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AbstrAct

 The Antigonish Highlands form part of Avalonia in mainland Nova Scotia and are predominantly 
underlain by ca. 620–600 Ma low grade Neoproterozoic arc-related volcanic and sedimentary rocks and 
coeval plutons. The highlands also preserve a record of magmatism that spans much of the Ordovician (ca. 
495–455 Ma), during which time Avalonia drifted from the northern Gondwanan margin and migrated as a 
microcontinent ca. 2000 km northward before becoming involved in collisions with Baltica and Laurentia 
in the Silurian to Devonian. The longevity of Ordovician magmatism (ca. 50 Ma) is consistent with a 
subduction-related environment, a setting that is compatible with most paleogeographic reconstructions. 
However, the continental tholeiitic-alkalic within-plate affinity of the mafic rocks and the A-type signature 
of the felsic rocks is more typical of a back-arc setting, rather than that of a typical arc. Furthermore, the 
A-type felsic rocks were derived from a hotter, drier lower crust than is typical for felsic arc magmas.
Whole-rock Sm-Nd isotopic data for both mafic and felsic compositions lie within previously delineated
tightly constrained envelopes that define, respectively, the evolution of the Avalonian and sub-continental
lithospheric mantle (SCLM), and crustal sources. These data imply that (i) the crust remained coupled to
SCLM from the rifting of Avalonia from Gondwana to its accretion to Baltica in the Silurian and to Laurentia in
the Early Devonian, and (ii) the Antigonish Highlands were located far from the subduction zone(s) that
closed the iapetus Ocean as it migrated northward, and so were only mildly affected by the resulting collisions.

Ordovician magmatism in the Antigonish Highlands, 
Nova scotia, canada: a tectonic model†

rÉsUMÉ

Les hautes terres d’Antigonish font partie d’Avalonia dans la section continentale de la Nouvelle-Écosse et elles 
reposent principalement sur des roches volcaniques et sédimentaires d’arc du Néoprotérozoïque, à faible teneur, 
d’environ 620 à 600 MA ainsi que sur des plutons du même âge. Les hautes terres préservent par ailleurs des traces 
du magmatisme qui a duré la majeure partie de l’Ordovicien (environ 495 à 455 Ma), période pendant laquelle 
Avalonia s’est détaché de la marge septentrionale de Gondwana pour migrer sous les traits d’un 
microcontinent sur environ 2 000 km vers le nord avant d’entrer en collision avec Baltica et Laurentia au cours 
du Silurien jusqu’au Dévonien. La longévité du magmatisme de l’Ordovicien (environ 50  Ma) correspond à un 
environnement de subduction, un milieu compatible avec la majorité des reconstitutions paléogéographiques. 
L’affinité intraplaque tholéiitique-alcaline continentale des roches mafiques et de la signature de type A des 
roches felsiques est toutefois plus caractéristique d’un milieu d’arrière-arc que d’un arc typique. Les roches 
felsiques de type A proviennent en outre d’une croûte plus basse et plus sèche que celle caractéristique des 
magmas d’arc felsiques. 

†From: Atlantic Geoscience Special Series “In recognition of the geological career of Sandra M. Barr”. Atlantic Geoscience, 61, pp. 1-14.
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INtrOdUctION

