.8935”W 66° 29’ 

26.89281’’W 
0.008 m NE

66° 29' 
26.76193”W 
1.6 m NE

666 20’ 
27.1774”W 
3.5 m SW

66° 40’ 
00.813’’W 
8,852 m SW

66° 29’ 
29.0844”W 
27 m SW

n r '50° 30'N 65° 34’ 20.3056”W 65° 34' 
20.30466’W 
0.012 m NE

65* 34’ 
20.0529”W 
3.3 m NE

65* 34’ 
20.8163”W 
6.6 m SW

65° 53’ 
55.126”W 
16,580 m SW

65° 34' 
24.3238’’W 
52 m SW

D....... 5Ô6 OO’N 64° 41’ 08.0788"W 646 41' 
08.07751’W 
0.017 m NE

64° 41’ 
07.7153”W 
4.8 m NE

W T - T "  
08.7674”W 
9.1 m SW

65° 08' 
18.722”W 
23,255 m SW

64° 41' 
13.6020”W 
73 m SW

E ' 49° 30'N 63° 49’ 42.3584’’W 63° 49’ 
42.35688’’W 
0.021 m NE

63° 49’ 
41.8949”W 
6.3 m NE

"S3® 49’ 
43.1828”W 
11.1 m SW

64° 23' 
10.787’ W 
28,939 m SW

63° 49’ 
49.1003”W 
91 m SW

? 49° OO'N 62° 59’ 56.0877"W 62° 59’ 
56.08596’’W 
0.024 m NE

62° 59’ 
55.5354”W 
7.6 m NE

62° 50' 
57.0110''W 
12.7 m SW

63° 38’ 
30.536”W 
33,686 m SW

636 00’ 
03.7923”W 
106 m SW

G 48° 30’N 62° 11' 42.8984"W 62° 11’ 
42.89649’’W 
0.027 m NE

62° 11’ 
42.2685”W 
8.9 m NE

624 11' 
43.8886”W 
14.0 m SW

62° 54’ 
17.213”W 
37,548 m SW

62* 11’ 
51.3358”W 
119 m SW

H 48° OO'N 61° 24’ 57.0201^ 61° 24' 
57.01810"W 
0.029 m NE

61° 24’ 
56.3245 "VV 
10.0 m NE

61° 24’ 
58.0503”W 
14,8 m SW

62* 10’ 
30.086”W 
40,570 m SW

'6.14 25'........
05.9832”W 
129 m SW

47° 30'N 60" 39’ 33.2048”W 606 39' 
33.20270"W 
0.031 m NE

60° 39’ 
32.4550' W 
11.0 m NE

60° 39’ 
34.2511”W 
15.4 m SW

61° 27’ 
08.451’’W 
42,791 m SW

60° 39’
42.5059"VV 
136 m SW

47° OO’N 59° 55' 26.6629’’W 5S6 5S’ 
26.66072”W 
0.033 m NE

25.8712"W 
11.8 m NE

27.7045"W 
15.6 m SW

11.627”W 
44,250 m SW

36.1316’ W 
142 m SW

K 46° 30'N 59° 12’ 33.00928”W 59° 12' 
33.00712"W 
0.033 m NE

59° 12' 
32.1880"W 
12.5 m NE

59° 12’ 
34.0286”W 
15.5 m SW

60° 01’ 
38.954'W 
44,982 m SW

59° 12' ' 
42.4904”W 
144 m SW

L 46° OO’N 58° 30' 48.21746”W 58° 30' 
48.21531”W 
0.033 m NE

58° 30’ 
47.3790”W 
13.0 m NE

58° 30’ 
49.1997’’W 
15.2 m SW

59° 1 9 '.......
29.798”W 
45,017 m SW

58° 30' 
57.5690”W 
145 m SW

M 45° 30’N 57° 50' 08.5798"W 57° 50' 
08.57774”W 
0.032 m NE

57° 50’ 
07.7371”W 
13.3 m NE

