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RÉSUMÉ

Les suites ignées bimodales et les roches sédimentaires clastiques immatures connexes sont caractéristiques 
de nombreuses zones faillées d’échelle crustale à minéralisation aurifère orogénique à l’échelle planétaire. Dans 
l’orogenèse appalachienne du centre de Terre-Neuve, la ceinture du conglomérat du lac Rogerson et le bassin 
de Botwood sont des suites magmatiques contrôlées par des failles et des séquences de roches sédimentaires 
du Silurien tardif (du Wenlock au Pridoli), étroitement associées à une minéralisation aurifère orogénique; 
l’évolution spatio-temporelle de la déformation par failles et le magmatisme ainsi que la sédimentation connexe 
n’ont toutefois pas été tout à fait résolus.
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ABSTRACT

Bimodal igneous suites and associated immature clastic sedimentary rocks are characteristic of many orogenic 
gold-mineralized, crustal-scale fault zones globally. In the central Newfoundland Appalachian orogen, the 
Rogerson Lake Conglomerate belt and Botwood basin are Late Silurian (Wenlock to Pridoli), fault-controlled 
sedimentary rock sequences and magmatic suites closely associated with orogenic gold mineralization; however, the 
spatio-temporal evolution of faulting and associated sedimentation and magmatism are not fully resolved.

U–Pb zircon geochronological results were obtained by using an integrated approach employing LA-ICPMS 
(laser ablation-inductively coupled plasma mass spectrometry) followed by CA-ID-TIMS (chemical abrasion-
isotope dilution-thermal ionization mass spectrometry) on the same detrital samples. Using this approach, a 
maximum depositional age for sedimentary rocks of the Rogerson Lake Conglomerate sequence is 421.9 ± 1.0 
Ma (Pridoli), which confirms that they are younger than, and stratigraphically overlie, ca. 422–420 Ma igneous 
rocks exposed along the central Newfoundland gold belt. Towards the stratigraphic middle of the Botwood basin 
in north-central Newfoundland, a tuffite layer intercalated with graded siltstone produced a maximum depositional 
age of 427.9 ± 3.1 Ma (Wenlock; Homerian). The age of emplacement of an autobrecciated, flow-banded rhyolite 
dome of the Charles Lake volcanic belt along the northwestern Botwood basin is 429.3 ± 0.7 Ma (Wenlock; 
Homerian). The high-precision CA-ID-TIMS zircon data establish a clear link between Wenlock to Pridoli 
magmatism and sedimentation throughout central Newfoundland. Furthermore, these geochronological results are 
consistent with a structural model involving the southeastward (present-day coordinates) advancement of a transient 
extensional fault system across strike of the Exploits Subzone between ca. 429 and 418 Ma, with propagation along 
strike to the southwest (Rogerson Lake Conglomerate belt) between ca. 422 and 418 Ma. Extensional faulting may 
have contributed to basin formation, subsidence, and exhumation of pre-Late Silurian rocks of the Exploits Subzone.

Time-transgressive, extension-related magmatism and clastic sedimentation appear to mark the transition 
between the Salinic and Acadian orogenic cycles along the central Newfoundland gold belt. Transient Wenlock to 
Pridoli lithospheric extension may have been important for increasing heat and fluid flow in the crust as a prelude to 
Devonian crustal thickening, fluid focussing, and orogenic gold mineralization.
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INTRODUCTION

Fault-controlled magmatic suites and upper-crustal, im-
mature clastic sedimentary rock sequences containing pan-
els of polymict conglomerate are characteristic of many oro-
genic gold-mineralized fault systems globally (e.g., Hodgson 
1993; Evans 1996; Poulsen et al. 2000; Bleeker 2002). Such 
rock sequences are not only key targets for gold explora-
tion, but also provide records of fault zone dynamics that 
drive gold mineralization events (e.g., Bleeker 2012, 2015). 
Accordingly, constraining the setting, age, and process evo-
lution of igneous and clastic sedimentary rocks associated 
with orogenic gold mineralization is essential for under-
standing the controls on mineralization.

In the central Newfoundland Appalachians, an ap-
proximately 400 km-long system of crustal-scale, north-
east-southwest trending fault zones of the Exploits Subzone 
(Dunnage Zone) are delineated by post-Ordovician mag-
matic suites and immature clastic sedimentary rock se-
quences and closely associated orogenic gold mineralization 
(Figs. 1 and 2; Tuach et al. 1988; Tuach 1992; Evans 1996; 
Wardle 2005). The setting, timing, and associated faulting 
processes in this mineralized terrane are not fully under-
stood because outcrop is sparse and gold-focussed explora-
tion in areas of little outcrop has a relatively short history 
(~35 years, see Sandeman et al. this volume). The processes 
of polyphase fault reactivation that control orogenic gold 
mineralization, for example, are only beginning to be con-
strained (Figs. 1 and 2; Willner et al. 2018, 2022; Honsberger 
et al. 2022). Additionally, the occurrence of extension-relat-
ed Silurian basins in central and western Newfoundland 
with strongly bimodal magmatic suites and clastic sedi-
mentary rock sequences (Fig. 1; Colman-Sadd et al. 1990; 

Kusky and Kidd 1996; O’Brien 2003; Whalen et al. 2006) is 
in contrast to compressional deformational structures doc-
umented throughout the Dunnage Zone (e.g., Karlstrom et 
al. 1982; Valverde-Vaquero et al. 2006; van Staal and Barr 
2012). Accordingly, some workers have interpreted these 
Silurian basin rocks to have formed during thrusting (e.g., 
Karlstrom et al. 1982; van Staal et al. 2014), whereas others 
considered such sequences to represent pull-apart basins 
related to protracted strike-slip motion (Kusky et al. 1987; 
Buchan and Hodych 1992; Kusky and Kidd 1996; O’Brien 
2003). To resolve such discrepancies related to the Silurian 
tectonic evolution of central Newfoundland, stratigraphic, 
structural, geochemical, and geochronological data must 
be integrated. High-precision geochronological data are 
particularly useful in the Exploits Subzone because of rapid 
transitions (<5 million years) between deformational events 
and tectonic environments spanning the Salinic (Late Siluri-
an) and Acadian (Early Devonian) orogenic cycles (e.g., van 
Staal et al. 2014).

In the present investigation, regional field observations, 
targeted geochronology sampling, and integrated LA-ICPMS 
and CA-ID-TIMS U–Pb zircon geochronological analyses 
of volcanic and sedimentary rocks establish the spatio- 
temporal dynamics of Wenlock to Pridoli extensional fault-
ing in central Newfoundland, which may have been the op-
erative process marking the transition between the Salinic 
and Acadian orogenic cycles. Silurian clastic sedimentary 
rocks in central Newfoundland were the subjects of a previ-
ous U–Pb LA-ICPMS geochronological study (Pollock et al. 
2007) and, as well, one sample of these rocks was analyzed 
as part of a combined U–Pb-Hf isotopic study (Hender-
son et al. 2018). These previous investigations focussed on  
detrital zircon provenance but maximum depositional and

