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The ca. 620 Ma Huntington Mountain pluton and East Bay Hills Group, which comprise part of the 
Avalonian Mira terrane, Cape Breton Island, Nova Scotia, Canada, are characterized by pervasive propylitic 
alteration (chlorite, epidote, sericite, and Fe-Ti oxides) and low δ18O values (–3.8 to +6.2‰). This alteration is 
a product of interaction with hydrothermal fluids of meteoric and/or meteoric-seawater mixed origin at ~300 
°C over a range of water/rock (w/r) ratios. Locally, the propylitic alteration was further overprinted by quartz-
calcite-sericite alteration. Such samples have generally higher δ18OWR values (up to +9.5‰), reflecting interaction 
with evolved meteoric water at lower temperatures (~200 °C) and very low w/r ratios. The hydrothermal fluids 
responsible for widespread propylitic alteration of the Huntington Mountain-East Bay Hills complex (and regions 
beyond) likely entered the crust during initial rifting of the Mira terrane from Gondwana at ca. 575–550 Ma.
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Abstract

RÉSUMÉ

Le pluton du mont Huntington, apparu il y a quelque 620 Ma et la succession volcanique des collines East Bay, 
qui font partie du terrane Mira d’Avalon, sur l’île du Cap-Breton, en Nouvelle-Écosse, au Canada, se caractérisent 
par une altération propylitique envahissante (chlorite, épidote, séricite, et oxydes de fer et de titane), et des 
teneurs faibles en δ18O (−3,8 à +6,2‰). Cette altération est le résultat de l’interaction de fluides hydrothermaux 
d’origine mixte météorique ou météorique et d’eau de mer, ou des deux, à une température d’environ 300 °C, selon 
divers rapports eau/roche. Au plan local, une altération de quartz-calcite-séricite s’est superposée à l’altération 
propylitique. Ces échantillons ont en règle générale des valeurs de δ18OWR supérieures (qui peuvent atteindre 
+9,5‰), ce qui rend compte de l’interaction de l’eau météorique évoluée à de basses températures (environ 200 °C) 
et de rapports eau/roche très faibles. Les fluides hydrothermaux à l’origine de l’altération propylitique très étendue 
du complexe du mont Huntington et des collines East Bay (et des régions au-delà) ont probablement pénétré la 
croûte terrestre au cours du soulèvement initial du terrane Mira, à l’époque du continent de Gondwana, il y a de 
cela entre 575 et 550 Ma.

[Traduit par la redaction]
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West Avalonia forms a fragmented belt along the 
eastern margin of the northern Appalachian orogen from 
Newfoundland to Massachusetts and records the complex 
tectonic history of several late Proterozoic magmatic arcs that 
evolved proximal to Gondwana (Murphy et al. 1990; Barr 
et al. 1998). Like other terranes in West Avalonia, the Mira 
terrane of southeastern Cape Breton Island is composed of 
mainly late Proterozoic volcanic-plutonic-sedimentary belts 
overlain by younger sedimentary cover sequences (Fig. 1). 

introduction The tectonic history of the Mira terrane, and especially its 
relationship to the Ganderian Bras d’Or and Aspy terranes 
of Cape Breton Island (Fig. 1), have been the subject of 
longstanding debate (Barr and Raeside 1989; Murphy et al. 
1990; Barr et al. 1998). Potter et al. (2008a) added a new 
dimension to that discussion by showing the Mira terrane 
to have a distinctive low-18O signature relative to other peri-
Gondwanan terranes of Cape Breton Island, and Potter 
et al. (2008b) expanded that observation to other West 
Avalonian terranes. Potter et al. (2008a, b) concluded that 
the Avalonian terranes underwent post-magmatic oxygen-
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isotope exchange with meteoric-dominated hydrothermal 
fluids across the region, and proposed that these fluids 
infiltrated the crust during regional transtensional faulting 
associated with initial rifting of Avalonia at ca. 600–550 Ma.

Here we evaluate the hypothesis of Potter et al. (2008a, 
b) through petrographic and stable isotope analysis of the 
ca. 620 Ma Huntington Mountain pluton and associated 
East Bay Hills Group from the Mira terrane (Fig. 1). 
More detailed examination of a single plutonic-volcanic 
complex allows testing for local versus regional patterns 
of hydrothermal alteration and 18O-depletion that are 
essential in understanding the exact processes that lead 
to the noted 18O-depletion observed on a regional-scale 
in Potter et al (2008a, b). We also examine the origin(s) 
of the hydrothermal fluid, and whether its presence in the 
Huntington Mountain – East Bay Hills area added to the 
potential for base- and precious-metal mineralization, as 
is sometimes the case for such mineral deposits associated 
with porphyry and epithermal systems (Lynch et al. 1990; 
Sillitoe and Hedenquist 2003; Richards 2009).

GEOLOGICAL SETTING

The Mira terrane is composed of mainly volcanic 
and plutonic rocks that form linear northeast-southwest 

trending belts separated by regional-scale faults and younger 
sedimentary cover sequences (Fig. 1). The majority of the 
Mira terrane rocks can be subdivided into four magmatic 
associations: the ca. 680 Ma Stirling Group, the ca. 620 Ma 
volcanic-plutonic units, which include the East Bay Hills 
Group and Huntington Mountain pluton, the ca. 575–560 
Ma Coastal belt, and the ca. 380 Ma Devonian plutons (Barr 
et al. 1996).

The ca. 680 Ma Stirling Group consists primarily of 
andesitic to basaltic lapilli tuff with interbeds of tuffaceous 
arenite and laminated siltstone. Barr et al. (1996) interpreted 
it to have formed in an extensional basin within a volcanic 
arc. The Stirling Group contains zones of pyrite-rich, 
laminated litharenite-siltstone-chert-dolomite, which is host 
to the Mindamar Zn-Pb-Cu-Ag-Au deposit (interpreted 
as an exhalative volcanogenic massive sulphide deposit by 
Barr et al. 1996) (Fig. 1). The ca. 620 Ma volcanic-plutonic-
sedimentary belts (East Bay Hills and Huntington Mountain 
– this study, Coxheath Hills, and Pringle Mountain Group 
and Chisholm Brook plutonic suite) are composed mostly of 
granitic to granodioritic rocks and andesitic to rhyolitic tuffs 
and flows (see next section for detailed descriptions). Barr 
et al. (1996) interpreted these high-K, calc-alkaline rocks 
to have formed in a subduction-related convergent margin 
setting. Mineralization includes sporadic Cu anomalies 
within an extensive shear zone in the Sporting Mountain 

Fig. 1. Geological map of the Mira terrane, Cape Breton Island (modified from Barr et al. 1996), and the location 
of the Huntington Mountain pluton and East Bay Hills Group. Inset map shows major components of the northern 
Appalachian orogen after Hibbard et al. (2006). Abbreviations: A, Avalonia; G, Ganderia; L, Laurentia; M, Meguma; 
PG, peri-Gondwanan; PL, peri-Laurentian terranes.
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Geology of the Huntington Mountain area

METHODSpluton and the Coxheath porphyry-style Cu-Mo-Au deposit 
located in the Coxheath Hills Group and comagmatic 
Coxheath Hills pluton (Barr et al. 1996; Lynch and Ortega 
1997; Kontak et al. 2003) (Fig. 1).

