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RÉSUMÉ

Le sous-bassin de la baie St-George dans le sud-ouest de Terre-Neuve, qui fait partie du bassin plus vaste du 
Paléozoïque tardif des Maritimes, s’est formé sous l’influence d’un coulissage et du déplacement d’évaporites. De 
nouvelles corrélations stratigraphiques entre Terre-Neuve et d’autres sous-bassins du Paléozoïque tardif illustrent 
les effets du déplacement du socle et de sel. Les affleurements côtiers présentent des combinaisons complexes de 
structures synsédimentaires, salifères et tectoniques. Les relations cartographiques et les contrastes spectaculaires 
de l’épaisseur au sein du groupe tournaisien d’Anguille révèlent qu’une vaste faille intraformationnelle normale, 
masquée, en direction nord-est (faille de l’Anse Ship) a contrôlé la sédimentation, et la faille découverte de la 
baie Snakes est provenue d’un point de divergence d’un toit. Les structures s’étant formées durant ou peu après le 
dépôt comprennent des plis de sédiments meubles, des boudins, des filons clastiques et des structures bulbiformes 
diapiriques à l’échelle millimétrique, créés par surpression et liquéfaction de sédiments. Cela laisse supposer que 
le sous-bassin a été tectoniquement actif tout au long de la sédimentation. La déformation liée aux évaporites 
est enregistrée dans le groupe viséen de Codroy et les strates sus-jacentes. Des comparaisons entre l’affleurement 
et le sous-sol permettent d’avancer que des quantités importantes d’évaporites ont été retranchées des sections 
exposées par halocinèse et solution. Les relations complexes des affleurements signalent des lithifications des 
sels et laissent supposer que les unités de la partie supérieure du groupe de Godroy et du groupe sus-jacent de 
Barachois représentent des comblements de mini-bassins s’étant transformés en évaporites épaisses. Les relations 
sur le terrain permettent d’évoquer une sédimentation par inversion tectonique liée à un mouvement de coulissage 
dextre d’est en ouest ayant touché l’ensemble du bassin des Maritimes au cours du Serpukhovien, qui a produit des 
plis de contraction et des décalages en sens inverse. Nombre des structures du sous-bassin de la baie St-George, 
précédemment interprétées comme des phénomènes ultérieurs à une sédimentation et purement tectoniques, ont 
été créées par une déformation des sédiments meubles et d’évaporites ductiles durant l’établissement du bassin.
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ABSTRACT

The Bay St. George sub-basin of SW Newfoundland, part of the larger late Paleozoic Maritimes basin, formed 
under the influence of strike-slip faulting and the movement of evaporites. New stratigraphic correlations between 
Newfoundland and other late Paleozoic sub-basins illustrate the effects of both basement and salt movement. 
Coastal outcrops show complex combinations of synsedimentary, salt-related, and tectonic structures. Map 
relationships and dramatic thickness contrasts in the Tournaisian Anguille Group indicate that a large, concealed, 
NE–striking normal growth fault (Ship Cove fault) controlled sedimentation; the exposed Snakes Bight fault 
originated as a hanging-wall splay. Structures formed during, or soon after deposition include soft-sediment folds, 
boudins, clastic dykes, and millimetre-scale diapiric bulb structures, formed by overpressuring and liquidization 
of sediment. These suggest that the sub-basin was tectonically active throughout deposition. Evaporite-related 
deformation is recorded in the Visean Codroy Group and overlying strata. Comparisons between outcrop and 
subsurface suggests that significant amounts of evaporite were removed from exposed sections by halokinesis 
and solution. Complex outcrop relationships indicate salt welds, and suggest that units of the upper Codroy and 
overlying Barachois groups represent fills of minibasins that subsided into thick evaporites. Field relationships 
suggest tectonic inversion deposition related to E-W dextral strike slip motion that affected the entire Maritimes 
basin in the Serpukhovian, producing reverse-sense offsets and contractional folds. Many of the structures in 
the Bay St. George sub-basin, previously interpreted as post-depositional and purely tectonic, were formed by 
deformation of unlithified sediment and ductile evaporites during basin development.
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INTRODUCTION

The Maritimes basin (Fig. 1) is a large and deep (>12 km) 
basin covering a large portion of onshore and offshore At-
lantic Canada with late Paleozoic strata (Roliff 1962; Keppie 
1982; Gibling et al. 2008, 2019). This basin formed during 
a period of transtension following the Acadian Orogeny 
(Calder 1998; Hibbard and Waldron 2009; Waldron et al. 
2015), and is structurally complex, displaying a mixture of 
extensional, contractional, strike-slip, and salt-tectonic fea-
tures, which divide the basin into multiple NE and E-trend-
ing sub-basins separated by uplifted basement horsts (Boeh-
ner and Giles 1993; van de Poll et al. 1995; Gibling et al. 
2008; Murphy et al. 2011; Gibling et al. 2019).