On a obtenu des résultats géochronologiques U–Pb sur zircon au moyen d’une approche intégrée employant 
l’ablation par laser et la spectrométrie de masse avec plasma à couplage inductif (LA-ICPMS), suivies d’une 
analyse par abrasion chimique, par dilution isotopique et par spectrométrie de masse à thermoionisation (CA-ID-
TIMS) des mêmes échantillons détritiques. Selon cette approche, l’âge maximal de sédimentation de la séquence 
de conglomérat du lac Rogerson est de 421,9 ± 1,0 Ma (Pridoli), ce qui confirme qu’elle est plus récente et qu’elle 
recouvre stratigraphiquement les roches ignées d’environ 422 à 420 Ma affleurant le long de la ceinture aurifère du 
centre de Terre-Neuve. Vers le milieu stratigraphique du bassin de Botwood dans le centre-nord de Terre-Neuve, 
une couche de tuffite interlitée de siltite granoclassée a produit un âge de sédimentation maximal de 427,9 ± 3,1 Ma 
(Wenlock, Homérien). L’âge de mise en place d’un dôme de rhyolite à rubanement de coulée, autobréchifié, de la 
ceinture volcanique du lac Charles le long du nord-ouest du bassin de Botwood est de 429,3 ± 0,7 Ma (Wenlock, 
Homérien). Les données de datation sur zircon par CA-ID-TIMS haute précision établissent un lien clair entre 
le magmatisme du Wenlock au Pridoli et la sédimentation partout dans le centre de Terre-Neuve. De plus, 
ces résultats chronologiques correspondent à un modèle structural présumant un avancement vers le sud-est 
(coordonnées actuelles) d’un système de failles d’extension transitoire en travers de l’orientation longitudinale 
de la sous-zone Exploits entre environ 429 et 418 Ma, avec une propagation le long de l’axe longitudinal vers le 
sud-ouest (ceinture du conglomérat du lac Rogerson) entre 422 et 418 Ma. La déformation par failles d’extension 
pourrait avoir contribué à la formation du bassin, à l’affaissement et à l’exhumation des roches préalables au 
Silurien tardif de la sous-zone Exploits.

Le magmatisme apparenté à l’extension, transgressif au fil du temps, et la sédimentation clastique semblent 
marquer la transition entre les cycles orogénique, salinique et acadien le long de la ceinture aurifère du centre de 
Terre-Neuve. L’extension lithosphérique transitoire du Wenlock au Pridoli pourrait s’être avérée importante pour 
accroître la chaleur et la circulation des fluides dans la croûte en guise de prélude à l’épaississement de la croûte, à 
la concentration des fluides et à la minéralisation aurifère orogénique du Dévonien.

[Traduit par la redaction]
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crystallization ages for the sedimentary and igneous 
rocks were not determined more precisely by CA-ID-TIMS. 
Absolute minimum ages of deposition for clastic sedimen-
tary rocks in central Newfoundland have been estimated 
from U–Pb rutile and 40Ar/39Ar white mica ages of ca. 410 
Ma (Honsberger et al. 2022) and ca. 390 Ma (Willner et al. 
2018), respectively, in quartz veins that cut polymict con-
glomerate (Rogerson Lake Conglomerate).

GEOLOGICAL SETTING

The island of Newfoundland exposes Mesoproterozoic to 
Ordovician accretionary terranes from four fault-bounded 
tectonostratigraphic zones of the northern Appalachian 
orogen: Humber, Dunnage (Notre Dame and Exploits sub-
zones), Gander, and Avalon zones (Fig. 1; Williams 1978; 
Williams et al. 1988). Orogenic gold mineralization in cen-
tral Newfoundland, however, is not structurally controlled  
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Figure 1. Simplified geologic map of the island of Newfoundland showing major fault zones, post-Ordovician magmatic 
and sedimentary rocks, and select gold-mineralized zones and historic volcanogenic massive sulfide (VMS) mines (mod-
ified from Colman-Sadd et al. 1990). Blue lines delineate polyphase fault zones that separate the tectonostratigraphic 
zones defined by Williams (1978), Williams et al. (1988), and Hibbard et al. (2006). The names of the boundary fault 
zones (blue lines) are labelled with blue text. The red lines with red text are fault/shear zones that occur internal to the 
tectonostratigraphic zones. Red text along blue lines is the name of the fault/shear zone that reactivates and overprints the 
boundary fault zone. The black text is used for notable geological units. Two bold, black, L-shaped lines mark the southwest 
and northeast corners of the rectangular area enlarged in Figure 2. Geochronology sample locations are marked by black 
(LA-ICPMS and TIMS) and white (TIMS) stars. Gold occurrences are from the Geological Survey of Newfoundland and 
Labrador, Department of Industry, Energy and Technology’s Mineral Occurrence Database. Inset is a simplified tectonic 
lithofacies map of the northern Appalachian orogen based on Williams (1978) and Hibbard et al. (2006).
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sensu stricto by the fault zones that separate the tectonos-
tratigraphic zones. Instead, gold mineralization is hosted 
along younger fault/shear zones that overprint, reactivate, 
and crosscut older stratigraphy and tectonostratigraph-
ic zone boundaries (Figs. 1 and 2; e.g., Honsberger et al. 
2022). In the Exploits Subzone (Fig. 2), for example, gold 
mineralization occurs along a Devonian crustal-scale thrust 
fault system that imbricates Gander Zone basement of 
the Meelpaeg Subzone and Ordovician Exploits Subzone 
rocks (Kean and Jayasinghe 1980; Colman-Sadd et al. 1990; 
Honsberger et al. 2022). This fault system corresponds to 
the Acadian deformation front and includes the regionally  

extensive, southeast-dipping Victoria Lake Shear Zone 
(Valverde-Vaquero et al. 2006), which correlates with Noel 
Paul’s Line (Williams et al. 1988; Valverde-Vaquero and van 
Staal 2002), a local boundary in central Newfoundland that 
separates rocks of the Dunnage and Gander zones. Accord-
ingly, a northwest-dipping Salinic suture zone representing 
the Dunnage-Gander boundary (e.g., van Staal et al. 2014) is 
not preserved in central Newfoundland because it was over-
printed by Devonian thrusts during far-field compression 
associated with the Acadian orogenic cycle (e.g., Valverde- 
Vaquero et al. 2006). Northwest-dipping structures along 
the central Newfoundland gold belt are associated with  
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Figure 2. Simplified geologic map of the central Newfoundland orogenic gold belt (modified from Colman-Sadd et al. 
1990; O’Brien 2003; Rogers and van Staal 2005; Rogers et al. 2005; van Staal et al. 2005). Red lines and text mark major 
Early Devonian fault/shear zones related to emplacement of orogenic gold-bearing veins (Honsberger et al. 2022). A local 
boundary between the Dunnage and Gander zones in this area has been referred to as Noel Paul’s Line (Fig. 1; Williams et 
al. 1988), which is the same age as the regionally extensive Early Devonian Victoria Lake Shear Zone that overprints and 
imbricates the Dunnage-Gander boundary across central Newfoundland (Valverde-Vaquero and van Staal 2002). Accord-
ingly, the Victoria Lake Shear Zone is coloured red, unlike in Figure 1, to demonstrate that it does not represent sensu stric-
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(2014), and G. Dunning, personal communication 2021. Cross-section lines A-A′ and B-B′ are illustrated in Figures 3 and 
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try, Energy and Technology’s Mineral Occurrence Database. Abbreviations: BBF – Botwood Basin Fault Zone; BoE – Bay 
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Devonian deformation and include the Valentine Lake 
Shear Zone, which hosts an approximately five-million-
ounce orogenic gold deposit at Valentine Lake (Dunsworth 
and Walford 2018; Lincoln et al. 2018; Figs. 1 and 2).