57° 50' 
09.5118”W 
14.7 m SW

58° 37' 
43.541”W 
44,385 m SW

57° 50' 
17.6716”W 
143 m SW

N 45* OO'N 57° 10’ 30.6737”W 57° 10’ 
30.67174”W 
0.031 m NE

57° 10' 
29.8394”W 
13.4 m NE

57* 10’
31.5449''W 
14.0 m SW

57° 56’ 
19.589”W 
43,113 m SW

57° 10’ 
39.3861’’W 
140 m SW

0 44° 30'N 56° 31’ 51.3320”W 56° 31’ 
51.33012"W 
0.031 m NE

56° 31’ 
50.5191”W 
13.2 m NE

56° 31'
52.1334’’W 
13.0 m SW

57° 15’............
17.364”W 
41,226 m SW

56° 31'..........
59.5547”W 
134 m SW

p 44° OO’N 55° 54’ 07.6172”W 55° 54’
07.61550"W 
0.028 m NE

1¾¾0 154.' 
06.8390’’W 
12.9 m NE

55° 54’ 
08.3414’’W 
12.0 m SW

56° 34’ 
36.308”W 
38,747 m SW

55° 54’ 
15.2483”W 
126 m SW

Q 43° 30’N 55° 17’ 16.79938’’W 55° 17' 
16.79778”W 
0.027 m NE

55° 17’ 
16.0695”W 
12.2 m NE

55° 17’ 
17.4406”W 
10.8 m SW

55° 54’ ' 
15.879”W 
35,699 m SW

55° 17’ 
23.7445”W 
117 m SW

R 43° OO’N 54° 41’ 
16.3360’’W

54° 41' 
16.33456”W 
0.025 m NE

54° 41’ 
15.6680”W 
11.4 m NE

5¾4 41' 
16.8897”W 
9.4 m SW

55° 14' 
15.553”W 
32,102 m SW

54°41’ 
22.5077”W 
105 m SW

S 42s" 30'N 54° 06’ 03.8549”W 5’4° 061... ■"
03.85370”W 
0.021 m NE

54° 06’ 
03.2625’’W 
10.2 m NE

54s 06’ 
04.3181’’W 
8.0 m SW

546 34’ 
34.820”W 
27,975 m SW

54° 06’ 
09.1717"W 
92 m SW

T 426 OO'N 53° 31' 37.1390”W 53° ’ 
37.13800”W 
0.018 m NE

53° 31’ 
36.6362"W 
8.8 m NE

S34 31’---------
37.50955’’W 
6.5 m SW

53° 55’ 
13.188”W 
23,337 m SW

; ■..........
41.5251''W 
77 m SW

U 41° 30’N 52° 57’ 54.11238”W 526 57’ 
54.11161”W 
0.014 m NE

52° 57' 
53.7136"W 
7.1 m NE

52° 57r 
54.38934”W 
4.9 m SW

53° 16’ 
10.177”W 
18,204 m SW

57.4972"W 
60 m SW

V 41° OO’N 52° 24’ 52.82834''W 52° 24'
52.82785”W 
0.009 m NE

52° 24' 
52.5476”W 
5.0 m NE

52° 24' 
53.08887"W 
4.7 m SW

52° 37’ 
25.322”W 
12,593 m SW

52° 24' 
55.1455”W 
42 m SW

w 40° 30'N 51° 52’ 31.4588”W 51° 52’ 
31.45848’’W 
0.006 m NE

51° 52' 
31.3109’’W 
2.7 m NE

51° 52’ 
31.54954"W 
1.6 m SW

516 58’ 
58.170’’W 
6,521 m SW

51° 52' 
32.6464”W 
22 m SW

X 40° OO'N 51° 20’ 48.2839"W given given given given given
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Point