Within the larger Maritimes basin, the Bay St. George 
sub-basin (BSGSB) of SW Newfoundland and the adjacent 
Gulf of St Lawrence (Fig. 2) rests unconformably on Pre-
cambrian and early Paleozoic rocks of the Humber Zone of 
the Appalachian orogen. It contains deformed Carbonifer-
ous strata with significant resource potential, both on land 
(Knight 1983) and offshore (Dafoe et al. 2016). However, 
much of the on-land stratigraphy and structure (Knight 
1983) was interpreted before recent advances in the study 
of evaporite movement, known as “salt tectonics” (e.g., 
Jackson and Hudec 2017), that have demonstrated close re-
lationships with depositional histories in overlying strata. 
Parallel advances in understanding of soft-sedimentation 
(e.g., Obermeier 2009; Owen and Moretti 2011; Alfaro et al. 

2016), have shown that earthquake-generated soft-sediment 
deformation features are common in tectonically active 
basins, occurring at many scales. Distinguishing between 
synsedimentary structures and post-deformation tecton-
ic features within orogens may be challenging, but criteria 
have been developed (e.g., Waldron and Gagnon 2011; Al-
sop et al. 2019) to distinguish these processes. Studies in 
other parts of the Maritimes basin (e.g., Waldron and Ry-
gel 2005; Waldron et al. 2013; Dafoe et al. 2016; Snyder and 
Waldron 2016) have shown that both soft-sediment defor-
mation and evaporite expulsion into diapiric walls have had 
major impacts on basin structure.

In this paper we examine the structural history of the 
BSGSB, using detailed field mapping of outcrops previously  
interpreted as displaying tectonic folds and faults. A new 
stratigraphic correlation chart (Fig. 3) is introduced that 
better relates the BSGSB to other late Paleozoic sub-basins 
across Atlantic Canada and illustrates the effects of both 
basement tectonics and evaporite movement on the stra-
tigraphy. Synsedimentary features, including soft-sediment 
deformation and salt-expulsion structures, are here doc-
umented in detail. Brittle structures that cut across these 
ductile structures are also here described at key locations. 
Our results show that soft-sediment deformation and salt 
expulsion occurred concurrently with faulting and tectonic 
inversion during the evolution of the sub-basin, providing 
a new perspective on the evolution of the sub-basin and its 
role in the Maritimes basin as a whole.
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Figure 1. Map of the Maritimes basin of Atlantic Canada. Inset shows the location of Figure 2, the Bay St. George sub-basin. 
Modified from Waldron et al. (2015).
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METHODS

The most recent integrated stratigraphic and structur-
al study in the on-land Bay St. George sub-basin was car-
ried out by Knight (1983) who established the stratigraphic 
framework, using detailed measured coastal and river sec-
tions in less deformed parts of the sub-basin to determine 
thicknesses and establish a lithostratigraphic nomenclature. 