The pre-Silurian terranes of the Exploits Subzone (Fig. 
2) consist of Neoproterozoic magmatic suites (ca. 565 Ma
Valentine Lake and Crippleback Lake intrusive suites) and
overlying Cambrian to Ordovician, volcano-sedimentary
assemblages of the Penobscot and Popelogan-Victoria arc
and backarc systems including the Victoria Lake Super-
group and correlatives (Kean and Evans 1988; Evans et al.
1990; O’Brien 2003; Rogers et al. 2006). Accretion of pre-
Silurian rocks in the Exploits Subzone to composite Lau-
rentia along the Laurentia-Gondwana suture zone or “Me-
kwe’jit Line” (see White and Waldron 2022; Sandeman et al.
this volume) began in the Late Ordovician during the third
and final phase of the Taconic orogenic cycle (Zagorevski et
al. 2007; van Staal and Barr 2012). The subsequent initiation
of subduction of the Tetagouche-Exploits backarc basin be-
neath composite Laurentia (Salinic orogenic cycle) was then
accompanied by deposition of overlying Late Ordovician—
Early Silurian black and grey shale and turbiditic forearc
sequences of the Badger Group (Fig. 2; Colman-Sadd et al.
1990; O’Brien 2003; van Staal and Barr 2012; Waldron et al.
2012). The terminal Salinic suture zone (ca. 435 Ma, van Sta-
al et al. 2014) is interpreted to correspond to the Dog Bay
Line in north-central Newfoundland (Figs. 1 and 2; Wil-
liams 1993; Williams et al. 1993; Pollock et al. 2007). How-
ever, detailed local and regional field-based observations in-
dicate that the Dog Bay Line sensu stricto is a post-Salinic,
southeast-dipping zone of strong deformation associated
with the Acadian orogenic cycle (Dickson 2006; Dickson et
al. 2007; Sandeman 2021). This implies that the precise trace
of the northwest-dipping Salinic suture is not well defined
in the field because it was overprinted by Devonian defor-
mation along the southeast-dipping Dog Bay Line (i.e., Dog
Bay fault, Sandeman 2021), which is the preferred interpre-
tation herein.

In central Newfoundland, Wenlock to Pridoli bimodal 
igneous rocks and associated polymict conglomerate and 
arenitic sandstone of the Rogerson Lake Conglomerate se-
quence (Kean and Jayasinghe 1980) are juxtaposed against, 
and nonconformably overlie, Neoproterozoic tonalite, 
trondhjemite, and granodiorite basement (±mafic dykes) 
of the Valentine Lake and Crippleback Lake intrusive suites 
(Colman-Sadd et al. 1990; van Staal et al. 2005; Figs. 2–4). 
The gold-mineralized Rogerson Lake Conglomerate is the 
diagnostic immature clastic sedimentary rock that delin-
eates the structurally controlled central Newfoundland gold 
belt (Fig. 2; Evans 1996; Wardle 2005). This polymict con-
glomerate (±intercalated grey to pinkish sandstone) ranges 
from unmetamorphosed to lower greenschist facies and is 
purplish-grey to grey, poorly sorted and clast supported, and 
contains locally-sourced, deformed to undeformed, pebble 
to cobble-sized clasts of felsic and mafic igneous rocks, sand-
stone, siltstone, shale, and jasper, within a matrix of sand, 
silt, and clay (Kean and Jayasinghe 1980; Valverde-Vaquero 

and van Staal 2002; Rogers et al. 2005; Pollock et al. 2007; 
Honsberger et al. 2019). The purplish-red jasper clasts are 
distinctive and suggestive of an Early Ordovician ironstone 
source similar to that now exposed on Bell Island offshore 
the Avalon Peninsula (Fig. 1; Todd et al. 2018). The Roger-
son Lake Conglomerate is imbricated with ca. 422 Ma felsic 
volcanic and volcaniclastic rocks, granitoid and gabbro bod-
ies, and is locally cut by lower greenschist facies mafic dykes 
(Honsberger et al. 2019, 2020). The Neoproterozoic to Late 
Silurian rocks in central Newfoundland are cut by orogenic 
gold-bearing quartz vein systems that define the main min-
eral resource of the central Newfoundland gold belt (Evans 
1996; Honsberger et al. 2022).

 Northeast along strike of the Rogerson Lake Conglom-
erate belt, related clastic sedimentary rocks of the Botwood 
Group (Williams 1962) occur in the Botwood basin (Figs. 1 
and 2; Kusky et al. 1987; O’Brien 2003). Sedimentary rocks 
of the Botwood Group include gold-mineralized, grey, 
green, and red sandstone and siltstone intercalated with fel-
sic tuff (Wigwam Formation; O’Brien 1993; Colman-Sadd 
1994; Williams et al. 1995; Dickson et al. 2000). Magmatic 
rocks associated with the Botwood Group include: the ca. 
424–418 Ma bimodal Mount Peyton Intrusive Suite (Strong 
1979; Blackwood 1982; Strong and Dupuy 1982; Dickson 
1993; Sandeman et al. 2017); the ca. 422 Ma Laurenceton 
and Stony Lake volcanic rocks and equivalents (Williams 
1972; Colman-Sadd et al. 1990; Dunning et al. 1990; McNi-
coll et al. 2006; van Staal et al. 2014; Honsberger et al. 2022); 
the ca. 422 volcanic rocks and dykes of the composite Fogo 
Island Intrusive Suite (Elliot et al. 1991; Sandeman and 
Malpas 1995; Kerr 2013; Donaldson et al. 2015), and ca. 
420 monzonite intrusions (Fig. 2; Honsberger et al. 2020). 
Carbonate-bearing and fossiliferous sandstone and siltstone 
sequences of the Indian Islands Group (Boyce and Dickson 
2006; Dickson 2006; Dickson et al. 2007) comprise the rocks 
of the easternmost Botwood basin. Some workers interpret 
these sedimentary rocks to represent peri-Gondwanan detri-
tal sediments deposited exclusively on the Ganderian side of 
the Salinic suture zone (Williams 1993; Williams et al. 1993; 
Currie 1995; Pollock et al. 2007), whereas others have ques-
tioned their lithologic distinction from similar but fossil- 
poor clastic sedimentary rocks of the adjacent Botwood 
Group (Dickson 2006; Dickson et al. 2007).

Northwest of the Botwood Group, the Hodges Hill In-
trusive Suite, which represents a slightly older pulse of Late 
Silurian magmatism (ca. 429 to 426 Ma; Whalen et al. 1997, 
2006; Dickson 1999, 2000; van Staal et al. 2014; G. Dunning, 
personal communication 2021), crosscuts the Mekwe’jit 
Line (Figs. 1 and 2; Colman-Sadd et al. 1990). The Hodges  
Hill Intrusive Suite comprises granitic to gabbroic units 
that are cut by intermediate and mafic dykes and intrudes, 
in the east, contemporaneous bimodal volcanic rocks of the 
Charles Lake volcanic belt (Figs. 1 and 2; Dickson 1999, 
2000). Slightly older, Late Silurian (ca. 429–426 Ma) mag-
matic and clastic sedimentary rocks of the Topsails Intrusive 
Suite and Springdale Group (Chandler et al. 1987; Whalen et 
al. 1997, 2006), respectively, occur farther northwest and are 
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associated with Latest Silurian to Devonian gold mineral-
ization along fault splays of the Baie Verte – Brompton Line 
(Fig. 1; Evans 2004). Southeast of the central Newfoundland 
gold belt, Cambrian to Ordovician metamorphic terranes of 
the Gander Zone are uplifted along Early Devonian, Acadi-
an thrust faults and intruded by Early to Middle Devonian 
granitoid rocks (Fig. 2; Colman-Sadd et al. 1990; Kerr 1997; 
Valverde-Vaquero et al. 2006).