M s g s

Cylindrical
Standard
Parallels=
42°N,
42°S

Mercator Transverse 
Mercator, 
Central 
Meridian 
=. 57°W

Lambert 
Conformai 
Conic, Std. 
Parallels 
42°N,
50°N

Lambert 
Conformai 
Conic, Std. 
Parallels 
10°N,
20°N

Polyconic
Central
Meridian
55°W

Polar
Stereo-
graphic

Gnomonic, 
Point of 
tangency = 
42°N, 55°W

A given given given given given given given given
B 14.5 km 8.9 km -0.40 km 0.27 km 5.8 km -0.80 km 2.9 km 0.03 km
C 27.0 km 16.5 km -0.72 km 0.45 km 10.9 km -1.46 km 5.6 km 0.05 km
D 37.6 km 23.3 km -0.94 km 0.56 km 15.2 km -1.98 km 8.0 km 0.07 km
E 46.6 km 28.9 km -1.09 km 0.61 km 18.9 km -2.38 km 10.1 km 0.09 km
F 54.0 km 33.7 km -1.18 km 0.61 km 21.9 km -2.66 km 11.9 km 0.11 km
G 60.0 km 37.5 km -1.22 km 0.58 km 24.4 km -2.86 km 13.4 km 0.12 km
H 64.5 km 40.6 km -1.21 km 0.51 km 26.3 km -2.96 km 14.6 km 0.13 km
1 67.7 km 42.8 km -1.16 km 0.41 km 27.6 km -2.98 km 15.6 km 0.14 km
J 69.8 km 44.2 km -1.09 km 0.30 km 28.5 km -2.94 km 16.4 km 0.14 km
K 70.6 km 45.0 km -0.98 km 0.18 km 28.9 km -2.85 km 16.9 km 0.14 km
L 70.4 km 45.0 km -0.86 km 0.06 km 28.8 km -2.70 km 17.1 km 0.14 km
M 69.1 km 44.4 km -0.73 km -0.07 km 28.4 km -2.52 km 17.1 km 0.14 km
N 66.9 km 43.1 km -0.60 km -0.18 km 27.5 km -2.30 km 16.8 km 0.14 km
0 63.7 km 41.2 km -0.46 km -0.29 km 26.2 km -2.06 km 16.3 km 0.13 km
P 59.6 km 38.7 km -0.33 km -0.38 km . 24.6 km -1.80 km 15.5 km 0.12 km
Q 54.7 km 35.7 km -0.20 km -0.44 km 22.6 km -1.53 km 14.5 km 0.12 km
R 49.0 km 32.1 km -0.10 km -0.49 km 20.2 km -1.26 km 13.2 km 0.10 km
S 42.5 km 28.0 km -0.01 km -0.50 km 17.6 km -1.00 km 11.6 km 0.09 km
T 35.4 km 23.3 km 0.06 km -0.48 km 14.6 km -0.75 km 9.8 km 0.08 km
U 27.5 km 18.2 km 0.10 km -0.42 km 11.4 km -0.52 km 7.8 km 0.06 km
V 18.9 km 12.6 km 0.10 km -0.33 km 7.9 km -0.31 km 5.4 km 0.04 km
w 9.8 km 6.5 km 0.07 km -0.19 km 4.1 km -0.14 km 2.9 km 0.02 km
X given given given given given given given given

*) dist
)

ances apprtjximate sine
)

e non-conform al projection
) /

2) distances not corrected for scale factor
3) distances approximate since non-conformal projection
4) distances not corrected for scale factor, also non-conformal projection
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Conclusions

Each study produced its own conclusion. There are 
also some conclusions drawn from an overall evalua­
tion.
First, once the turning points of an equidistance 
line have been determined, then the geodesic line 
is so close to the equidistance line between those 
turning points that the difference is insignificant. 
Second, the equidistance line between two base- 
points can be computed on an ellipsoid by finding 
the mid-point along the geodesic between them, 
and then computing the geodesic that has an initial 
azimuth at the mid-point exactly 90° to the instan­
taneous azimuth of the line joining the two base- 
points at the mid-point.
Third, the gnomonic map projection, even if assum­
ing a spherical earth, shows the equidistance line 
between two points that are known to be equidis­

tant from the same basepoints as a straight line 
better than any other projection tested. This is 
because a gnomonic projection is designed to 
show all great circles as straight lines.
Fourth, in the one example tested (and may not be 
true for all occasions), the Lambert conformai conic 
projection was better than the other map projections 
for use with Euclidean plane geometry techniques to 
construct the equidistance line on a map sheet. 
However, for any reasonable amount of precision, par­
ticularly with long lines involved, it is recommended that 
points be computed mathematically along the equidis­
tance line to alleviate problems with map projections. 
Fifth, the normal map projections used for nautical 
charts -  Mercator and polar stereographic -  are not 
well suited for displaying the equidistance line accu­
rately. Given other considerations, such as propor­
tionality of areas, consideration might be given to plot­
ting trial lines on equal-area type map projections.



That could be the subject for further study since not 
one of those map projections was investigated in this 
study since they are not commonly used for nautical 
charts or topographic maps. Frankly, the author would 
need to search out the mathematical formulae for 
those projections.

Appendix C (Page 34)

The data given is the distance of strict equidis­
tance points off the graphical right bisector on 
each map projection between the basepoints that 
defined the strict equidistance line.

Appendix A (Page 32)

The location of points from ‘A ’ to ‘X ’ on lines of var­
ious geometric properties. The points on the strict 
equidistance line are exactly equidistant from 
45°N, 60°W and 47°N, 57°W.

Appendix B (Page 33)

The data given is the perpendicular distance of 
strict equidistance points ‘B’ through ‘W ’ off the 
straight line on the map projection between strict 
equidistance points ‘A ’ and ‘X ’.