The volcanic-sedimentary sequences of the ca. 575–
560 Ma Coastal Belt are subdivided into the Fourchu and 
Main-à-Dieu groups. The Fourchu Group consists of mainly 
dacitic tuffs and flows, with minor basaltic to rhyolitic 
tuffs and flows and tuffaceous sedimentary rocks, and was 
interpreted by Barr et al. (1996) to represent a volcanic-
arc setting. The Main-à-Dieu Group consists of mainly 
tuffaceous sedimentary and epiclastic rocks, with minor 
basaltic and rhyolitic flows, interpreted by Barr et al. (1996) 
to have formed in an intra-arc extensional setting. Given 
their close stratigraphic association, the Fourchu and Main-
à-Dieu groups are inferred to be different facies formed more 
or less coevally (Barr et al. 1998). The ca. 380 Ma Devonian 
plutons are composed mostly of monzogranite and are 
interpreted to have formed in an anorogenic, within-plate 
setting (Barr and Macdonald 1992).

The ca. 620 Ma Huntington Mountain pluton intruded 
the northeastern part of the East Bay Hills Group (Fig. 
1). The pluton is dominated by diorite, but also contains 
granodiorite, leucogranite, monzogranite, and syenogranite. 
The East Bay Hills Group forms an elongate belt along and 
inland from the southeastern shore of Bras d’Or Lake. 
This group is dominated by andesitic to dacitic rocks with 
lesser quantities of basaltic to rhyolitic tuffs and flows and 
epiclastic sedimentary rocks. Field relationships suggests 
that the Huntington Mountain diorite was emplaced first, 
followed by granodiorite, leucogranite, and syenogranite; 
the small body of monzogranite may have been emplaced 
at some time between the granodiorite and syenogranite 
(Barr et al. 1996). Earlier basaltic, andesitic-dacitic, and 
dacitic rocks in the East Bay Hills Group have a thermal 
overprint attributed to pluton emplacement. Minor pyrite, 
chalcopyrite, and malachite in the basaltic rocks are 
associated with the Huntington Mountain pluton (Barr et 
al. 1996). Later basaltic andesite and rhyolite are considered 
to be coeval with pluton emplacement as all units are dated 
at ca. 620 Ma (Barr et al. 1990; Keppie et al. 1990; Bevier et 
al. 1993). All rocks in the study area are characterized by 
some degree of post-magmatic alteration.

A representative range of pristine to moderately altered 
volcanic and plutonic rocks were collected (65 in total) in 
the Huntington Mountain area. These were discriminated in 
the field on the basis of visible turbid feldspar, veining, and 
alteration minerals (chlorite, epidote, quartz, calcite, pyrite, 
and ilmenite). The nature of the alteration was confirmed 
by petrographic examination of thin sections. A portion of 
each sample was crushed for mineral separation and powder 
X-ray diffraction (pXRD). Standard mineral separation 
techniques (magnetic and heavy liquid separation, hand-
picking) were used to isolate primary and secondary phases. 
Separate purity was assessed using high-brilliance pXRD 
(Rigaku rotating anode diffractometer, CoKα radiation at 
160 kV and 45 mA). Purity was better than 90% for most 
separates and >95% for quartz. Feldspar separates consisted 
of alkali feldspar, either albitic plagioclase or potassium 
feldspar, or mixtures of both.

Stable isotopic compositions are reported in δ-notation 
relative to VSMOW for hydrogen and oxygen and VPDB 
for carbon (Coplen 1996). Oxygen was liberated from 
silicates by overnight reaction with ClF3 at 550 °C in sealed 
Ni reaction vessels, following the method of Clayton and 
Mayeda (1963), as modified by Borthwick and Harmon 
(1982). The released oxygen was converted to CO2 over a 
red-hot carbon rod and its oxygen isotopic composition 
measured using a dual-inlet DeltaPlus XL stable isotope 
ratio mass-spectrometer. The δ18O values of an internal 
laboratory standard quartz, NBS-30 (biotite) and NBS-28 
(quartz) were +11.4 ± 0.2‰, +5.1 ± 0.1‰, and +9.7 ± 0.3‰, 
respectively, which compares well with their accepted values 
of +11.5‰, +5.1‰, and +9.6‰. Sample reproducibility was 
generally better than ±0.2‰.

Hydrogen was extracted from hydrous silicates following 
the methods of Bigeleisen et al. (1952), as modified by 
Vennemann and O’Neil (1993). Following drying at 105 °C 
overnight under vacuum, samples were heated to ~1200 °C 
using an oxygen-methane torch. Released hydroxyl groups 
were then converted to H2O by reaction with copper oxide 
at 400–600 °C, and H2O then reduced to H2 over Cr at 900 
°C. Stable hydrogen-isotope compositions were measured 
using a dual-inlet VG Prism-II stable isotope ratio mass-
spectrometer calibrated to VSMOW and SLAP using four 
in-house water standards. A δ2H value of –55 ± 5‰ was 
obtained for kaolinite KGa-1 (accepted value = –57‰). 
Sample reproducibility was generally better than ±5‰.

Calcite was placed in glass reaction vials and dried 
at 60 °C for 12 hours. It was then reacted under vacuum 
with orthophosphoric acid at 90 °C for 10 minutes using a 
MultiPrep autosampler attached to a dual-inlet VG Optima 
stable isotope ratio mass-spectrometer. During this study, 
laboratory standard calcite had δ18O and δ13C values of +26.2 
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± 0.1‰ and +0.7‰ ± 0.1‰, respectively (accepted values, 
+26.2‰ and +0.8‰). Sample reproducibility for both 
oxygen and carbon isotopic compositions was generally 
better than ±0.1‰.