STRUCTURAL CONTEXT

The central Newfoundland gold belt is hosted within a 
cross-sectional triangle zone-like structural domain that is 
bounded by southeast- and northwest-dipping imbricated 
fault/shear zones and an inferred, relatively flat-lying, blind 
detachment fault at depth (Figs. 2–4; van der Velden et al. 
2004; van Staal and Barr 2012; Honsberger et al. 2020, 2022; 

Figure 3. Cross-section interpretation along A-A′ (see Fig. 2). The black star marks the location of the Rogerson Lake 
Conglomerate sandstone (BNB18-IHNL-072) that was sampled for LA-ICPMS and CA-ID-TIMS U–Pb detrital zircon geo-
chronology. Gold mineralization (yellow circles and orange lines on section) represent the Wilding Lake prospect. Pictures 
are as follows: A) Rogerson Lake Conglomerate sandstone geochronology sample BNB18-IHNL-072; B) Strongly deformed 
and gold-mineralized Rogerson Lake Conglomerate; C) Relatively undeformed Rogerson Lake Conglomerate.
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-mineralized Valentine Lake Shear Zone (Figs. 2 and 3;
Dunsworth and Walford 2018; Lincoln et al. 2018). These
fault/shear zones were active from at least the Late Silurian
to the Early Devonian as the Meelpaeg nappe (Ganderian

Bleeker and Honsberger 2022). The southeast-dipping fault/
shear zones include the Victoria Lake Shear Zone and Wood 
Brook Fault Zone (Valverde-Vaquero et al. 2006), whereas 
the northwest-dipping structures include the orogenic  gold

Figure 4. Cross-section interpretation along B-B′ (see Fig. 2). Geochronology sample locations are projected horizontally 
onto the line of section and are marked by black and white stars. The black star marks the location of the felsic tuffite sam-
ple (BNB19-IHNL-291) analyzed by both LA-ICPMS and CA-ID-TIMS U–Pb zircon geochronology, whereas the white 
star marks the location of the flow-banded rhyolite sample (BNB18-IHNL-092) analyzed only for CA-ID-TIMS U–Pb 
geochronology. Gold mineralization (yellow circle on section) represents the Moosehead prospect. Pictures are as follows: 
A) Flow-banded rhyolite geochronology sample BNB18-IHNL-092; B) Felsic tuffite outcrop sampled for geochronology;
C) Felsic tuffite geochronology sample BNB19-IHNL-291.



Copyright © Atlantic Geoscience, 2022Honsberger et al. – U–Pb geochronology of Late Silurian (Wenlock to 
Pridoli) volcanic and sedimentary rocks, central Newfoundland Appalachians

ATLANTIC GEOSCIENCE · VOLUME 58 · 2022 222

deformation front) advanced to the northwest as a result 
of far-field collision of Avalonia with composite Laurentia 
during the Acadian orogenic cycle (Valverde-Vaquero et al. 
2006; van Staal and Barr 2012).

At Valentine Lake, the Valentine Lake Shear Zone cross-
cuts, uplifts, and juxtaposes the Valentine Lake Intrusive 
Suite against the Rogerson Lake Conglomerate in the over-
all footwall of the Victoria Lake Shear Zone (Figs. 2 and 3; 
Honsberger et al. 2020). The Valentine Lake gold deposit is 
hosted within structurally controlled, fault-fill and exten-
sional quartz vein systems that emanate from the Valentine 
Lake Shear Zone and crosscut the Valentine Lake Intrusive 
Suite (Lincoln et al. 2018). Approximately 30 km northeast 
of the Valentine Lake deposit, gold-mineralized quartz veins 
of the Wilding Lake gold prospect form offshoots of the 
Wood Brook Fault Zone and cut southeast-younging stra-
tigraphy of the Rogerson Lake Conglomerate sequence (Fig. 
3; Honsberger et al. 2019). The Valentine Lake Shear Zone 
structure extends farther to the northeast along the north-
western boundary of the Crippleback Lake Intrusive Suite 
before merging with the Northern Arm Fault (Figs. 1 and 
2), a zone of protracted, oblique dextral strike-slip faulting 
that marks the northwestern margin of the Botwood basin 
(Kusky et al. 1987; Colman-Sadd et al. 1990; O’Brien 2003).

The northeastern extension of the Victoria Lake Shear 
Zone system is the Great Burnt Lake Shear Zone, which up-
lifts Ganderian rocks of the Mount Cormack Complex and 
buries sandstone-siltstone sequences and monzonite intru-
sions of the southern Botwood basin (Fig. 2; Colman-Sadd 
1980, 1985; Dec and Colman-Sadd 1990; Valverde-Vaquero 
et al. 2006; Honsberger et al. 2020, 2022). Farther northeast 
in the Botwood basin, the gold-mineralized Mount Peyton 
Intrusive Suite is bounded by southeast-dipping fault zones; 
a thrust fault system to the northwest, which we hereby 
name the “Botwood Basin Fault Zone”, and a thrust struc-
ture to the southeast that may correlate with the Dog Bay 
Line in north-central Newfoundland (Figs. 2 and 4; Dick-
son et al. 2000; O’Brien 2003). In the overall footwall of the 
“Botwood Basin Fault Zone”, orogenic gold mineralization 
of the Moosehead prospect is hosted within sandstones and 
siltstones (±mafic dykes) of the Wigwam Formation (Fig. 4; 
Froude 2021; Sandeman et al. this volume). A southeast-dip-
ping fault zone bounds the southeastern-most contact of 
the Botwood Group, in contrast to the presumably north-
west- to west-dipping fault trace of the Gander River Com-
plex (Blackwood 1982; Miller 1988; O’Neill and Blackwood 
1989), which delineates a peri-Ganderian, Cambro-Ordovi-
cian ophiolite tract that separates rocks of the Dunnage and 
Gander zones (Figs. 1–4; Colman-Sadd et al. 1990; van Staal 
and Barr 2012).

U–PB GEOCHRONOLOGY SAMPLING

  In order to constrain the spatio-temporal history of 
faulting, magmatism, and sedimentation along the central 
Newfoundland gold belt, sampling for geochronological 

analysis was undertaken in the Rogerson Lake Conglom-
erate belt and Botwood basin (Figs. 1–4). In the Rogerson 
Lake Conglomerate belt, a sample of fresh, pink-grey,  
medium-grained, muscovitic sandstone containing local 
heavy mineral laminae and conformably overlying polymict 
conglomerate was processed for detrital zircon to be ana-
lyzed by LA-ICPMS and follow-up CA-ID-TIMS U–Pb dat-
ing methods. The same analytical approach was applied to a 
reworked felsic tuff (i.e., tuffite) intercalated with graded, 
muscovitic siltstone beds of the Wigwam Formation along 
the limb of a local anticline in the Botwood basin. The tuffite is 
a distinctive ~5 to 10 cm, yellowish-beige coloured layer in 
the field that contains medium-grained and angular epi-
clastic quartz and feldspar fragments (Fig. 4). An autobrec-
ciated, flow-banded rhyolite dome of the Charles Lake vol-
canic belt adjacent to the Northern Arm Fault near Grand 
Falls, and along the northwestern margin of the Botwood 
basin, was sampled for direct CA-ID-TIMS dating of zircon 
to examine magmatic linkages with the felsic tuffite sample. 
UTM coordinates for geochronology samples are given in 
Supplementary data Tables S1 and S2 (see footnote 1).

ANALYTICAL METHODS

Laser ablation-inductively coupled 
plasma mass spectrometry

Following crushing and pulverization, initial separation of 
heavy minerals occurred on a Wilfley table, with sub-
sequent paramagnetic and density separations performed, 
respectively, with a Frantz isodynamic separator and using 
methylene iodide. The freshest, least cracked zircon grains 
were hand picked under a binocular microscope with inci-
dent light (Fig. 5). Zircon grains from the sandstone sample 
(BNB18-IHNL-072) were annealed prior to analysis (Mat-
tinson 2005), whereas zircon grains from the tuffite sample 
(BNB19-IHNL-291) were not pre-treated.

Grains were mounted on sticky tape and partially ab-
lated using a 193 nm New Wave excimer laser and an Ag-
ilent 7900 inductively coupled plasma mass spectrometer. 
Depending on the sample, the laser generally operated at 5 
Hz and about 5 J/cm2 fluence with typical beam diame-ter of 
20–30 microns. Data were collected on 88Sr (10 ms) 206Pb 
(30 ms) 207Pb (70 ms) 232Th (10 ms) and 238U (20 ms). 
Prior to analysis, spots were pre-ablated with a larger beam  
diameter for 2 s (10 pulses) to clean the surface. Following a 
10 s period of baseline accumulation, the laser sampling 
beam was turned on and data were collected for 25 s before 
a washout period that preceded the next spot analysis. 
About 150 measurement cycles per sample were accumu-
lated and resulting ablation pits are about 15 microns deep. 