Knight (1983) suggested tentative correlations between 
laterally equivalent successions, although detailed biostra-
tigraphic work by von Bitter and Plint-Geberl (1982) and 
Utting and Giles (2004, 2008) has modified some of these 
correlations. In addition, five on land 2-D seismic surveys 
were completed by Vulcan Minerals in the 1980s to aid in 
the exploration for salt and gypsum in the Flat Bay anticline 
area. We have acquired and reinterpreted SEG-Y data from 
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Figure 2. Bay St. George subbasin geologic map and generalized stratigraphy, modified from Knight (1983). Seismic sec-
tion, well locations, and detailed map areas highlighted by red boxes.
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In salt tectonics, early studies (e.g., Ramberg 1981) in-
terpreted deformation as ductile in both evaporites and the 
overlying strata. Vendeville and Jackson (1992a, b), showed 
that strata overlying evaporites have typically been de-
formed in the brittle domain, and that variations in their 
thickness represent differential sedimentation, not strain, 
on top of flowing evaporites (e.g., Hudec and Jackson 2011; 
Jackson and Hudec 2017). Once salt becomes mobilized, it 
collects into salt-cored anticlines and diapirs (Jackson and 
Talbot 1991; Jackson and Vendeville 1994; Ge et al. 1997; 
Hudec and Jackson 2004, 2007; Jackson and Hudec 2017). 
Intervening areas, known as minibasins, undergo subsid-
ence, in many cases showing dramatic variations of sedi-
ment thickness over short distances (Hudec et al. 2009; Ings 
and Beaumont 2010; Garcia et al. 2012; Callot et al. 2016). 
The boundaries between minibasins and diapirs are marked 
by complex zones of multiple sheared unconformities (Giles 
and Lawton 1999; Rowan et al. 2012). These concepts were 
applied by Waldron and Rygel (2005) and Waldron et al. 
(2013) to the evolution of the Cumberland sub-basin, which 
occupies an analogous position near the opposite (SW) ex-
tremity of the overall Maritimes basin. Dafoe et al. (2016) 
and Snyder (2019) demonstrate the important role of salt 
tectonics in the development of the offshore BSGSB, where 
evaporite expulsion has produced anticlinal salt walls sepa-
rating minibasins. We therefore reinterpret the stratigraphic 
thicknesses recorded in onshore stratigraphic sections, sub-
surface drilling, and seismic profiles, in the light of these 
advances.

STRATIGRAPHY

The Maritimes basin has a complicated history of Devo-
nian to Permian subsidence, deposition, folding, faulting, 
salt tectonism, erosion, and exhumation (Hamblin and Rust 
1989; Calder 1998; Waldron 2004; Wilson et al. 2006; Wal-
dron et al. 2013, 2015; Gibling et al. 2019), resulting in a 
complex stratigraphy with many stratigraphic synonyms 
and locally disputed correlations (Waldron et al. 2017). The 
BSGSB is filled by depositional units from oldest to young-
est: Anguille, Codroy, Barachois, and Blanche Brook groups 
(Fig. 3), mapped in surface exposure by Knight (1983), and 
broadly comparable to the Horton, Windsor, Mabou, and 
Cumberland groups, respectively, of Nova Scotia. However, 
the historic placement of the boundary between the Codroy 
and Barachois groups in Newfoundland differs markedly 
from the equivalent Windsor/Mabou group boundary in 

Figure 3. (previous page) (a) Generalized time stratigraphic column across a selection of sub-basins within the Mari-
times basin. Four columns shown from the Bay St. George sub-basin from northeast to southwest. Abbreviations: CJL =  
Crabbes-Jeffreys Limestone; HL = Highlands Limestone; FL = Fischells Limestone; CL = Cormorant Limestone. Modified 
from Waldron et al. (2017). Atlantic Canada Palynology from McGregor and McCutcheon (1988), Utting and Giles (2004), 
and Allen et al. (2013). (b) Bay St. George sub-basin thickness stratigraphic column generally from west to east. Datum is 
the Ship Cove Limestone. Stratigraphic section locations shown on adjacent map and sourced from Knight (1983), Utting 
and Giles (2004), and Utting and Giles (2008).

these surveys using Schlumberger’s Petrel software. We have 
also compiled borehole information from the same area, in-
cluding newer borehole results that have revealed additional 
thicknesses of evaporites not represented in the compilation 
of Knight (1983).

We review these integrated sources of stratigraphic infor-
mation, combining them into a new stratigraphic chart (Fig. 
3) that shows both lithostratigraphic and biostratigraphic
correlations calibrated against a modern numerical time
scale (Davydov et al. 2012; Waldron et al. 2017; Aretz et al.
2020). On the basis of this chart, we suggest revisions to the
definitions of the Codroy and Barachois groups, bringing the 
group-level stratigraphic subdivisions into line with those in 
the rest of the Maritimes basin.