RESULTS

Petrography

Plagioclase and hornblende are the main primary 
minerals in the Huntington Mountain diorite and 
granodiorite; K-feldspar, quartz, and biotite occur in 
lesser quantities. Primary phases in the leucogranite are 
dominantly perthitic K-feldspar, quartz, and plagioclase, 
and in the syenogranite, K-feldspar, quartz, and plagioclase. 
These rocks have undergone weak to strong secondary 
alteration. Basaltic to andesitic rocks of the East Bay Hills 
Group are typically aphanitic and massive, with slight to 
moderate porphyritic textures. Phenocrysts consist mostly 
of plagioclase and rarely, clinopyroxene. Plagioclase-rich 
groundmass is commonly overprinted by secondary phases 
and in a few localities, all primary features have been 
obscured. Dacite is typically aphanitic to weakly porphyritic, 
consisting mainly of plagioclase phenocrysts suspended in 
a plagioclase-rich groundmass with minor quartz. Dacite 
typically exhibits moderate to strong alteration. Rhyolite 
samples are dominated by ash to lapilli crystal tuff; aphanitic 
to weakly porphyritic flow-banded pyroclastic beds are also 
present. Rhyolite consists of feldspar microlites, quartz, and 
minor K-feldspar, and exhibits only weak alteration.

Three main alteration types were observed. Type 1 
consists of fine-grained chlorite, epidote, sericite, and Fe-Ti 
oxides (Figs. 2a, b, c), which are characteristic of propylitic 
alteration (Meyer and Hemley 1967). This alteration is 
widespread and varies in intensity from weak to strong 
(partial to complete replacement of primary phases). Type 2 
consists of fine- to coarse-grained, anhedral quartz, sericite, 
and calcite, with minor Fe-oxides. This moderate to strong 
alteration is highly localized, and has partially to completely 
replaced primary minerals and textures (Fig. 2d). Type 2 
alteration appears to overprint the propylitic alteration (Fig. 
2e). Type 3, which was observed only rarely, is typical of 
phyllic alteration (Meyer and Hemley 1967). Most primary 
minerals have been moderately to strongly overprinted by 
fine-grained euhedral quartz, sericite, and pyrite (Fig. 2f). 
Type 3 alteration occurs mainly in the contact zone between 
the Huntington Mountain pluton and East Bay Hills Group, 
suggesting its development during contact metamorphism. 
Contact metamorphic features in the East Bay Hills dacite, 
including hornfelsic texture and pyrite mineralization, were 
previously reported by Barr et al. (1996). Such alteration is a 

common product of interaction with magmatic-dominated 
fluids in the hottest parts of a hydrothermal system (~ 350–
500 °C; Harris and Golding 2002).

Stable isotope compositions

The δ18OWR results for the Huntington Mountain pluton 
range from –1.5 to +7.1‰ (Table 1a, Fig. 3a, 4): diorite 
and granodiorite, –1.5 to +4.5‰; syenogranite, –1.2 to 
+6.2‰; leucogranite, +3.8 to +7.1‰ (except for one sample, 
+0.2‰). Two leucogranite samples have δ2HWR values of –60 
and –56‰, whereas values are lower for other plutonic rock 
types (–78 to –61‰). The East Bay Hills Group has a wider 
range of δ18OWR values (–3.8 to +9.5‰) than the plutonic 
suite: rhyolite-andesite and dacite, –3.8 to +6.5‰; basaltic 
rocks, –1.9 to +9.5‰; rhyolite, +4.6 to +6.9‰ (Table 1b, Fig. 
3b). The δ2HWR values of the volcanic rocks range from –93 
to –70‰. In Figure 4 no clear pattern is observed between 
δ18OWR values and the intrusive sequence and/or rock types 
in this complex.

Primary quartz (qtz) in the plutonic rocks has δ18Oqtz 
values ranging from +0.5 to +7.0‰, with leucogranite having 
higher values (≥ +4.8‰) than other rock types. The pattern 
for alkali feldspar (fs) is similar (leucogranite δ18Ofs, +4.4 
to +6.0‰; other rock types, +1.4 to +4.6‰). Hornblende 
(hbl) has δ18Ohbl values of +1.4 to +5.5‰. The δ18O values for 
phenocrysts from volcanic samples also vary widely: quartz, 
–1.5 to +8.2‰; alkali feldspar, –0.3 to +6.5‰.

Chlorite (chl) δ18Ochl values vary widely: granodiorite, 
syenogranite and andesite, –6.3 to –4.0‰; diorite and 
leucogranite (–5.2 to +3.3‰). The δ2Hchl values for all rock 
types range from –77 to –69‰. Disseminated secondary 
quartz from a diorite sample affected by phyllic alteration 
has a δ18Oqtz value of +3.3‰, whereas values for basaltic to 
andesitic rocks and leucogranite affected by quartz-sericite-
calcite alteration are much higher (+11.1 to +15.1‰). 
Disseminated calcite (cal) from plutonic rocks has δ18Ocal 
values of +5.4 to +8.4‰, and from volcanic rocks, +5.8 to 
+11.7‰. Disseminated calcite from the plutonic rocks has 
δ13Ccal values of –3.8 to +0.1‰; values for the volcanic rocks 
are lower (–7.2 to –4.5‰).

Rare vein quartz associated with phyllic alteration of 
diorite has a δ18Oqtz value of –2.1‰. Veins are more abundant 
in the volcanic rocks, with δ18Oqtz values ranging from +6.1 
to +10.5‰. Vein calcite δ18Ocal and δ13Ccal values range from 
+6.0 to +14.3‰, and –7.4 to –3.2‰, respectively. As for the 
disseminated calcite, the vein calcite samples most enriched 
in 18O are also the most depleted of 13C.
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Fig. 2. Photomicrographs of the Huntington Mountain pluton and East Bay Hills Group: (A) CBI-
6-6-86, diorite partially replaced by chlorite-epidote-sericite-ilmenite; (B) CBI-6-6-87, diorite with 
replacement of biotite by chlorite-ilmenite; (C) CBI-6-6-39, porphyritic basalt with sericitized 
plagioclase, rare clinopyroxene phenocrysts, and epidote-chlorite-sericite alteration; (D) CBI-6-
6-11, basalt overprinted by quartz-calcite-sericite alteration; (E) CBI-6-6-25/26, chlorite-epidote 
overprinted by fine-grained quartz, which is overprinted in turn by calcite; and (F) CBI-6-6-103, 
diorite replaced by quartz-sericite-pyrite. Abbreviations: bt - biotite, cal - calcite, chl - chlorite, cpx - 
clinopyroxene, ep - epidote, hbl - hornblende, ilm - ilmenite, pl - plagioclase, py - pyrite, qz - quartz, 
ser - sericite.