1Supplemental Data. Table S1 and S2. Please visit https://
journals.lib.unb.ca/index.php/ag/article/view/32815/1882528251 and 
https://journals.lib.unb.ca/index.php/ag/article/
view/32815/1882528252 to access the supplementary material 
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topic composition of the common Pb contaminant. 88Sr 
in zircon was monitored in order to detect intersection of 
the beam with zones of alteration or inclusions, and data 
showing high Sr or irregular time resolved profiles were 
either  averaged over restricted Sr-free time windows or 
rejected. The Th/U ratio of zircon was calculated using the 
208Pb/206Pb ratio and the 207Pb/206Pb age. This is more accuate 
 than measuring the Th/U ratio directly because Th+ yield is 
strongly biased by oxidation in the plasma and, as well, 
the Th/U  ratio in the standard available to correct the bias 
is not constant. Low Th/U (<0.1) is characteristic of meta-
morphic and hydrothermal zircon, whereas most zircon 
crystallized from felsic melts has Th/U in the range 0.1–1.0.

Two zircon standards were analysed: one from a quartz 
diorite from the Marmion batholith in northwest Ontario 
(DD85-17), which is dated at 3002 ± 2 Ma by ID-TIMS 
(Tomlinson et al. 2003); and one from a monzodiorite from 
the Pontiac province of Quebec (DD91-1) dated at 2682 ± 1 
Ma (Davis 2002). Sets of four sample measurements are 
bracketed by measurements of DD85-17. DD91-1 was used as 
a secondary standard. Differences between standards were 
time interpolated when correcting sample measurements. 
Average age errors noted in the text, and error ellipses in 
Figures 6 and 7, are expressed at 2σ (twice the 1σ errors in 
Supplementary data Table S1 (see footnote 1).  Ages and 
errors were calculated and plotted using the Isoplot 
program of Ludwig (1998, 2003). MSWD (mean square of 
weighted deviations) are expected to be around 1 or slightly 
higher with correctly chosen analytical errors for 207Pb/206Pb 
ages if the age population is unimodal. Pb/U errors do not 
include possible  biases from  compositional differences 
between samples and standard, therefore scatter above and 
below concordia may be pronounced. Uranium decay 
constants are taken from Jaffey et al. (1971).

Chemical abrasion-isotope dilution-thermal 
ionization mass spectrometry

Prior to analyses, zircon crystals were thermally annealed 
and chemically etched (‘chemically abraded’), which 
provides penetrative removal of alteration zones where Pb 
loss has occurred and generally improves concordance 
(Mattinson 2005). These zones correlate with high U zones 
that have suffered radiation damage prior to alteration. The 
pre-treatment involved placing zircon grains in a muffle 
furnace at ~900°C for ~24–60 hours to repair radiation 
damage and anneal the crystal lattice, followed by a modified 
single-step partial dissolution procedure in ~0.10 ml of 
~50% HF and 0.020 ml 7N HNO3 in Teflon dissolution 
vessels at 200°C for 3–8 hours. Zircon grains were rinsed 
with 8N HNO3 at room temperature prior to dissolution. A 
205Pb-233–235U spike or 202–205Pb-233–235U spike (EARTHTIME 
community tracers) was added to the Teflon dissolution 
capsules during sample loading. The zircon grains were 
dissolved using ~0.10 ml of concentrated HF acid and ~0.02 
ml of 7N HNO3 at 200°C for 3–5 days, then dried to a 
precipitate and re-dissolved in ~0.15 ml of 3N HCl overnight 

(a)

(b)

(c)

Figure 5. Images of representative zircon crystals analyzed 
for LA-ICPMS and CA-ID-TIMS U–Pb geochronology.  
(a) BNB18-IHNL-072, whole grains; (b) BNB19-
IHNL-291, whole grains; (c) BNB18-IHNL-092, polished
grains (CA-ID-TIMS only). Images were taken with a
binocular microscope with incident light.

   Data were edited and reduced using custom VBA soft-
ware (UtilLAZ program) written by D. W. Davis, University 
of Toronto. 206Pb/238U ratios showed increasing fractionation 
throughout zircon runs caused by loss of refractory U with 
increasing penetration depth. No corrections were made for 
common Pb because the 204Pb peak is too small to be mea-
sured precisely. If present, common Pb would have the effect 
of pushing data to the right of the concordia curve along a 
shallow mixing line with the slope determined by the iso-
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measuring system for Pb and U was 16 and 14 ns, respect-
ively. The mass discrimination correction for the Daly de-
tector is constant at 0.05% per atomic mass unit. Amplifier 
gains and Daly characteristics were moni-tored using the 
SRM 982 Pb standard. Thermal mass discrimination correc-
tions are 0.10% per atomic mass unit. Decay constants are 
those of Jaffey et al. (1971). All age errors quoted in the text 
and table, and error ellipses in the concordia diagrams, are 
expressed at the 95% confidence interval. Plotting and age 
calculations used Isoplot 3.00 (Ludwig 2003).

(Krogh 1973). U and Pb were isolated from zircon using 50 μl 
anion exchange columns with HCl, dried to a small droplet in 
H3PO4, deposited onto outgassed rhenium filaments with silica 
gel (Gerstenberger  and Haase 1997), and analyzed with a 
VG354 mass spectrometer at the University of Toronto (Jack 
Satterly Geochronology Laboratory) using a Daly detector in 
pulse counting mode. Corrections to the 206Pb-238U ages for 
initial 203Th disequilibrium in the zircon have been made 
assuming a Th/U ratio in the magma of 4.2. All common Pb 
was assigned to procedural Pb blank. Overall dead time of the 

Figure 6. U–Pb LA-ICPMS geochronological results for zircon. (a) Concordia plot showing U–Pb LA-ICPMS isotopic data 
on annealed whole-grain zircon (N=46) from Rogerson Lake Conglomerate sandstone sample BNB18-IHNL-072. The inset 
shows the youngest grains (red ellipses) t hat give a mean 207Pb/206Pb age of 453 ± 18 (MSWD=0.66, N=9). Black ellipses 
represent data that are not included in the age estimates;  (b) Relative probability  density plot of 207Pb/208Pb ages on annealed 
whole-grain zircon from Rogerson Lake Conglomerate sandstone sample BNB18-IHNL-072; (c) Concordia plot showing all 
U–Pb LA-ICPMS isotopic data (N=90)  and, as well, data for the 19 youngest whole-grain zircons (inset) from felsic tuffite 
sample BNB19-IHNL-291. The red ellipses represent data for the younger population and give a mean 207Pb/206Pb age of 443 
± 26 (MSWD=0.8, N=6). The blue ellipses represent data for the older population and give a mean 207Pb/206Pb age of 499 ± 15 
(MSWD=1.0, N=14). The black ellipses represent data that are not included in the age estimates; (d) Relative probability 
density plot of 207Pb/206Pb ages on whole-grain zircons from felsic tuffite BNB19-IHNL-291. Note: all error ellipses are 2σ. 
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from 820 to 1695 Ma (Figs. 6c and d). The six oldest detrital 
zircon grains range from 1873 to 2867 Ma. The nineteen 
youngest grains show a bimodal age distribution 
(Supplementary data Table S1 - see footnote 1) (Figs. 6c and d). 
Applying the Unmix Ages utility in Isoplot (Sambridge and 
Compston 1994), gives LA-ICPMS 207Pb/206Pb age estimates of 
443 ± 26 Ma (30%) and 498 ± 15 Ma (70%) under the 
assumption that there are just two age populations, 
whereas the 206Pb/238U ages of the nineteen youngest 
grains range from 422 to 498 Ma and correspond to Unmix 
ages of 439 ± 3 Ma (37%) and 480 ± 2 Ma (63%) 
(Supplementary data Table S1 - see footnote 1) (Fig. 6c).