   Deducing the evolution of Avalonia has been one of the 
most persistent themes in the career of Dr. Sandra Barr. 
in mainland Nova Scotia, it has long been established that 
Avalonia is exposed in the Cobequid Highlands and in 
the Antigonish Highlands (Fig. 1; Williams 1979; Keppie 
1985; Pe-Piper and Piper 1989; Murphy et al. 1990). 
in the easternmost mainland, adjacent to Canso Cause-
way, research by Dr. Barr, in collaboration with Dr. Chris 
White (White et al. 2001, 2003), defined the Cape 
Porcupine Complex (Fig. 1) and showed that it was 
characterized by variably mylonitic metasedimentary, 
metavolcanic, and compositionally diverse plutonic rock 
units, separated from one another by major faults. The 
plutonic units include a relatively small body of leuco-
diorite, and a more voluminous suite of plutons with 
alkalic compositions (e.g. alkali-feldspar granite, syeno-
granite, alkali-feldspar syenite; quartz alkali-feldspar leuco-
syenite). Preliminary geochemical and geochronological 
data reported in White et al. (2003) implied that the leuco-
diorite was of arc affinity and similar in age and composition 
to arc-related plutons in the Antigonish Highlands. How-
ever, preliminary age data for the more alkalic compo-
sitions suggested an early Ordovician age, for which 
there were no obvious correlatives. At that time, few ig-
neous rocks in the Antigonish Highlands had been dated 
by precise geochronological techniques, and undated 
plutonic units were mapped as either late Neoproterozoic 
or Devonian-Carboniferous, in part based on unpub-
lished Rb-Sr isotopic data (Murphy et al. 1991).
 Preliminary field investigations in the southern 
Antigonish Highlands (White and Archibald 2011; White et 
al. 2011) revealed the presence of undated, but lithologically 
similar rocks to the alkalic suite at Cape Porcupine, leading 
to two MSc theses (Escarraga 2010; Archibald 2012), based 
at Acadia University and co-supervised by S. Barr and B. 
Murphy. Collectively, these theses, and the publications 
based on them (Escarraga et al. 2012; Archibald et al. 
2013), established an Ordovician age for the newly defined 
West Barneys River Plutonic Suite, described their field 
relationships and petrography, and provided geochemical 
data from which their tectonic setting could be interpreted.  

[Traduit par la redaction]

More specifically, these studies showed the West 
Barneys River Plutonic Suite to be geochemically bimodal, 
consisting of gabbro, as well as a felsic suite including 
alkali feldspar syenite-monzonite, alkali-feldspar syenite, 
and quartz alkali feldspar leucosyenite. The gabbro is 
transitional from tholeiitic to alkalic in composition and is 
characteristic of continental within-plate tectonic settings. 
The felsic suite has A-type within-plate geochemical 
characteristics. U–Pb (zircon, TiMS and LA-iCP-MS) 
geochronological data indicated that the emplacement of the 
West Barneys River Plutonic Suite occurred between ca. 
495 Ma and 460 Ma (Archibald et al. 2013; LeBlanc 2023). 
The Cape Porcupine data were published by Barr et al. 
(2012) and confirmed the Neoproterozoic age (610 ± 3 Ma; 
U–Pb, zircon, TiMS) and volcanic arc geochemistry of the 
leucogranite. The alkali-feldspar granite, on the other hand, 
yielded an age of 478 ± 3 Ma (U–Pb, zircon, TiMS), and 
the alkalic suite in general showed A-type geochemical 
characteristics. in addition, a sample of alkali-feldspar 
leucosyenite yielded an age of 473 ± 9 Ma (U–Pb, zircon, 
LA-iCP-MS; Archibald et al. 2013). These data confirmed 
the affinity of the Cape Porcupine Complex with the 
Antigonish Highlands, as suspected by Barr et al. (2012) a 
decade earlier. Thanks to their initiative, it is now 
apparent that the Antigonish Highlands preserves a 
record of magmatism that spans the Ordovician (e.g., 
Murphy et al. 2018). The purpose of this paper is to 
evaluate the regional tectonic setting of this magmatism in 
the context of paleogeographic reconstructions (Fig. 2), 
which imply that Avalonia migrated more than 2000 
km away from the Gondwanan margin during the 
Ordovician opening of the Rheic Ocean.