Copyright © Atlantic Geology 2012Petts, Longstaffe, Potter, Barr and White: Regional hydrothermal alteration and 
18O-depletion of Huntington Mountain pluton...

Atlantic Geology       Volume 48      2012.. 59

Ta
bl

e 
1a

. O
xy

ge
n-

 a
nd

 h
yd

ro
ge

n-
iso

to
pe

 re
su

lts
 fo

r t
he

 H
un

tin
gt

on
 M

ou
nt

ai
n 

pl
ut

on
.

Sa
m

pl
e

M
ap

 U
ni

t
a A

lte
ra

tio
n

δ18
O

w
r

δ2 H
w

r
δ18

O
qt

z
δ18

O
fs

δ18
O

hb
l

δ18
O

ch
l

δ2 H
ch

l
δ18

O
se

r
δ2 H

se
r

δ18
O

ca
l

δ13
C

ca
l

C
BI

-8
-5

-2
3

Le
uc

og
ra

ni
te

1 
- w

ea
k

5.
9

-
6.

4
5.

2
-

b,
1 1.

0
-

-
-

-
-

C
BI

-6
-6

-8
1

Le
uc

og
ra

ni
te

1 
- w

ea
k

5.
8

-
6.

2
5.

0
-

b,
1 -1

.2
-

-
-

-
-

C
BI

-6
-6

-1
05

Le
uc

og
ra

ni
te

1 
- w

ea
k 

to
 m

od
er

at
e

3.
8

-5
6

4.
8

4.
4

-
b,

1 -3
.3

-
-

-
-

-
C

BI
-6

-6
-1

06
Le

uc
og

ra
ni

te
1 

- w
ea

k
5.

4
-

7.
0

5.
2

-
b,

1 -0
.2

-
-

-
-

-
d EB

91
-0

14
Le

uc
og

ra
ni

te
2 

- u
nd

et
er

m
in

ed
7.

1
-6

0
b 15

.1
6.

0
-

-
-

-
-

b 8.
4

b -3
.8

d F1
6C

-1
58

2
Le

uc
og

ra
ni

te
1 

- u
nd

et
er

m
in

ed
0.

2
-

-
-

-
-

-
-

-
-

-
C

BI
-6

-6
-5

4
Sy

en
og

ra
ni

te
1 

- w
ea

k 
to

 m
od

er
at

e
6.

2
-7

1
4.

3
3.

5
-

b,
1 -4

.8
-

-
-

-
-

C
BI

-6
-6

-5
5

Sy
en

og
ra

ni
te

1-
 m

od
er

at
e 

to
 st

ro
ng

1.
4

-6
1

0.
5

1.
8

-
b,

1 -6
.3

-
-

-
-

-
d F1

6C
-1

63
1

Sy
en

og
ra

ni
te

1 
- u

nd
et

er
m

in
ed

4.
3

-
-

-
-

-
-

-
-

-
-

d F1
6C

-1
63

5
Sy

en
og

ra
ni

te
1 

- u
nd

et
er

m
in

ed
-1

.2
-7

0
-

-
-

-
-

-
-

-
-

d F1
6C

-1
78

2
Sy

en
og

ra
ni

te
1 

- u
nd

et
er

m
in

ed
5.

5
-

-
-

-
-

-
-

-
-

-
C

BI
-8

-5
-2

1
G

ra
no

di
or

ite
1 

- m
od

er
at

e
-

-
1.

3
2.

9
-

b,
1 -4

.0
-

-
-

-
-

C
BI

-8
-5

-2
2

G
ra

no
di

or
ite

1 
- m

od
er

at
e

1.
2

-6
2

1.
5

3.
1

-
b,

1 -5
.3

-
-

-
-

-
C

BI
-8

-5
-2

5
D

io
rit

e
1 

- m
od

er
at

e
2.

7
-6

9
-

2.
5

3.
9

b,
1 -0

.8
b,

1 -7
3

-
-

-
-

C
BI

-8
-5

-2
6

D
io

rit
e

1 
- m

od
er

at
e

-
-

-
3.

6
-

-
-

-
-

-
-

C
BI

-8
-5

-2
7A

D
io

rit
e

1 
- w

ea
k 

to
 m

od
er

at
e

-
-

4.
8

3.
8

-
b,

1 -1
.7

-
-

-
-

-
C

BI
-8

-5
-2

7B
D

io
rit

e
1 

- w
ea

k 
to

 m
od

er
at

e
-

-
-

-
-

b,
1 -1

.0
-

-
-

-
-

C
BI

-6
-6

-5
6

D
io

rit
e

1 
- m

od
er

at
e 

to
 st

ro
ng

1.
7

-7
2

-
2.

5
1.

7
b,

1 -5
.2

b,
1 -7

3
-

-
-

-
C

BI
-6

-6
-8

2
D

io
rit

e
1 

- m
od

er
at

e
3.

8
-

-
3.

9
4.

6
b,

1 0.
1

-
-

-
-

-
C

BI
-6

-6
-8

3
D

io
rit

e
1 

- m
od

er
at

e
4.

5
-7

8
-

4.
3

5.
5

b,
1 3.

3
b,

1 -6
9

-
-

-
-

C
BI

-6
-6

-8
4

D
io

rit
e

1 
- m

od
er

at
e 

to
 st

ro
ng

2.
2

-
-

2.
4

3.
5

-
-

-
-

-
-

C
BI

-6
-6

-8
6

D
io

rit
e

1 
- m

od
er

at
e

3.
6

-6
9

-
4.

6
3.

3
b,

1 0.
6

b,
1 -7

7
-

-
-

-
C

BI
-6

-6
-8

7
D

io
rit

e
1 

- m
od

er
at

e
3.

6
-

-
3.

8
4.