Four of the youngest, fresh zircon grains numbered 22, 
46, 71, and 72 give concordant CA-ID-TIMS 206Pb/238U dates 
of 470.8 ± 1.7 Ma (grain 46), 443.7 ± 6.0 Ma (grain 72), 438.0 
± 0.9 Ma (grain 22), and 427.9 ± 3.1 Ma (grain 71) (Supple-
mentary data Table S2 - see footnote 1) (Figs. 7c and d). 
The youngest grain at 427.9 ± 3.1 Ma provides a maximum 
age for the time of deposition of the felsic tuff, with 
minor physical reworking (and mixing) into tuffite 
soon thereafter.

BNB18-IHNL-092: Rhyolite dome, 
Charles Lake volcanic belt

A range in concordant 206Pb–238U dates from 458 Ma to 
429 Ma was determined from ten CA-ID-TIMS zircon grain 
analyses (Supplementary data Table S2 - see footnote 1) (Fig. 
7e). A single result is 458.2 ± 2.7 Ma (Z1), data for three 
zircon analyses cluster at 438–437 Ma (Z2-4), three cluster 
at 434–433 Ma (Z5-7), and the youngest three data overlap 
with a weighted mean age of 429.3 ± 0.7 Ma (Z8-10). This 
latter date is interpreted as a maximum age for emplacement 
of the rhyolite. It is apparent from the results that there was a 
significant xenocrystic and/or antecrystic zircon component 
acquired at the magma source or during emplacement.

DISCUSSION

One of the biggest challenges to interpreting Silurian fault 
zone histories in central Newfoundland is that compression 
and strike-slip associated with Devonian to Carboniferous 
orogenesis overprint Silurian structures (e.g., van Staal and 
Barr 2012; Willner et al. 2018). Integrated LA-ICPMS and 
CA-ID-TIMS geochronology of sandstone of the Rogerson 
Lake Conglomerate sequence (BNB18-IHNL-072), felsic 
tuffite intercalated with graded siltstone of the Botwood ba-
sin (BNB19-IHNL-291), and a flow-banded rhyolite dome of 
the Charles Lake volcanic belt (BNB18-IHNL-092) provides 
new insights into the precise timing of Wenlock to Pridoli 
tectonics leading to Devonian orogenic gold mineralization 
in central Newfoundland. In order to place constraints on 
the time of deposition of the Rogerson Lake Conglomerate 
and Botwood basin sequences, the youngest detrital zircon 
grains were identified first by LA-ICPMS and then subject-
ed to high-precision CA-ID-TIMS dating. For such samples, 

GEOCHRONOLOGICAL DATA

U–Pb LA-ICPMS isotopic data for zircon are given in 
Supplementary data Table S1 (see footnote 1) and geochrono-
logical results are plotted in Figure 6. In order to more 
closely constrain the precise time of deposition of the 
Rogerson Lake Conglomerate sequence and Botwood 
basin, the youngest, freshest zircon grains detected by LA-
ICPMS in the sandstone (BNB18-IHNL-072) and tuffite 
(BNB19-IHNL-291) samples were removed from the sticky 
tape mounts and analyzed by CA-ID-TIMS (Supplementary 
data Table S2 - see footnote 1) (Fig. 7). The pre-screening of 
detrital zircon grains by LA-ICPMS helps minimize the 
number of analyses required by TIMS. The flow-banded 
rhyolite sample was analyzed by CA-ID-TIMS only (Fig. 7e).

BNB18-IHNL-072: Sandstone, Rogerson 
Lake Conglomerate sequence

Abundant zircon crystals consist of mixed populations of 
fresh and rounded, clear to beige grains (Fig. 5a), with some 
larger, cracked grains displaying visible reddish alteration. 
Fifty-two annealed whole grains were analyzed, six of which 
were discarded due to alteration and discordance over 15% 
(Supplementary data Table S1 - see footnote 1). The LA-
ICPMS 207Pb/206Pb ages range from 415 to 3021 Ma (Supple-
mentary data Table S1 - see footnote 1) (Figs. 6a and b). The 
nine youngest grains have a mean 207Pb/206Pb age of 453 ± 
18 Ma (MSWD=0.66, N=9) and a mean 206Pb/238U age of 
455 ± 12 Ma (MSWD=16, N=9; Supplementary data Table 
S1 - see footnote 1) (Fig. 6a). The LA-ICPMS U–Pb anal-yses 
show two additional age peaks of detrital grains at ca. 1100 
and 1660 Ma, and scattered ages from 1886 to 3021 Ma (Figs. 
6a and b).

Four of the youngest, least altered zircon grains dated by 
LA-ICPMS were removed from the sticky tape mount and 
individually chemically abraded. Grains numbered 43, 45, 
48, and 51 yield concordant CA-ID-TIMS 206Pb/238U dates of 
435.8 ± 0.8 Ma (grain 43), 435.2 ± 0.5 Ma (grain 51), 431.1 
± 0.8 Ma (grain 48), and 421.9 ± 1.0 Ma (grain 45) (Supple-
mentary data Table S2 - see footnote 1) (Figs. 7a and b). 
The youngest grain at 421.9 ± 1.0 Ma provides a maximum 
age for the time of deposition of the sandstone sample.

BNB19-IHNL-291: Felsic tuffite, Botwood basin

Zircon crystals consist of small rounded subhedral grains 
and euhedral laths yellow to clear in color (Fig. 5b). Grains 
are fresh with few inclusions and cracks. Of one-hundred 
and twelve whole-grain analyses, twenty-two were discard-
ed due to alteration and discordance over 15% (Supplemen-
tary data Table S1 - see footnote 1). The LA-ICPMS 
207Pb/206Pb dates range in age from 403 to 2867 Ma and 
show a complicated age profile with a significant detrital 
component (Supplementary data Table S1 - see footnote 
1) (Figs. 6c and d)). The analyses peak at ca. 480 Ma and
the majority of grains form a continuous age distribution
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Conglomerate sandstone and Botwood basin tuffite-siltstone 
produced maximum 206Pb/238U depositional ages of 421.9 ± 
1.0 Ma (Pridoli) and 427.9 ± 3.1 Ma (Wenlock; Hom-
erian), respectively (Supplementary data Table S2 - see 
footnote 1) (Fig. 7). The ages are considered maxima because 
it cannot be discounted that younger detrital and/or igneous 
zircon grains are present in portions of the rock units that 
were not processed for geochronology. Absolute minimum 
depositional age constraints for the basal Rogerson Lake 
Conglomerate are ca. 410 Ma (Honsberger et al. 2022) 
and ca. 390 Ma (Willner et al. 2018), which are, respec-
tively, for rutile and white mica in quartz veins that crosscut 
the Rogerson Lake Conglomerate. U–Pb CA-ID-TIMS 
zircon geochronology produced an igneous crystallization 
age of 429.29 ± 0.70 Ma (Wenlock; Homerian) for the auto-
brecciated, flow-banded rhyolite dome of the Charles Lake 
volcanic belt along the western margin of the Botwood 
basin (Fig. 7e); therefore, these volcanic rocks appear to be 
genetically related to the felsic tuffite.

The maximum depositional ages for the rhyolite dome 
and tuffite are interpreted to represent the time of Homerian  
(ca. 430–427 Ma) volcanism and associated volcanogenic 
sedimentation in the western Botwood basin. In this inter-
pretation, felsic volcanism was active between at least ca. 
429 and 428 Ma, with deposition of felsic tuff and siltstone 
of the Wigwam Formation at ca. 428 Ma, accompanied by 
minor physical reworking of the tuffaceous material. The 
Pridoli maximum age for deposition of the Rogerson Lake 
Conglomerate sandstone suggests that sedimentation may 
have been initiated later along this belt than to the north-
west and northeast in the Botwood basin. Furthermore, the 
maximum ca. 422 Ma detrital zircon age for the Rogerson 
Lake Conglomerate sandstone sample confirms that ca. 
422–420 Ma igneous rocks in central Newfoundland 
are included as clasts and grains within the Rogerson Lake 
Con-glomerate sequence, again, consistent with locally 
derived sediment sources. The new U–Pb CA-ID-TIMS 
zircon ages establish that Wenlock to Pridoli magmatism 
preceded sedimentation in both the Botwood basin and 
along the Rogerson Lake Conglomerate belt (Fig. 8).