GeOlOGy OF tHe  
ANtIGONIsH HIGHlANds OVerVIeW

 The Antigonish Highlands (Fig. 1) are bounded to the 
north by the Hollow Fault and to the south by the 
Chedabucto Fault. They are predominantly underlain by 
ca. 620–600 Ma low grade arc-related volcanic and 
sedimentary rocks of the Georgeville Group and coeval 
plutons (Murphy et al. 1990, 1991; White et al. 2012;
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Les données isotopiques du Sm-Nd sur roche totale des compositions mafiques et felsiques se situent à 
l’intérieur des enveloppes strictement restreintes précédemment délimitées qui définissent, respectivement, 
l’évolution du manteau avalonien  et lithosphérique subcontinental (MLS), ainsi que des sources crustales. Ces 
données laissent supposer que (i) la croûte est demeurée juxtaposée au MLS depuis le détachement d’Avalonia 
de Gondwana à son accrétion à Baltica au cours du Silurien, puis à Laurentia au cours du Dévonien précoce, et 
que (ii) les hautes terres d’Antigonish étaient éloignées de la ou des zones de subduction qui ont refermé l’océan 
iapetus durant la migration vers le nord, de sorte qu’elles ont été peu affectées par les collisions consécutives.
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Figure 1. (a) simplified tectonic map of the Appalachian orogen (modified after Hibbard et al. 2006, 2007). (b) simplified 
geological map of the Antigonish Highlands (White et al. 2011; White 2017; White et al. 2021) showing the location of 
Ordovician plutons and volcanic units. Age data are from Hamilton and Murphy (2004), escarraga et al. (2012); Murphy 
et al. (2012), Archibald et al. (2013), and leblanc (2023). Abbreviations: AH, Antigonish Highlands; cH, cobequid 
Highlands; MIrA, Mira terrane; AVAl, Newfoundland Avalon; Ne, New england; gb, gabbro; sy, syenite; zr, zircon.
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Figure 2. paleogeographic reconstructions modified from Waldron et al. (2014, 2022) and references therein. (a) Furongian 
(490 Ma) reconstruction showing possible source domains for Iapetan terranes and subduction initiation. Orogenic 
episodes (red circles): G = Grampian; t = taconian, p = penobscottian/Monian. (b) Middle Ordovician (460 Ma). small 
uppercase names are terrane assemblages; lowercase names are oceanic tracts. tql = tornquist line; tIF = trans-Iapetus 
transform fault (Wu et al. 2022).

P

T

G

G O N D W
A N A

B A L T I C ALA
URENTIA

Ganderia A v a l o
n

i a

Megumia
Ex

pl
oi

ts
ba

si
n

Future Merrim
ack – Buck

sp
or

t –
Fr

ed
er

ic
to

n
tr

ou
gh

Fu
tu

re
Aca

dia
n seaway

TIF

TqL

G O N D W A N A

B
A

LT
IC

A

LA
U

R
EN

TI
A

G
AN

DER

– LAKESMAN

MIRAMICH

I
–

V
IC

TO
R

IA

BRONSO
N

–
P

O
PE

LO
G

A
N

AV
A

LO
N

–

BROOKVILLE

ST CROIX – LA

P
O

IL
E

M

EGUMA

More-
town

460 Ma

490 Ma

(a)

(b)

ATLANTIC GEOSCIENCE · VOLUME 61 · 2025 4

Copyright © 2025 the authors



MUrpHy et Al. – Ordovician magmatism in the Antigonish  
Highlands, Nova scotia, canada: a tectonic model

White 2017; White et al. 2021; Archibald et al. 2024). 
Collectively, these rocks are local representatives of the ca. 
640–570 Ma arc-related sequences that typify Neopro-
terozoic Avalonia. These rocks were deformed soon after 
deposition (Murphy et al. 1997) and were intruded post-
tectonically by the ca. 580 Ma Georgeville Granite, which 
shares many geochemical and mineralogical features with 
A-type, within-plate granites (Murphy et al. 1998).