5
-

-
-

-
-

-
C

BI
-6

-6
-1

02
D

io
rit

e
1 

- s
tr

on
g,

  2
 - 

w
ea

k,
 

1.
0

-
-

* 1.
4

1.
4

-
-

b,
1,

* 1.
4

b,
1,

* -7
3

b,
2 5.

4
b,

2 0.
1

3 
- m

od
er

at
e

C
BI

-6
-6

-1
03

D
io

rit
e

3 
- s

tr
on

g
1.

9
-

b,
3 3.

3
-

-
-

-
b,

1 2.
0

b,
1 -6

1
-

-
C

BI
-6

-6
-1

04
D

io
rit

e
1 

- s
tr

on
g,

 3
 - 

m
od

er
at

e 
-1

.5
-6

8
c,1

-2
.1

-
-

-
-

-
-

-
-

d F1
6C

-1
75

1
D

io
rit

e
1 

- u
nd

et
er

m
in

ed
3.

1
-

-
-

-
-

-
-

-
-

-

H
un

tin
gt

on
 M

ou
nt

ai
n 

pl
ut

on

N
ot

es
: c

al
 =

 c
al

ci
te

, c
hl

 =
 c

hl
or

ite
, f

s =
 fe

ld
sp

ar
, h

bl
 =

 h
or

nb
le

nd
e,

 q
tz

 =
 q

ua
rt

z,
 se

r =
 se

ric
ite

; a
 =

 a
lte

ra
tio

n 
ty

pe
s: 

(1
) p

ro
py

lit
ic

, (
2)

 q
ua

rt
z,

 se
ric

ite
 a

nd
 

ca
lc

ite
, a

nd
 (3

) p
hy

lli
c;

 b
 =

 d
iss

em
in

at
ed

 se
co

nd
ar

y 
m

in
er

al
; c

 =
 v

ei
n 

m
in

er
al

; d
 =

 p
re

vi
ou

sly
 re

po
rt

ed
 b

y 
Po

tte
r e

t a
l.

 (2
00

8a
); 

* =
 se

r>
fs

 m
ix

tu
re

 ta
ke

n 
fr

om
 

Ta
bl

e 
1b

.



Copyright © Atlantic Geology 2012Petts, Longstaffe, Potter, Barr and White: Regional hydrothermal alteration and 
18O-depletion of Huntington Mountain pluton...

Atlantic Geology       Volume 48      2012.. 60

Fig. 3. Distribution of δ18OWR  values for various rock types 
in the Huntington Mountain pluton (A) and the East Bay 
Hills Group (B).

DISCUSSION

Fluid composition

Most Huntington Mountain area samples have δ18OWR 
values that are lower than typical for “normal” (+6 to +10 
‰, Taylor 1974) igneous rocks, thus following the pattern of 
18O-depletion reported for the Avalon terrane by Potter et al. 
(2008a, b). Most commonly, igneous rocks with abnormally 
low δ18O values have experienced post-crystallization 
alteration (see Taylor 1974), but crystallization from a 
low-18O magma (see Taylor 1986; Bindeman and Valley 
2000) cannot be ruled out a priori. In the latter case, high-
temperature oxygen isotopic equilibrium should produce 
primary compositions in which (i) δ18Oqtz > δ18Ofs > δ18Ohbl, 
and (ii) values of Δ18Oqtz-fs and Δ18Ofs-hbl (Δa - b = δa – δb) are 
small and positive (~+1 to +2 ‰, Taylor and Epstein 1962). 
Hydrothermally altered igneous rocks, by comparison, 
typically lack consistent high-temperature oxygen-isotope 
equilibrium between coexisting primary phases (Criss 
and Taylor 1986; Liu 2000). While some samples from the 

study area have Δ18Omineral1-mineral2 values within the range 
of magmatic systems, others – most particularly diorite, 
granodiorite, and syenodiorite – display oxygen isotopic 
disequilibrium, as manifested by negative values for  
Δ18Oqtz-fs and Δ18Ofs-hbl. Such reversals are a hallmark of post-
crystallization, hydrothermal alteration.

The leucogranite and rhyolite exhibit the least 
alteration and, except for one sample, have relatively high 
δ18OWR values (≥ +4‰); samples of mafic to intermediate 
composition, in which mineral phases are more susceptible 
to alteration, generally have lower δ18OWR values (Fig. 3, 
Table 1a, b). The few samples retaining mineralogical and 
textural characteristics of phyllic alteration have among the 
lowest δ18OWR (<2‰) and δ18Oqtz values (<3‰, Fig. 5, Table 
1a, b), despite their potential association with magmatic 
fluids during contact metamorphism. The isotopic results 
suggest that these samples were overprinted by low-18O 
hydrothermal fluids.

Samples affected by moderate to strong propylitic 
alteration display the largest range of δ18OWR values, with 
the majority falling between –2 and +4‰ (Fig. 5); primary 
quartz affected by propylitic alteration likewise has a wide 
range of δ18Oqtz values (–2 to +7‰, Table 1a, b). Samples 
moderately to strongly affected by the later quartz-sericite-
calcite alteration have higher δ18OWR values (+4 to +10‰, 
Fig. 5), as does associated vein quartz (δ18Oqtz = +6 to 
+11‰) (Table 1a, b). The δ2HWR values (–93 to –56‰) fall 
close to or within the normal range for igneous rocks (–85 
to –50‰, Sheppard 1986). However, interaction with mid- 
to low-latitude meteoric water or seawater can also produce 
such compositions (Longstaffe 1982). With the exception of 
hornblende, hydrous minerals in the Huntington Mountain 
area are of secondary origin (chlorite > epidote > sericite). 
Where comparisons are possible, the δ2Hchl values are 
very similar to the δ2HWR values (Table 1a, b), indicating 
that chlorite – and fluids that formed it – control the bulk 
hydrogen-isotope composition of most samples.

The oxygen isotopic results for minerals formed and/
or re-equilibrated during both the propylitic and quartz-
sericite-calcite alteration stages have been used to estimate 
fluid δ18O values (Fig. 6). Over the 300–450 °C temperature 
range typical for propylitic alteration (Ferry 1985; Criss and 
Taylor 1986), δ18OH2O

 values range from –9 to –2‰ at 300 
°C, to –5 to +1‰ at 450 °C (Fig. 6a). Coexisting propylitic 
quartz and chlorite for syenogranite and granodiorite 
samples (CBI-6-6-55 and CBI-8-5-22) yield virtually 
identical δ18OH2O values of –6 to –5‰ at 300 °C as does 
coexisting secondary feldspar and chlorite for andesite 
sample CBI-6-6-52 (Fig. 6a). Hence we use 300 °C as the 
propylitic alteration temperature in the discussion that 
follows. These results suggest that meteoric water (δ18OH2O 
< 0‰) comprised a significant fraction of the propylitic 
alteration fluid. Some estimates based on brachiopod 
carbonate suggest δ18O values of –8 to –6‰ for late 
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Fig. 4. Geologic map of the Huntington Mountain pluton and East Bay Hills Group, including δ18OWR values of samples 
from this study and Potter et al. (2008a). Map is after Barr et al. (1996).