The ca. 429 (rhyolite dome) age and ca. 428 Ma (tuffite) 
maximum age for felsic volcanism and volcanogenic sedi-
mentation are consistent with available age determinations 
for the bimodal Hodges Hill Intrusive Suite (ca. 429–426 
Ma, Dickson 2000; G. Dunning, personal communication 
2021), thus, the rhyolite dome and other volcanic rocks of 
the Charles Lake belt are confirmed as contemporaneous 

the mean U–Pb ages determined by LA-ICPMS range from 
Late Cambrian to latest Ordovician and have large statistical 
errors (Supplementary data Table S1 - see footnote 1) (Fig. 6); 
therefore, they  are not sufficient alone to resolve depositional 
ages.

LA-ICPMS detrital zircon age distributions for the sand-
stone and felsic tuffite are very similar (Fig. 6), suggesting 
that the felsic tuffite sample includes detrital zircon grains 
from the intercalated sedimentary (siltstone) fraction. Al-
though analysis of provenance is limited by the relatively 
small numbers of individual LA-ICPMS zircon analyses, 
both the sandstone and tuffite-siltstone samples display 
Neoproterozoic to Cambrian peaks, compatible with detrital 
zircon grains sourced from the underlying Victoria Lake 
Supergroup and its Ganderian basement (Evans et al. 1990, 
Rogers et al. 2006). The ca. 1000 to 1300 Ma zircon grains in 
both samples correspond with typical Mesoproterozoic ages for 
metamorphic rocks of the eastern Laurentian margin in 
western Newfoundland and southern Labrador (e.g., Con-
nelly and Heaman 1993; Tucker and Gower 1994; Gower 
and Krogh 2002; Heaman et al. 2002; Kuiper and Hepburn 
2021). Furthermore, the 1600–1700 Ma grains overlap in 
age with the oldest dated rocks of the Long Range Inlier in 
western Newfoundland (ca. 1631 Ma, Heaman et al. op. cit.) 
and, as well, with Trans-Labrador and Pre-Labradorian oro-
genic events documented in Laurentian basement of south-
ern Labrador (Gower and Krogh 2002). The ages of the few 
Archean zircon grains are similar to Meso- to Neoarchean 
rocks of Laurentia that occur in the Makkovik and Nain 
provinces of central and northern Labrador (e.g., James et 
al. 2002; Ketchum et al. 2002; Hinchey et al. 2020). 

Overall, the U–Pb LA-ICPMS zircon age spectra corrob-
orate the provenance study of Pollock et al. (2007) in that 
strong Paleoproterozoic and Mesoproterozoic Laurentian 
detrital zircon signatures are represented (e.g., Waldron et al. 
2012; Fig. 6). However, the geochronological results herein 
for the sandstone and tuffite-siltstone samples also establish a 
Neoproterozoic to Cambrian detrital zircon source typical of 
the peri-Ganderian Valentine Lake and Crippleback Lake 
intrusive suites (ca. 565 Ma, Evans et al. 1990; Rogers et al. 
2006; Fig. 6). A mixed Laurentian-Gondwanan provenance 
for rocks of the Rogerson Lake Conglomerate sequence and 
Botwood basin, combined with the occurrence of Wenlock to 
Pridoli zircon grains (Figs. 6 and 7), is consistent with local 
depositional sources.

U–Pb CA-ID-TIMS dating of four of the youngest, best 
preserved zircon grains from each of the Rogerson Lake 

Figure 7. (next page) U–Pb CA-ID-TIMS geochronological results for youngest zircon grains, as well as images taken with a 
binocular microscope with incident light. (a) Images of the youngest and best preserved detrital zircon grains identi-fied by 
LA-ICPMS and dated with follow-up CA-ID-TIMS for BNB18-IHNL-072; (b) U–Pb concordia diagram displaying the CA-
ID-TIMS dates of the youngest detrital zircon grains from BNB18-IHNL-072 (youngest grain, 421.9 ± 1.0 Ma);  (c) Images 
of the youngest and best preserved detrital zircon grains identified by LA-ICPMS and dated by follow-up CA-ID-TIMS for 
BNB19-IHNL-291; (d) U–Pb concordia diagram displaying the CA-ID-TIMS dates of the youngest detrital zircon grains 
from BNB19-IHNL-291 (youngest grain, 427.9 ± 3.1 Ma); (e) U–Pb concordia diagram displaying the CA-ID-TIMS date for 
zircon from the flow-banded rhyolite sample BNB18-IHNL-092 (429.29 ± 0.7 Ma). Note: all error ellipses are 2σ.
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with Hodges Hill plutonism. The ca. 429 and 428 Ma dates 
also fall within the age range of the Topsails Intrusive Suite 
and Springdale Group in the Notre Dame Subzone (ca. 429–
426 Ma, Chandler et al. 1987; Whalen et al. 1997, 2006).  
Further, the ca. 422 Ma youngest zircon date from the Rog- 

erson Lake Conglomerate sandstone sample falls within the 
age range of the Mount Peyton Intrusive Suite (ca. 424–418 
Ma, Sandeman et al. 2017), and is also similar to age 
constraints for some rocks of the composite Fogo Island In-
trusive Suite (e.g., ca. 422 Ma, Elliot et al. 1991; Aydin 1995). 

Figure 7

(e)
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Barbarin 1990, 1999; Whalen et al. 1997, 2006; van Staal 
and Barr 2012; van Staal et al. 2014; Whalen and Hildeb-
rand 2019). In this context, listric normal faults facilitated 
exhumation of the middle and lower crust of the Exploits 
Subzone (Victoria Lake Supergroup and correlatives), and 
erosion and deposition of such rocks contributed to the for-
mation of clastic sedimentary cover sequences of the Bot-
wood basin and Rogerson Lake Conglomerate belt (Fig. 9). 
Wenlock to Pridoli lithospheric thinning may have been an 
important primer for orogenic gold mineralization (e.g., 
Bleeker 2015) because it increased heat and fluid flow in the 
crust prior to Early Devonian compression, metamorphism, 
and magmatism.

Considering that latest Silurian extensional faulting in 
central Newfoundland overlaps in time with far-field col-
lision of Avalonia and composite Laurentia (Fig. 8), 
extension may have involved some components of strike-
slip and transtension (Dewey et al. 1998) because sinuous 
collisional boundaries would have produced oblique de-
formation zones (e.g., O’Brien et al. 1993; Dubé et al. 1996; 
O’Brien 2003; Hibbard et al. 2006; van Staal and Barr 2012). 
The relative influence of extension compared to transten-
sion in central Newfoundland, however, remains ambiguous 
because of fault reactivation and deformational overprint. 
Thrust fault reactivation appears to have occurred through-
out the Devonian to accommodate Acadian, intra-terrane, 
thick-skinned thrusting and shortening associated with the 
emplacement of structurally controlled, gold-bearing quartz 
veins (e.g., O’Brien et al. 1993; O’Brien 2003; van Staal and 
Barr 2012; Willner et al. 2018; Honsberger et al. 2022). Such 
Devonian thrust fault systems then may have been reacti-
vated as later oblique, dextral strike-slip, transpressional de-
formation zones (e.g., Lafrance 1989; O’Brien et al. 1993; de 
Roo and van Staal 1994; O’Brien 2003), which we interpret 
to have produced the “lazy Z”-shape (Mann et al. 1983) of 
the Botwood basin and its southwesterly (Rogerson Lake 
Conglomerate belt) and north-easterly extensions (Figs. 1 
and 2). This interpretation is consistent with the occurrence 
of post-Silurian, dextral strike-slip faults (e.g., Northern 
Arm Fault-Reach Fault) along the margins of the Botwood 
basin, implying that a Wenlock to Pridoli extensional fault 
system in central Newfoundland may have been more linear 
than the present map pattern suggests (Fig. 9; cf. Kusky et 
al. 1987; Kusky and Kidd 1996). The occurrence of orogenic  
gold-mineralized, Wenlock to Pridoli igneous and sedi-
mentary rocks in the overall footwall of the Victoria Lake 
Shear Zone (Figs. 1–4) indicates that thrust burial played 
an essential role in the preservation of syn-extensional 
rocks along the central Newfoundland gold belt, opposed to  
uplifting these rocks and exposing them to erosion (e.g., 
Bleeker 2015). 