In the northern Antigonish Highlands, these rocks are
uncon-formably overlain by two late Ediacaran to early 
Ordovician successions that are facies equivalents. One 
succession includes the predominantly volcanic (bimodal, 
within-plate) Arbuckle Brook Formation (Murphy et al. 
1985), whereas the other comprises the predominantly 
sedimentary Iron Brook Group. The limited occurrence of 
these successions and others within Nova Scotia, and their 
fault-bounded nature (Fig. 1b), together with the intra-

continental geochemistry of the bimodal volcanic rocks, 
is interpreted to re-flect deposition in a local pull-apart 
basin tectonic environment (Murphy et al. 2019). The 
Iron Brook Group contains pink limestones with 
typically Avalon-ian early Cambrian fauna (Landing et 
al. 1980; Landing and Murphy 1991). The upper part 
of the Iron Brook Group contains Early Ordovician 
ironstone beds (Ferrona Formation) that have been 
correlated with the Wabana Group in the Avalon 
terrane of Newfoundland (Dunn 2017; Todd et al. 
2019; Matheson et al. 2022). According to Matheson et 
al. (2022), the Ordovician ironstones were deposited 
along the continental margin of the Rheic Ocean and 
required the involvement of ocean ridge hydrothermal 
waters that upwelled along the edge of the continental 
shelf to the sites of iron-stone deposition.

 In the northern Antigonish Highlands, the two succes-

Figure 3. Geochemistry of Ordovician mafic rocks in the Antigonish Highlands: (a) ti/y against Zr/y discrimination 
diagram (after pearce and Gale 1977); (b) ti–y–Zr discrimination diagram (after pearce and cann 1973; pearce 1996); (c) 
Zr/y vs Zr discrimination diagram (after pearce and Norry 1979); and (d) ti/y against Nb/y discrimination diagram (after 
pearce 1982, 1996). data are from escarraga et al. (2012), Murphy et al. (2012), and Archibald et al. (2013). Abbreviations: 
MOrb, mid-ocean ridge basalt; Wpb, within-plate basalt; VAb, volcanic arc basalt; thol, tholeiitic; tran, transitional 
tholeiitic to alkaline; alk, alkaline; dp, dunn point; Mb, McGillvray brook; Wbrps, West barneys river plutonic suite.
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sions were polydeformed prior to deposition of the ca. 
460 Ma Dunn Point Formation (Keppie and Murphy 
1988). The underlying Georgeville Group rocks are 
virtually unaffected by this deformation, indicating that 
the two groups of rocks were separated by a décollement 
surface close to, or at, the contact between them.
  in the southern Antigonish Highlands, the bi-
modal West Barneys River Plutonic Suite intruded the 
Georgeville Group between ca. 495 and 460 Ma (Escarraga 
et al. 2012; Archibald et al. 2013). When considered in 
conjunction with plate reconstructions (Fig. 2), the 
earliest phases of this long-lived magmatic event could 
be interpreted as a local expression of the rifting of 
Avalonia from Gondwana. The geochemical and isotopic 
composition of the gabbroic rocks indicate that they 
are within-plate continental tholeiites, with some 
overlap into arc fields (Fig. 3). Sm–Nd isotopic data 
yield eNd(t) values range from +0.84 to +4.66 (Archibald 
et al. 2013), which are consistent with derivation from 
Avalonian sub-continental lithospheric mantle (SCLM,

Fig. 4). Felsic rocks are typical of within-plate ferroan A-
type granitoid rocks (Fig. 5). eNd(t) values range from 
+2.4 to +4.9 (Fig. 4), their similarity to the gabbroic
rocks suggesting the two could be related by
fractionation (Archibald et al. 2013). However, these eNd(t)
values are also within the range expected for magmas
derived by anatexis of Avalonian crust (Murphy et al. 2018).