Fig. 5. Distribution of δ18OWR values by alteration type: 
propylitic, quartz-sericite-calcite, and phyllic. The samples 
retaining mineralogical characteristics of phyllic alteration 
appear to have been isotopically overprinted during later 
propylitic alteration.

Precambrian-early Cambrian seawater (Veizer et al. 1986). 
However, evidence from ophiolite, greenstone, and massive 
sulphide deposits overwhelmingly suggests open ocean 
δ18O values that varied no more than ±2‰ from its present 
composition since at least 3 Ga (Muehlenbachs 1986; Johns 
et al. 2006). Accordingly, we accept a seawater δ18O value of 
0‰ in the discussion that follows.

Quartz-sericite-calcite alteration is generally known 
to occur at temperatures ranging from 200 to 300 °C 
(Ferry 1985; Criss and Taylor 1986). For the Huntington 
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Mountain area, calculated δ18OH2O values at 200 °C, with two 
exceptions, are ≤0‰ (range: –4 to +0‰, Fig. 6b). At 300 °C, 
calculated δ18OH2O values are >0‰, with most ranging from 
0 to +5‰, Fig. 6b). Vein calcite from volcanic samples CBI-
8-5-30 and CBI 6-6-112B yields anomalously high δ18OH2O 
values; they also have the lowest δ13C values measured in 
this study. Oxygen isotopic disequilibrium in these veins is 
indicated by negative Δ18Oqtz-cal values, and in sample CBI-6-

6-112B, by the occurrence of calcite as a vug-filling in quartz. 
We conclude that calcite in these veins formed from fluids 
unrelated to quartz-sericite-calcite alteration. Two other vein 
samples from volcanic rocks (CBI 6-6-17 and CBI 6-6-11), 
however, have textures characteristic of quartz-calcite co-
precipitation. Assuming isotopic equilibrium, temperatures 
of 220 to 230 °C and δ18OH2O values of –1 to +1‰ are obtained 
for these samples using the quartz-calcite oxygen-isotope 

Table 1b. Oxygen- and hydrogen-isotope results for the East Bay Hills Group.

Sample Map Unit aAlteration δ18Owr δ2Hwr δ18Oqtz δ18Ofs δ18Ohbl δ18Ochl δ2Hchl δ18Oser δ2Hser δ18Ocal δ13Ccal

CBI-8-5-30 Rhyolite 1 - weak, 2 - moderate 6.6 - 8.2 6.5 - - - - - - -
2 - qtz-cal vein - - c,210.1 - - - - - - c,212.1 c,2-7.3

CBI-6-6-17 Rhyolite 1 - weak, 2 - moderate 5.5 - - - - - - - - b,29.4 b,2-5.0
2 - qtz-cal vein - - c,29.1 - - - - - - c,27.3 c,2-5.2

CBI-6-6-80 Rhyolite 1 - weak, 2 - moderate 6.9 - - - - - - - - - -
dFS91-53 Rhyolite 2 - undetermined 4.6 - - - - - - - - - -
CBI-8-5-28 Dacite 1 - strong, 3 - moderate -2.6 -70 -1.5 - - - - - - - -
CBI-6-6-98 Dacite 1 - moderate -0.1 - - - - - - - - - -
CBI-6-6-99 Dacite 1 - strong 0.6 - - - - - - - - - -
CBI-6-6-101 Dacite 1 - strong -3.8 - - - - - - - - - -
CBI-6-6-93 Andesite-Rhyolite 1 - moderate, 2 - weak 1.8 - - - - - - - - - -
CBI-6-6-94 Andesite-Rhyolite 1 - weak, 2 - moderate 4.1 - - - - - - - - - -
CBI-6-6-95 Andesite-Rhyolite 2 - qtz-cal vein - - c,27.7 - - - - - - - -
CBI-6-6-96 Andesite-Rhyolite 1 - weak, 2 - moderate 4.0 - - - - - - - - - -
CBI-6-6-118 Andesite-Rhyolite 1 - weak, 2 - moderate 3.6 - - - - - - - - - -
CBI-6-6-119 Andesite-Rhyolite 1 - weak, 2 - moderate 3.9 -77 - - - - - - - c,26.0 c,2-3.2
CBI-6-6-121 Andesite-Rhyolite 1,2 - weak to moderate 6.5 - - - - - - - - - -
CBI-6-6-50 Andesite 1 - moderate to strong -0.5 - - - - - - - - - -
CBI-6-6-51 Andesite 1 - moderate to strong -0.7 - - - - - - - - - -
CBI-6-6-52 Andesite 1 - moderate to strong, -0.6 - b,211.1 -0.3 - b,1-5.3 b,1-69 - - - -

2 - weak
CBI-6-6-89 Andesite 1 - moderate to strong -1.1 - - - - - - - - - -
CBI-6-6-90 Andesite 1 - moderate, 2 - weak -1.9 - - - - - - - - - -
dEB87-037 Andesite 1 - undetermined 0.5 -82 - - - - - - - - -
CBI-6-6-11 Basalt-Andesite 2 - strong 9.5 -93 b,211.7 - - - - - - b,29.8 b,2-4.5
CBI-6-6-88 Basalt-Andesite 1 - strong -1.9 -79 - - - - - - - - -
CBI-6-6-110 Basalt-Andesite 1 - strong 0.0 - - - - - - - - - -
CBI-6-6-111 Basalt-Andesite 1 - weak to moderate, 3.3 - #6.4 #3.3 - - - - - - -