In the Chaleur Bay synclinorium of northern New Bruns-
wick, latest Silurian, extension-related magmatic suites 
and clastic sedimentary rock sequences of the Dickie Cove 
Group are associated with orogenic gold-mineralized fault 
splays of the Early Devonian, or younger, Rocky Brook–
Millstream Fault Zone (Tremblay and Dubé 1991; Tremblay 

Additionally, the ca. 422 Ma date is consistent with ages 
reported for felsic volcanic rocks of the Laurenceton For-
mation (ca. 421 Ma, van Staal et al. 2014), as well as for fel-
sic igneous rocks along the Rogerson Lake Conglomerate 
belt and within the southern Botwood basin (ca. 422–420 
Ma, Honsberger et al. 2022; Figs. 1 and 2). In sum, the new 
geochronological data from this study, in combination with 
these previously published ages, indicate that volcanism and 
sedimentation along the western Botwood basin were active 
between ca. 429 and 428 Ma, whereas plutonism, volcanism, 
and sedimentation in the southeastern and eastern Botwood 
basin were active between ca. 424 and 418 Ma, with a strong 
pulse of felsic magmatism and associated sedimentation 
along the Rogerson Lake Conglomerate belt at ca. 422 Ma 
(Figs. 8 and 9; see Honsberger et al. 2022).

Transient lithospheric extension is inferred to have con-
trolled the formation of bimodal magmatic suites and asso-
ciated sedimentary rocks in the Botwood basin and Roger-
son Lake Conglomerate belt of central Newfoundland (Fig. 
9). Lithospheric extension provides a mechanism to explain 
mixing and emplacement of mantle-derived mafic magmas 
with their felsic anatectic products, such as the Mount Pey-
ton Intrusive Suite (Strong 1979; Strong and Dupuy 1982) 
and the Fogo Island Intrusive Suite (Aydin 1995; Sandeman 
and Malpas 1995). Furthermore, Wenlock to Pridoli mag-
matism and associated clastic sedimentation corresponds 
to a time-period between the largely compressive stress 
regimes associated with the Salinic and Acadian orogenic 
cycles in central Newfoundland (Fig. 8), when orogenic 
collapse and extension would have been expected (e.g., 
Barbarin 1999). The occurrence of mature sandstones and 
siltstones in the Botwood basin is consistent with longer- 
lived, more-evolved extension in north-central Newfound-
land compared to along the structurally thinner Rogerson 
Lake Conglomerate belt to the south and southwest. As 
such, extension, clastic sedimentation, and magmatism 
were time-transgressive both across- and along-strike of 
the Exploits Subzone, with resultant along-strike variations 
in the volume of sedimentary input (Fig. 9). Therefore, the 
Rogerson Lake Conglomerate belt is not correlative tempo-
rally with the stratigraphic base of the Botwood basin, even 
though the polymict conglomerate is a basal unit.

In our model, predominantly southeast-dipping (present- 
day coordinates) extensional fault systems were active 
along the western Botwood basin at ca. 429 Ma, and prop-
agated southeastward (across-strike) and to the southwest 
and northeast (along-strike) between ca. 424 and 418 Ma 
(Fig. 9). The Wenlock to Pridoli spatio-temporal d evelop-
ment of this extensional fault network is consistent with the 
findings of van Staal et al. (2014), who noted that Silurian 
magmatism gets progressively younger west-to-east across 
the Dunnage Zone. Such extensional fault systems may have 
formed during thinning associated with asthenospheric and 
lithospheric decompression melting and upwelling related 
to slab rollback and break-off, and potentially l ithospheric  
delamination, following the terminal Salinic collision of 
Ganderia with composite Laurentia (Pitcher 1983, 1993; 
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et al. 1993; Wilson 2007; Wilson et al. 2017; Dostal et al. 
2020; Bustard et al. 2021). This fault zone appears to cor-
relate with the Cape Ray–Victoria Lake–Valentine Lake 
fault corridor in southwestern and central Newfoundland, 
strongly suggesting that the orogenic gold system of central 
Newfoundland is continuous along-strike in the northern 
Appalachians.

CONCLUSIONS

Late Silurian (Wenlock to Pridoli), extension-related, bi-
modal magmatic suites and clastic sedimentary rocks of the 
Rogerson Lake Conglomerate belt and Botwood basin 
sequence delineate the central Newfoundland gold belt. 
Integrated LA-ICPMS and CA-ID-TIMS U–Pb zircon tech-
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western Botwood basin, and farther northwest in the Dunnage Zone, is inferred between ca. 429 and 426 Ma (left side), 
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niques produced a maximum date for deposition of the 
Rogerson Lake Conglomerate sequence at 421.9 ± 1.0 Ma 
(Pridoli); therefore, it is younger than, and stratigraph-
ically overlies, ca. 422 Ma igneous rocks that occur along the 
gold belt. The same analytical approach applied to a tuffite 
layer toward the stratigraphic middle of the Wigwam 
Formation in the Botwood basin produced a maximum 
eruption age of 427.9 ± 3.1 Ma (Wenlock; Homerian), 
which is interpreted to be contemporaneous and cogenetic 
with the Hodges Hill Intrusive Suite, the Charles Lake 
volcanic belt, and associated volcanogenic sedimentation in 
the western Botwood basin. Although provenance inter-
pretations are limited by the relatively small numbers of 
individual zircon analyses, LA-ICPMS detrital zircon age 
distributions are consistent with a mixed Laurentian-
Gondwanan provenance for sedimentary  rocks of the 
Rogerson Lake Conglomerate sequence and Botwood 
basin. An autobrecciated, flow-banded rhyolite of the 
Charles Lake volcanic belt from the northwestern Bot-
wood basin has a U–Pb zircon CA-ID-TIMS age of 429.3 
± 0.7 Ma (Wenlock; Homerian), which we interpret as the 
eruptive age. Collectively, the new U–Pb zircon geochrono-
logical data confirm a clear spatio-temporal link between 
syn-extensional, Wenlock to Pridoli magmatism and sedi-
mentation both along and across strike of the central New-
foundland gold belt (Figs. 8 and 9).

Wenlock to Pridoli magmatic and depositional ages are 
consistent with a structural model involving the overall 
southeastward (present day coordinates) propagation of a 
transient, time-transgressive, extensional fault system across 
the Exploits Subzone between ca. 429 and 418 Ma. Exten-
sional faulting may have contributed to basin formation, 
subsidence, and exhumation of pre-Silurian rocks of the 
Exploits Subzone during that time-period. The earlier part 
of the history is marked by ca. 429–426 Ma syn-extensional 
magmatism (Hodges Hill Intrusive Suite and Charles Lake 
volcanic belt) and sedimentation along the northwestern 
margin of the Botwood basin and farther west in the Dun-
nage Zone (Topsails Intrusive Suite and Springdale Group). 
The later part is preserved as ca. 424–418 Ma syn-exten-
sional magmatic suites and clastic sedimentary rocks along 
the Rogerson Lake Conglomerate belt and its extensions 
to the northeast along and within the Botwood basin (e.g., 
Mount Peyton Intrusive Suite and associated rocks). Tran-
sient lithospheric extension appears to mark the transition 
between the Salinic and Acadian orogenic cycles (e.g., San-
deman et al. this volume) and may have been important for 
increasing heat and fluid flow in the lithospheric mantle and 
crust leading to Devonian fault reactivation, crustal thick-
ening, fluid focussing, and orogenic gold mineralization.
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