Sources

Bomford, Brig. G. (1962). Geodesy, Oxford Univer­
sity Press.

Clarke, A.R.. (1880). Geodesy, Oxford, (as refer­
enced in Bomford).

International Hydrographic Organization. (1993). A 
Manual on Technical Aspects of the United Nations 
Convention on the Law of Sea, Special Publication 
No.- 51, 3rd Edition, International Hydrographic 
Bureau, Monaco.

Point! Cylindrical Mercator Transverse Lambert Lambert Polyconic Poiar Gnomonic,
Standard Mercator, Conformai Conformai CM Stereo­ Point of
Para!tels= Central Conic, Std. Conic, Std. 55°W graphic tangency =
42°N, Meridian Parallels Parallels 42°N, 55°W
42°S = 57°W 42°N,

50°N
10°N, 
20° N

A -145 km 49.5 km 2.41 km -1.57 km -32.7 km 5.58 km -17.8 km 3.81 km
B -123 km 40.4 km 1.85 km -1.16 km -26.6 km 4.50 km -14.9 km 3.44 km
C -103 km 32.4 km 1.40 km -0.83 km -21.3 km 3.57 km -12.2 km 3.08 km
D -85 km 25.5 km 1.03 km -0.58 km -16.7 km 2.78 km -9.8 km 2.72 km
E -70 km 19.5 km 0.74 km -0.39 km -12.7 km 2.12 km -7.7 km 2.36 km
F -55 km 14.5 km 0.51 km -0.25 km -19.4 km 1.57 km -5.9 km 2.01 km
G -43 km 10.4 km 0.34 km -0.15 km -6.7 km 1.12 km -4.3 km 1.66 km
H -32 km 7.1 km 0.21 km -0.08 km -4.6 km 0.77 km -3.1 km 1.31 km
1 -22 km 4.5 km 0.12 km -0.04 km -2.9 km 0.49 km -2.1 km 0.97 km
J -14 km 2.8 km 0.07 km -0.02 km -1.8 km 0.28 km -1.3 km 0.63 km
K -8 km 1.8 km 0.04 km -0.01 km -1.1 km 0.13 km -0.8 km 0.29 km
L -1 km 1.4 km 0.03 km 0.00 km -0.9 km 0.03 km -0.6 km -0.05 km
M 4 km 1.8 km 0.03 km 0.01 km -1.1 km -0.03 km -0.6 km -0.39 km
N 8 km 2.7 km 0.04 km 0.02 km -1.7 km -0.05 km -0.8 km -0.73 km
0 10 km 4.3 km 0.05 km 0.04 km -2.7 km -0.05 km -1.4 km -1.06 km
P 12 km 6.5 km 0.05 km 0.08 km -4.1 km -0.03 km -2.1 km -1.40 km
Q 13 km 9.2 km 0.05 km 0.14 km -5.8 km 0.00 km -3.2 km -1.73 km
R 13 km 12.5 km 0.03 km 0.22 km -7.9 km 0.04 km -4.4 km -2.06 km
S 12 km 16.3 km -0.00 km 0.34 km -10.2 km 0.07 km -6.0 km -2.40 km
T 11 km 20.6 km -0.06 km 0.48 km -12.9 km 0.09 km -7.8 km -2.73 km
U 8 km 25.4 km -0.14 km 0.66 km -15.9 km 0.09 km -9.8 km -3.06 km
V 5 km 30.7 km -0.26 km 0.88 km -19.1 km 0.07 km -12.2 km -3.40 km
w 2 km 36.4 km -0.41 km 1.14 km -22.6 km 0.02 km -14.6 km -3.73 km
X -3 km

l)
42.6 km -0.61 km

2)
1.44 km -26.4 km -0.07 km

3)
-17.6 km -4.06 km

4)
‘) distances approximate since non-conformal projection
2) distances not corrected for scale factor
3) distances approxi-mate since non-conformal projection
4) distances not corrected for scale factor, also non-conformal projection
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National Geodetic Survey. (1986). Geodetic 
Glossary. U.S. Dept, of Commerce, Rockville, MD. 
Sebert, L.M. Edward Wright and the Mercator 
Projection, Geomatica, Vol. 55, No. 2, Ottawa, 
2001

Sobel, Dava. (1995). Longitude, Walker and Com­
pany, New York.

Sodano, E.M.. A Rigorous Non-Iterative Procedure 
for very rapid Inverse Solution of very long 
Geodesics, Bulletin Géodésique, Vol. 48. 1958.
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