2 - weak
CBI-6-6-112 Basalt-Andesite 1 - strong, 2 - weak -1.7 - - - - - - - - - -
CBI-6-6-112A Basalt-Andesite 2 - qtz-cal vein - - c,28.6 - - - - - - - -
CBI-6-6-112B Basalt-Andesite 2 - qtz-cal vein - - c,210.5 - - - - - - c,214.3 c,2-7.4
CBI-6-6-112C Basalt-Andesite 2 - qtz-cal vein - - c,27.9 - - - - - - - -
CBI-6-6-114 Basalt-Andesite 1 - weak, 2 - moderate 5.4 - - - - - - - - - -
CBI-6-6-38 Basalt 2 - qtz-cal vein - - c,26.1 - - - - - - - -
CBI-6-6-39 Basalt 1 - moderate, 2 - weak 3.0 - - - - - - - - - -
CBI-6-6-40 Basalt 1 - moderate, 2 - weak 1.9 -70 - - - - - - - - -
CBI-6-6-107 Basalt 1 - weak, 2 - moderate 3.1 - - - - - - - - b,211.7 b,2-7.2
CBI-6-6-122 Basalt 2 - moderate to strong 5.7 - - - - - - - - b,25.8 b,2-4.5
dMT6-397 Basalt 2 - undetermined 6.2 - - - - - - - - - -

East Bay Hills Group

Notes: cal = calcite, chl = chlorite, fs = feldspar, hbl = hornblende, qtz = quartz, ser = sericite; a = alteration types: (1) propylitic, (2) quartz, sericite and calcite, 
and (3) phyllic; b = disseminated secondary mineral; c = vein mineral; d = previously reported by Potter et al . (2008a); # = porphyritic quartz-feldspar 
rhyolite.
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Fig. 6. Hydrothermal fluid compositions (δ18OH2O) for: (A) propylitic assemblage minerals at 300 and 450 °C, and (B) 
quartz-sericite-calcite assemblage minerals at 200 and 300 °C. The mineral-H2O oxygen-isotope geothermometers utilized 
are: calcite-H2O (Friedman and O’Neil 1977), chlorite-H2O (Wenner and Taylor 1971), alkali feldspar-H2O (O’Neil and 
Taylor 1967) and quartz-H2O (Matsuhisa et al. 1979). Abbreviations: cal - calcite, chl - chlorite, fs - feldspar, qtz - quartz.
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geothermometer. The apparent trend towards higher δ18OH2O 
values from propylitic (–6‰) to quartz-sericite-calcite (0‰) 
alteration is suggestive of either 18O-enrichment of meteoric 
water during water-rock interaction and/or an increasing 
contribution of seawater (~0‰) as the system cooled and 
waned. Combined consideration of the hydrogen- and 
oxygen-isotope compositions of altered whole-rock samples 
and associated chlorite allows evaluation of these two 
possibilities. Figure 7 compares propylitic fluid hydrogen- 
and oxygen-isotope compositions at 300 °C for chlorite and 
whole-rock samples to results calculated for a range of molar 
oxygen water/rock (w/r) ratios in a simple hydrothermal 
system (following Ohmoto and Rye 1974; see caption to 
Figure 7 for details). The oxygen- and hydrogen-isotope 
compositions predicted for meteoric water at ~560 Ma, 
based on Avalonia paleolatitude estimates (Murphy et al. 
2004) closely match the values calculated using the Ohmoto 
and Rye (1974) model (see caption to Figure 7 for details). 
Fluid compositions for chlorite range from –5.3‰ δ18OH20 
and –37‰ δ2HH2O, which cluster near the Global Meteoric 
Water Line (GMWL; Craig 1961) at very high w/r ratios, 
to +3.3‰ δ18OH20 and ~ –33‰ δ2H at very low w/r ratios. 
Many whole-rock samples follow the same trend. This 
shift away from the GMWL towards higher δ18OH2O values 
at lower w/r ratios is typical of many modern geothermal 
systems. Meteoric-dominated hydrothermal fluids become 
enriched in 18O as w/r ratios decrease whereas δ2HH2O values 
are largely unchanged, except at very low w/r ratios, because 
of the low initial molar hydrogen content of the rock (Craig 
1963; Taylor 1974; Longstaffe 1989; Cole 1994). Addition 
of seawater as the hydrothermal fluid evolved would not 
produce such a pattern. One sample (CBI-6-6-11), which is 
dominated by the lower temperature quartz-sericite-calcite 
alteration, plots just beyond the end of the trend calculated 
for propylitic alteration at very low w/r ratios (<0.001). This 
positioning is consistent with a waning flux of hydrothermal 
fluid.

Seawater may have been important earlier in the 
alteration history at higher w/r ratios. A handful of samples, 
including some with sericite as the main hydrous phase, 
have δ2HH2O values plotting well above the meteoric-
hydrothermal fluid w/r trend-line for 300 °C (Fig. 7). Such 
compositions could indicate alteration of these samples at 
>300 °C. Calculated δ2HH2O values at 450 °C for these samples 
would plot closer to the trend-line, albeit at higher δ18OH2O 
values and lower w/r ratios. However, the main alteration 
phases in two of these samples (CBI-6-6-55 and CBI-8-5-22) 
are in oxygen isotopic equilibrium at 300 °C. An alternate 
explanation is that the hydrothermal fluid affecting these 
samples comprised a mixture of seawater and (evolved) 
meteoric water (Fig. 7). Based on petrographic, isotopic and 
fluid-inclusion thermometric data, Potter et al. (2012) have 
suggested that seawater was a significant component of the 
hydrothermal fluid associated with early vein assemblage 

formation during the Mira terrane alteration.
The carbon isotopic compositions of disseminated 

and vein calcite samples (–7.4 to +0.1‰) are not uniquely 
diagnostic of a particular source (e.g., seawater, magmatic 
fluids, organic matter oxidation). Further confounding the 
situation is that Neoproterozoic marine carbonates at 575–
550 Ma ranged widely in δ13C (–6 to +4‰) (Des Marais 
2001, Deines 2002). The majority of samples analyzed here 
lie within this range (–5.2 to +0.1‰); only those samples 
with the very highest δ18O values, and which are unrelated 
to propylitic or quartz-sericite-calcite alteration, have lower 
δ13C values.

Local versus regional alteration and mineralization 
potential

Potter et al. (2008a) proposed two scenarios to explain 
the regional low-18O character of the Mira terrane: (1) 
a series of local meteoric water-dominated geothermal 
systems associated with convergent subduction, associated 
volcanism, and emplacement of individual plutons, or (2) a 
single event involving regional infiltration of hydrothermal 
fluids during transcurrent rifting of Avalonia at the 
Gondwanan margin at ca. 575–550 Ma. Potter et al. (2008a, 
b) preferred the second model, given the widespread 
18O-depletion of Avalonia, and absence of such 18O-depletion 
for the associated inboard Neoproterozoic peri-Gondwanan 
terranes of the region (e.g., Bras d’Or terrane).