Our interpretation of the structural history is based on 
remapping and reinterpreting selected well-exposed coastal 
sections, building upon the regional framework provided by 
Knight (1983). We remapped key coastal outcrops at Ship 
Cove, Capelin Cove, and Snakes Bight (Fig. 2); we prepared 
detailed field maps at 1:10 000 scale to portray previously 
undescribed tectonic and evaporite-related structures. Ori-
entations of structures including bedding, cleavage, fold 
hinges, faults, and soft-sediment structures were measured 
and uploaded into the geographic information system Arc-
GIS. Key outcrops displaying soft-sediment deformation 
and salt structures were documented photographically. Fold 
axes were determined using stereographic projections plot-
ted by Orient software (Vollmer 1995). Stratigraphic col-
umns, maps, and cross-sections were constructed by pro-
jecting observations parallel to fold axes in areas of detailed 
mapping.

Knight (1983) identified examples of synsedimentary de-
formation and salt tectonism in the BSGSB. For example, he 
noted the presence of soft-sediment folds at Cape Anguille 
and Codroy Island (Fig. 2) but interpreted them as having 
played relatively minor roles in the overall development 
of the sub-basin. Significant advances in the study of soft- 
sediment deformation and salt tectonics have taken place 
since then. For example, Waldron and Gagnon (2011) sug-
gested criteria for distinguishing soft-sediment deformation 
in deformed rocks of orogens, where overprinting by tec-
tonic structures is common. Moretti et al. (2016) compiled 
recent studies of soft-sediment deformation, including a 
study (Snyder and Waldron 2016) of soft-sediment defor-
mation in closely related Tournaisian strata of Nova Scotia. 
In this paper, we apply these insights to onshore portions of 
the BSGSB, where detailed observations of coastal outcrops 
are possible.
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the Maritime Provinces, which is placed at the top of the 
highest marine limestone and is a more distinctive lithologi-
cally-based boundary. We therefore suggest a redefinition of 
the Codroy Group to comprise those strata from the lowest 
to highest marine limestone (Ship Cove Member to Crabbes- 
Jeffreys Limestone Bed, respectively). We suggest that 
overlying units without marine limestone, shown by Utting 
and Giles (2004, 2008) to be both biostrati-graphically and 
lithologically equivalent to the Mabou Group of Nova 
Scotia, should be included in the overlying Barachois Group.

Anguille Group

A latest Devonian to Tournaisian clastic succession (An-
guille Group in Newfoundland and equivalent Horton and 
Sussex groups of Nova Scotia and New Brunswick) overlies 
Proterozoic to early Paleozoic Appalachian basement and 
typically consists of basal alluvial, medial lacustrine (locally 
marine-influenced), and upper alluvial units (Knight 1983; 
Hamblin and Rust 1989; St. Peter 1993; Martel and Gib-
ling 1996; Gibling et al. 2008, 2019). Very few fossils have 
been described (mostly fragmentary palynomorphs: Knight 
1983) with the result that correlation with comparable units 
assigned to the Horton Group in Nova Scotia, generally bet-
ter dated, is largely based on lithology.

Knight (1983) separated the Anguille Group, from base to 
top, into the Kennels Brook, Snakes Bight, Friars Cove, and 
Spout Falls formations. The Kennels Brook Formation com-
prises red and grey pebbly sandstone, conglomerate, and 
mudstone interpreted as originating in a meandering river 
and floodplain environment (Cote 1964; Knight 1983). This 
unit crops out only at Snakes Bight and in the core of the 
Anguille Mountains (Fig. 2). Its base is not seen. The Snakes 
Bight Formation comprises black mudstone, siltstone, and 
grey sandstone. It can be correlated to the Horton Bluff 
Formation in Nova Scotia (Fig. 3) which contains spore as-
semblages of Tournaisian zones 2 (Emphanisporites rotatus -  
Indotriradites explanatus) and 3 (Vallatisporites vallatus) 
(Utting et al. 1989; Martel et al. 1993; Utting and Giles 2004; 
Waldron et al. 2017). Both units are interpreted as products 
of deposition in wave-dominated lakes that existed during 
periods of basin under-filling (Knight 1983; Martel and 
Gibling 1996). The Friars Cove Formation consists of grey 
sandstone, conglomerate, shale with minor carbonate, and 
redbeds interpreted as products of a fluvial-deltaic environ-
ment (Knight 1983). It can be correlated to the lithological-
ly comparable Cheverie Formation in Nova Scotia (Fig. 3) 
which contains Tournaisian spores assigned to zone 4 (Spe-
laeotriletes pretiosus var. pretiosus) (Utting and Giles 2004). 
The Spout Falls Formation comprises red and grey sand-
stone with minor siltstone and conglomerate interpreted as 
braided stream deposits (Knight 1983). Its position above 
the Friars Cove Formation (tentatively correlated with zone 
4) suggests that it may place this unit as younger than most
of the exposed Horton Group in Nova Scotia, but compa-
rable to parts of the Sussex Group of southern New Bruns-
wick, which contains spores of zones 4 and 5 (Calatisporeites