 Middle Ordovician to Early Devonian rocks occur 
predominantly around the periphery of the Antigonish 
Highlands and unconformably overlie Cambrian to Early 
Ordovician and Neoproterozoic sequences (Boucot et al. 
1974; Murphy et al. 1991). The lowest Middle Ordovician 
to Early Devonian strata are ca. 460 Ma (Hamilton and 
Murphy 2004) subaerial bimodal volcanic rocks and 
interbedded fluviatile red clastic sedimentary rocks (Dunn 
Point Formation), successively overlain by weathered 
and sheared trachyandesite (Seaspray Cove Formation, 
Jutras et al. 2020), basal lahar deposits, weathered rhyolite, 
felsic lapilli tuff, and the ca. 455 Ma felsic ignimbrite of 
the MacGillivray Brook Formation (Murphy et al. 2012). 
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Figure 5. Geochemistry of Ordovician felsic rocks in the Antigonish Highlands: (a) Al/(ca+Na+K) against Al/(Na+K) after 
Maniar and piccoli (1989); (b) tectonic setting discrimination diagram from Whalen et al. (1987); (c–f) selected tectonic 
discrimination diagrams (Hildebrand et al. 2018; Whalen and Hildebrand 2019) plotting samples with siO2 concentrations 
between 55 and 70 wt. % and alumina saturation index (AsI) values <1.1. (c) Nb+y against rb; (d) ta+yb against rb; (e) y 
against Nb; and (f) yb against ta. data from escarraga et al. (2012), Murphy et al. (2012) and Archibald et al. (2013). 
Abbreviations: dp, dunn point; Mb, McGillvray brook; Wbrps, West barneys river plutonic suite.
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Paleomagnetic data from the Dunn Point Formation 
(Johnson and van der Voo 1990) indicate that Avalonia was 
at a paleolatitude of 41°S ± 8° at 460 Ma, i.e., about 1200 
km north of the Gondwanan margin and ca. 1700–2000 
km south of the Laurentian margin, with a latitudinal 
component of convergence between Avalonia and Laurentia 
from 460 to 440 Ma of about 5.5 cm/yr (van Staal et al. 2012).

Geochemical and Sm–Nd isotopic studies of the Dunn 
Point Formation indicate that the mafic rocks are Fe-Ti rich 
continental tholeiites and that the felsic rocks were derived 
by anatexis of typical Avalonian crust (Murphy et al. 2008). 
The McGillivray Brook Formation is dominated by felsic 
volcanic rocks with pronounced A-type compositions 
(Murphy et al. 2012). U–Pb zircon (TiMS) data yielded 
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concordant ages of 460.0 ± 3.4 Ma for rhyolite in the Dunn 
Point Formation (Hamilton and Murphy 2004) and 454.5 
± 0.7 Ma for ignimbrite in the overlying McGillivray Brook 
Formation (Murphy et al. 2012). Given the paleogeographic 
context of Avalonia in the Middle to Late Ordovician as a 
microcontinent separating the iapetus Ocean to the north 
from the Rheic Ocean to the south, this magmatism has 
been interpreted as reflecting a local intra-arc extensional 
environment, analogous to the modern setting of the 
Taupo Zone in New Zealand (Murphy et al. 2008).
 These Ordovician volcanic-dominated successions are 
overlain by the early Silurian to Early Devonian Arisaig 
Group, consisting of 1900 m of fossiliferous, predominantly 
shallow marine siliciclastic rocks and minor bentonite beds 
(Boucot et al. 1974). The geochemistry of the Arisaig Group, 
combined with Sm–Nd and U–Pb (zircon) isotopic studies, 
indicate that the sedimentary rocks were not derived 
from the underlying, juvenile Avalonian basement but, 
instead, require derivation from more ancient continental 
crust (Murphy et al. 1996a, b, 2004). Paleocontinental 
reconstructions suggest two possibilities for the origin of this 
material. in some reconstructions, Avalonia was accreted 
to Baltica along the Tornquist line (e.g., Tornquist and 
Rehnström 2003 and references therein) during the ca. 15-
million-year interval between the McGillivray Brook 
Formation and deposition of the basal strata of the Arisaig 
Group (Beechill Cove Formation) (Murphy et al. 1996a). 
Baltica would then provide a potential source for ancient 
detritus in the Arisaig Group. However, other recon-
structions (Fig. 2) suggest that West Avalonia remained 
separate from Laurussia until the Devonian (e.g. Waldron 
et al. 2022), but acquired fragments of Ganderia during 
Monian/Penobscottian tectonism near the Gondwanan 
margin in the Furongian or Early Ordovician. These 
fragments are represented in the Brookville and Bras d’Or 
terranes of New Brunswick and Cape Breton island res-
pectively, and could have provided a source of ancient 
detritus during Silurian thermal subsidence following 
crustal extension (Waldron et al. 1996).