The observations reported here for the Huntington 
Mountain pluton and East Bay Hills metavolcanic rocks are 
not typical of a localized hydrothermal system. The putative 
concentric pattern of progressively cooler alteration zones 
(potassic, phyllic, propylitic, argillic; Meyer and Hemley 
1967; Sheppard et al. 1971; Taylor 1997) that would have 
been associated with emplacement at ca. 620 Ma is absent – 
or at the very least – not preserved at present exposure levels. 
Nor is there a zonation of oxygen isotopic compositions 
that would be predicted for intrusion-driven water-rock 
interaction – magmatic fluids near the intrusive centres 
followed progressively outwards by 18O-depletion (propylitic 
alteration) and then 18O-enrichment (argillic alteration), as 
meteoric-hydrothermal waters became dominant in the 
cooling system through circulatory fluid flow above the 
brittle-ductile boundary as is evident in the distribution of 
δ18OWR values in Figure 4. The minor variations in alteration 
assemblages across the study area and the absence of any 
systematic patterning of δ18O values are more consistent 
with the regional model for 18O-depletion across West 
Avalonia, in which fluid infiltration into deep extensional 
basins occurred during transition from a subduction to a 
transtensional rifting environment (Potter et al. 2008a, 
b). In this model, initial rifting of West Avalonia resulted 
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Fig. 7. Hydrogen- and oxygen-isotope compositions of the propylitic alteration fluid. The δ2HH2O and δ18OH2O values for 
chlorite were calculated at 300 °C using the chlorite-H2O oxygen- and hydrogen-isotope geothermometers of Wenner and 
Taylor (1971) and Graham et al. (1984), respectively. Fluid compositions (δ2HH2O and δ18OH2O) for sericite were calculated 
at 300 °C (sample CBI-6-6-11 at 200 °C) using the muscovite-H2O oxygen- and hydrogen-isotope geothermometers of 
Friedman and O’Neil (1977) and Suzuoki and Epstein (1976), respectively. The fluid compositions (δ2HH2O and δ18OH2O) 
for whole-rock samples were calculated at 300 °C using the oxygen-isotope rock-H2O geothermometers (granite-water, 
granodiorite-water, diorite-water, rhyolite-water, andesite-water and basalt-water, as appropriate) of Zhao and Zheng 
(2003) and the hydrogen-isotope chlorite-H2O geothermometer of Graham et al. (1984). The molar oxygen w/r ratio line 
was calculated for 300 °C following Ohmoto and Rye (1974). This calculation assumes interaction with meteoric water by 
an igneous rock originally equilibrated with a felsic to intermediate magmatic fluid of δ2HH20 = –70‰ and δ18OH20 = +7‰. 
We used initial δ2HH2O and δ18OH2O values of –37 and –5.9‰ for the hydrothermal fluid, as inferred from the mean whole-
rock and chlorite δ2HH2O values produced during interaction with meteoric water and the corresponding δ18OH2O value 
calculated using the equation for the Global Meteoric Water Line (GMWL) (Craig 1961). Meteoric water compositions 
(GW) for 620 Ma, 595 Ma, and 560 Ma were inferred using the paleolatitude estimates for Avalonia of Murphy et al. (2004) 
and values of δ18O and δ2H for meteoric water currently typical of these latitudes.
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in the formation of large-scale extensional fault networks, 
which provided conduits for deep infiltration of meteoric 
water (and/or seawater during earlier stages). Continued 
volcanism during the initial stages of rifting served to heat 
and circulate these fluids. Direct evidence exists throughout 
West Avalonia for extensional-related volcanism and 
associated transtensional faulting, including volcanic-
sedimentary sequences of the ca. 575–560 Ma Coastal Belt 
in the Mira terrane, the ca. 560–550 Ma Coldbrook Group 
of the Caledonia terrane in New Brunswick, and the ca. 
580–570 Ma and younger units of the Avalon terrane in 
Newfoundland (Barr et al. 1996; O’Brien et al. 1996).

Many economic accumulations of base and precious 
metals are known to form in epithermal systems, commonly 
as the product of circulation of metal-laden hydrothermal 
fluids associated with pluton emplacement. To the best of 
our knowledge, the Huntington Mountain pluton and East 
Bay Hills Group are barren of significant mineralization 
(Barr et al. 1996). The hydrothermal fluids responsible 
for regional 18O-depletion may not have been metal-rich, 
perhaps because of the lack of a magmatic fluid component. 
The δ2HH2O and δ18OH20 values calculated for the Huntington 
Mountain alteration assemblages certainly do not reveal 
any strong association with magmatic water (Fig. 7). 
Alternatively or additionally, it may be that the processes 
needed to focus the flow of the hydrothermal fluids and/
or precipitate metals efficiently were not operating in this 
system (Simmons and Brown 2007). Whether regional 
movement of hydrothermal fluids of meteoric/seawater 
origin lead to leaching and/or redistribution of pre-existing 
metals of economic interest in this area, and hence, West 
Avalonia more widely is worthy of further enquiry.

The ca. 620 Ma cogenetic Huntington Mountain 
pluton and East Bay Hills Group comprise rocks of mainly 
intermediate composition (mostly diorite and andesite), 
which have undergone regional propylitic alteration and 
more localized overprinting by quartz-sericite-calcite 
alteration. These rocks are most commonly characterized 
by anomalously low δ18O values, which are attributed to 
propylitic alteration at ~ 300 °C from fluids of dominantly 
meteoric ± seawater origin over a range of w/r ratios. Lower 
temperatures (~200 °C), lower w/r ratios and higher δ18OH2O 
values characterized the evolved meteoric hydrothermal 
water responsible for later, more localized quartz-sericite-
calcite alteration. The widespread 18O-depletion, which is also 
characteristic of other Neoproterozoic rocks from the Mira 
terrane, likely occurred at ca. 575–550 Ma during large-scale 
transtensional faulting and extensional-related volcanism, 
during initial rifting of Avalonia from Gondwana. This 

CONCLUSIONS

alteration appears not to be associated with mineralization 
in the Huntington Mountain pluton or East Bay Hills Group. 
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