decorus - Schopfites claviger (Utting and Giles 2004; St. Peter 
and Johnson 2009; Waldron et al. 2017). The youngest por-
tion of the Anguille Group is the thin (100–200 m) Fischells 
Conglomerate, classified as a member of the Spout Falls For-
mation, that lies between basement and the basal limestone 
of the Codroy Group in the northern Bay St. George subba-
sin. The Fischells Conglomerate contains spores of the Vi-
sean Lycospora pusulla - Densosporites columbaris zone (Ut-
ting and Giles 2004), making it younger than most known 
rocks of the Horton and Anguille groups, suggesting that 
the Fischells Conglomerate may lie in a position analogous 
to the Visean Hillsborough Formation, a conglomeratic unit 
at the base of the Windsor Group in New Brunswick (St. 
Peter 1993).

In the Anguille Mountains of the southern BSGSB, all 
four of these formations are present in a succession estimat-
ed by Knight (1983) as 2000 to >4900 m thick. However, 
the succession differs markedly between the northern and 
southern parts of the sub-basin (Fig. 2); in the north, the 
Anguille Group is represented only by the 100–200 m thick 
Fischells Conglomerate in the Flat Bay anticline (Figs. 2, 3), 
which rests unconformably on Precambrian and early Pa-
leozoic basement.

Codroy Group

The overlying Codroy Group, defined here as equiva-
lent to the Windsor Group and lower parts of the Mabou 
Group elsewhere in the Maritimes basin (Fig. 3), contains 
dominantly marine shale, limestone, and evaporite, and rep-
resents the only fully marine incursion into the Maritimes 
basin (Gibling et al. 2008). The Codroy Group was subdi-
vided by Knight (1983) into four formations: Ship Cove, 
Codroy Road, Robinsons River, and Woody Cape.

The contact between the Anguille Group and the basal 
Ship Cove Formation is exposed at Ship Cove in the north, 
and on Codroy Island in the south (Fig. 2), whereas at Bo-
swarlos, on the Port au Port Peninsula, the Codroy Group 
extends beyond the Anguille Group to rest unconformably 
on older strata of the Humber Zone of the Appalachians. 
The Ship Cove Formation comprises packstone, oolitic 
limestone, local boundstone, and minor sandstone. It can 
be correlated lithologically with the Macumber Formation 
in Nova Scotia, which lies in an equivalent position at the 
base of the Windsor Group. Both the Ship Cove Formation 
and overlying Codroy Road Formation lie biostratigraphi-
cally within Windsor Subzone A of Bell (1929) correspond-
ing to the Lycospora pusilla - Densosporites columbaris (PC) 
Spore Assemblage Zone (Utting and Giles 2004, 2008; Wal-
dron et al. 2017) and the Diplognathodus Conodont Zone of 
von Bitter and Plint-Geberl (1982) (Fig. 3). Because of the 
long timespan of these biozones, the age of the basal Vise-
an limestone units, and therefore the duration of the break 
between the Anguille and Codroy groups, has been con-
troversial. The youngest age assigned to the basal Windsor 
Group is Asbian (~336 Ma), as favoured by Mamet (1970) 
and St. Peter (1993) in New Brunswick. An older age of early 
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Assemblage Zones (Utting and Giles 2004, 2008), corre-
sponding to Windsor Subzones A through E of Bell (1929). 
The upper contact of the Jeffreys Village member is marked 
by the top of the Crabbes-Jeffreys limestone of von Bitter 
and Plint-Geberl (1982) and Utting and Giles (2004, 2008).