tectONIc MOdel

The geochemical and isotopic data require that the 
respective mantle and crustal sources for the mafic and 
felsic magmas were both dry. in principle, such magmas 
can be generated in a variety of tectonic settings and so our 
tectonic model is guided by Ordovician paleogeographic 
reconstructions and by the longevity of magmatism (ca. 
490–455 Ma).

Ordovician paleogeographic reconstructions imply that 
Avalonia separated from the Gondwanan margin in the 
early Ordovician and migrated ca. 2000 km northward 
as a microcontinent with the concomitant opening of 

the Rheic Ocean (Fig. 2). The longevity of magmatism, 
which continued long after Avalonia had separated from 
Gondwana and become a micro-continent, is consistent 
with a subduction-related setting, a conclusion compatible 
with plate reconstructions (e.g., Cocks and Torsvik 2002, 
2021; Scotese 2023; Stampfli and Borel 2002; Domeier 2016; 
Wu et al. 2022; Waldron et al. 2022) and regional syntheses 
(e.g., van Staal et al. 1998, 2009, 2012) that imply opening of 
the Rheic Ocean by subduction zone rollback (Fig. 2).

However, the continental tholeiitic within-plate affinity 
of the mafic rocks implied by their geochemistry, and the 
persistent A-type chemistry of the felsic rocks, suggest the 
magmatism did not occur in a typical arc or back-arc basin 
setting. indeed, the A-type chemistry implies derivation 
from melting of hotter, drier crust (Whalen et al. 1987; 
Collins et al. 2021) than that typical of arc or back-arc 
magmas, which inherit their geochemical traits (e.g., 
enrichment in large ion lithophile elements, depletion 
in high field strength elements) from a mantle source 
hydrated and metasomatized by subduction zone fluids 
(e.g., Pearce 1996; Tatsumi and Kogiso 2003).

Dry crust exists in the distal (hinterland) regions of 
continental back-arcs, i.e. in the region behind that where 
typical arc or back-arc basin magmas originate from a mantle 
source metasomatized by subduction zone fluids. Distal 
back-arc regions are typically ca. 200–600 km from the 
trench, where the crust is uniformly hot, dry and thin (e.g., 
Hyndman 2015, 2023) and where, under steady-state 
conditions, temperatures are ca. 850°C at the base of the 
crust and ca. 1350°C at the lithosphere-asthenosphere boun-
dary. indeed, Condie et al. (2023) point out that A-type 
compositions are common in Phanerozoic back-arc set-
tings, including the distal back-arc regions of the iconic 
Lachlan fold belt of eastern Australia (Collins et al. 2020).