Two distinct units assigned to the Codroy Group by 
Knight (1983), restricted to fault-bounded regions in the 
south and southeast of the sub-basin are here regarded as 
members of the Robinsons River Formation. The Mollichi-
gnick Member, at least 2275 m thick in the Grand Codroy 
River (Fig. 3), consists of red siltstone, red and grey sand-
stone, and pebbly sandstone, with minor marine shale and 
limestone, while the Woody Cape Formation of Knight 
(1983) consists of approximately 690 m of green and grey 
mudstone, siltstone, and sandstone interpreted as deltaic 
deposits (Knight 1983), also with intercalations of marine 
limestone and shale. This unit only crops out along the 
southwestern coast at Capelin Cove (Fig. 2) and in a small 
area inland. Utting and Giles (2004, 2008) place both units 
in the Visean to Serpukhovian Schopfipollenites acadiensis -  
Knoxisporites triradiatus (AT) Assemblage Zone, indicat-
ing that they are laterally equivalent to the Robinsons River 
Formation exposed in the Flat Bay anticline and suggesting 
correlation with the upper Windsor Group. The Mollichig-
nick Member contains palynomorphs characteristic of the 
upper part (Crassispora maclilosa - Spelaeotriletes arenaceus 
palynofacies) of the AT Assemblage Zone, suggesting that it 
is younger than the unit at Woody Cape. There seems to be 
little justification (except historical precedent) for giving the 
thinner Woody Cape unit formation status. We therefore 
suggest that both units are best regarded as members of the 
Robinsons River Formation. The dominance of clastic sedi-
mentary rocks over carbonates and evaporites in both units 
suggests that they might have been deposited as minibasin 
fills during expulsion of lower evaporites within the Codroy 
Group, in a similar location to minibasin fills interpreted in 
the Cumberland sub-basin by Waldron et al. (2013).

Barachois Group

Knight (1983) defined the Barachois Group to include 
red conglomerate, sandstone, siltstone, and coal measures 
(Knight 1983; Gibling et al. 2008; Utting and Giles 2008) 
that overlie the Codroy Group in the south and east of the 
BSGSB (Fig. 2).

A succession of red sandstone, conglomerate, and red 
siltstone, >1200 m thick in the St. David’s syncline (Fig. 2), 
was assigned by Knight (1983) to the Highlands Member 
of the Robinsons River Formation (Codroy Group). Based 
on its position above the highest marine limestone, later-
ally equivalent to Mabou Group rocks in Nova Scotia (Ut-
ting and Giles 2004), we include it as the lowest unit in the 
Barachois Group, necessitating its elevation to formation 
status. Like its equivalents in Nova Scotia, it contains spores 
of the early Serpukhovian Grandispora spinosa - Ibrahimi-
spores magnificus (SM) Assemblage Zone. The Highlands 
Formation represents high sinuosity river channels that  

Holkerian (~344–343 Ma) is favoured in most of the work 
of Utting and Giles (e.g., 2004), but von Bitter et al. (2006) 
favour a late Chadian age (~345–344 Ma). A single isoto-
pic constraint (Barr et al. 1994) implies that the base of the 
Windsor Group is younger than 339 ± 2 Ma. In Figure 3 
we show the base of the Codroy Group in a compromise 
position at ~339 Ma, which lies within the Livian sub-stage 
in the timescales of Davydov et al. (2012) and Aretz et al. 
(2020), approximately equivalent to the Holkerian substage 
of NW Europe (Fig. 3).

The Codroy Road Formation comprises red, grey and 
multicoloured, locally evaporite-bearing siltstone and sand-
stone, gypsum, and carbonate, interpreted by Knight (1983) 
as products of alluvial plain to marginal marine environ-
ments. Bell (1948) logged this unit as at least 244 m thick in 
coastal exposure between Cape Anguille and Capelin Cove 
(Fig. 2). Knight (1983) logged 145 m of Codroy Road For-
mation in Fischells Brook, and 300 m in the Codroy Valley. 
In 1980–1982, approximately 950 m of drill core acquired 
through the Pronto-Norada Newfoundland Potash Joint 
Venture in the Flat Bay anticline area (Fig. 2) was logged 
by Carter and Anderle (Rhoden et al. 1999; D. Carter, Geo-
scientists Nova Scotia, personal communication 2017). The 
core was dominantly halite (of various colours, interbedded 
with clay), anhydrite, siltstone, and limestone of the Codroy 
Road Formation (Fig. 4). These observations, together with 
drilling reports by Rhoden et al. (1999) and Dimmell (2001), 
suggest that outcrop sections of the Codroy Road Forma-
tion have been substantially thinned by evaporite removal.