A compilation of whole-rock Sm–Nd isotopic data for 
Neoproterozoic–Devonian igneous rocks shows that all 
mafic and felsic compositions lie within tightly constrained 
envelopes that define, respectively, the evolution of the SCLM 
and crustal sources (Fig. 4; Murphy et al. 2008). These data 
imply that the crust and sub-continental lithospheric mantle 
beneath the Antigonish Highlands not only remained 
coupled during the rift-drift of Avalonia from Gondwana 
in the Ordovician, but also during its accretion to Baltica 
and Laurentia in the Silurian and early Devonian. These 
data are consistent with the proposed distal back-arc (rather 
than intra-arc; Murphy et al. 2008) setting as the Avalonian 
microcontinent migrated northward (Fig. 2). A distal 
back- arc location is also consistent with (i) the continental 
margin setting along the northern flank of the Rheic 
Ocean proposed for the deposition of the Early Ordovic-
ian Ferrona Formation ironstones (Matheson et al. 2022), 
and (ii) the lack of significant discordance between the 
Dunn Point and McGillivray Brook volcanic units, and the 
basal formation of the Silurian-early Devonian Arisaig 
Group (Beechill Cove 
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Group (Beechill Cove Formation). in this context, the 
collision between Baltica and the Gander–Lakesman 
terrane assemblage (Fig 2), which is constrained to the 
interval between the deposition of the MacGillivray Brook 
Formation and that of Beechill Cove Formation, may 
provide an explanation for the cessation of this protracted 
interval of magmatism.

According to Hyndman (2023) and Hyndman and Wang 
(2025), back-arc areas are anomalously hot, irrespective of 
whether they are under extension or compression (Fig. 6). 
As a result, their crust should be thin and elevated. The 
occurrence of Early Ordovician ironstones, coupled with 
the Early Silurian deposition of marine strata, suggest it is 
unlikely that the Antigonish Highlands were significantly 
topographically elevated, a scenario consistent with crustal 
extension caused by the subduction zone roll-back that is 
implicit in most Ordovician reconstructions (e.g., Stampfli 
and Borel 2002; Domeier 2016; Cocks and Torsvik 2021; 
Waldron et al. 2022; Scotese 2023).

But if Ordovician magmatism in the Antigonish Highlands 
was generated in a distal back arc environment, where is the 
arc? Regional syntheses (e.g., van Staal et al. 2009, 2021; van 
Staal and Barr 2012; Waldron et al. 2022) provide several 
possibilities. According to these syntheses, Ganderia and 
Avalonia, although separated by the Acadian seaway, may 
have resided on the same plate (Fig. 2). if so, the coeval calc-
alkaline volcanics of the Ganderian Lake District–Leinster 
volcanic arc in the UK and Ireland, including the 
Borrowdale Volcanic Group and the ca. 480–450 Ma Bel-
lewstown-Lambay belts, may represent the arc (Woodcock 
2000; McConnell et al. 2002, 2021; Stillman 2008). Further 
south in Ganderia, Ordovician magmatism in Ireland 
(Avoca) and the Welsh borderlands has been interpreted to 
reflect back-arc basin magmatism (Leat and Thorpe 1986; 
McConnell et al. 1991, 2021; Woodman 2000). In this scen-
ario, Antigonish Highlands Ordovician magmatism would 
reflect the distal back-arc region of a Ganderian arc.

An alternative possibility is suggested by the geochemistry 
of Devonian granitoid magmas that intruded Ganderia after 
it had accreted to Laurentia (Yousefi et al. 2023; Wang et al. 
2024). The Avalon-like geochemistry of these granites has 
been interpreted to reflect underthrusting of the leading 
edge of Avalonia beneath the Ganderian margin of com-
posite Laurentia in the Early Devonian or later (Wintsch et 
al. 2014), forming a source for the post-collisional Devonian 
granitoid magmas (Yousefi et al. 2023; Wang et al. 2024). If 
so, the Ordovician Avalonian arc was likely destroyed 
although the possibility that tectonic slivers may have been 
preserved in the collision zone cannot be discounted. 
Evidence of the arc’s former existence may also be preserved 
in the detrital zircon records of strata deposited in the 
Acadian seaway, between Avalonia and Ganderia in the 
Silurian, or in younger strata recycled from those deposits.
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