The Robinsons River Formation consists of red sand-
stone, siltstone, and conglomerate, interpreted as floodplain 
deposits (Knight 1983), with interbedded marine carbon-
ates and evaporites that crop out at Ship Cove, in the Codroy 
Valley, and along the southwestern coast (Fig. 2). Knight 
(1983) described the Robinsons River Formation as >5000 m  
thick, and divided it into four members: Jeffreys Village, 
Highlands, Mollichignick, and Overfall Brook. However, 
the Highlands and Overfall Brook members are entirely 
clastic, and contain Serpukhovian palynomorphs (Utting 
and Giles 2008); they are here assigned to the overlying 
Barachois Group (Fig. 3). An additional, laterally equivalent 
unit, the Woody Cape Formation of Knight 1983), interme-
diate in biostratigraphic age between the older and younger 
parts of the Robinsons River Formation, is here treated as a 
member of that formation.

The main sections of Robinsons River Formation be-
tween Ship Cove and the Flat Bay anticline are assigned to 
the Jeffreys Village member. This unit is ~1400 m thick in 
the Flat Bay anticline (Fig. 2), consisting of shale, mudstone, 
siltstone, sandstone, conglomerate, minor evaporites, and 
minor carbonate. The base includes a distinctive and later-
ally continuous boundstone unit, the Cormorant limestone, 
that represents the contact between the Taphrognathus 
and Cavusgnathodus Conodont Zones of von Bitter and 
Plint-Geberl (1982). The formation contains spores (Fig. 3) 
extending from the Visean PC to the early Serpukhovian 
Grandispora spinosa - Ibrahimispores magnificus (SM) Spore 
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traversed arid floodplains (Knight 1983).
The ~2500 m thick Searston Formation, comprising 

grey sandstone, siltstone, and significant coal measures, 
is attributed to meandering river, floodplain, and swamp 
environments of deposition (Knight 1983). Abundant pal-
ynomorphs of the Reticulatisporites carnosus Assemblage 
Zone (Utting and Giles 2008) indicate that the Searston is 
entirely younger than the Highlands Formation. The 
Over-fall Brook Member, a >345 m thick unit immediately 
west of the Long Range fault (Fig. 2), is composed of 
massive cross- bedded and pebbly sandstone. Though 
this unit was as-signed by Knight (1983) to the 
Robinsons River Formation of the Codroy Group, Utting 
and Giles (2008) assign it to the Searston Formation of 
the Barachois Group based on its similar lithology, lack of 
marine sediments, and the pres-ence of spores from the 
Serpukhovian R. carnosus Assem-blage Zone (Fig. 3).

Higher strata of the Barachois Group, dominantly grey, 
were undivided by Knight (1983), but include the Shears and 
Cleary coal seams of Utting and Giles (2008) that lie within 
the Serpukhovian R. carnosus Spore Assemblage Zone. Stra-
ta are conglomerate, sandstone, mudstone, and coal seams 
deposited in a fluvial and possibly lacustrine environment 
(Bell 1948; Baird and Coté 1964; Solomon 1986). We here 
regard this as an informal formation-level unit, within the 
Barachois Group.

Mudstone, sandstone, conglomerate, and significant coal 
measures deposited in floodplain environments (Baird and 
Coté 1964; Solomon 1986; Hyde et al. 1991; Falcon-Lang 
and Bashforth 2005) occur at Blanche Brook in the north 
of the sub-basin (Fig. 2). This contentious unit was placed 
within undivided Barachois Group by Knight (1983) and 
Hyde et al. (1991) (Fig. 3). However, newer palynological 
work by Utting and Giles (2008) suggests that the Blanche 
Brook unit is of Moscovian (Pennsylvanian) age. It is as-
signed by Utting and Giles (2008; their fig. 15) to the Pictou 
Group.

STRUCTURE AND DEFORMATION

Large-scale structural contrasts

The BSGSB is bounded to the south and east by the NE–
SW Long Range fault (Fig. 2). Carboniferous strata in the 
BSGSB unconformably overlie Ordovician strata on Port au 
Port Peninsula (Fig. 2) and dip generally SE as far east as the 
basin-bounding Long Range fault, part of the Cabot fault 
system, leading Knight (1983), Kilfoil (1988), Miller et al. 
(1990), and Hall et al. (1992) to interpret the Bay St. George 
sub-basin as a half-graben. Waldron et al. (2015) suggested 
that the Cabot fault system was active from ~370 Ma to 
~310 Ma with a major dextral component of strike slip, 
representing a major controlling fault of the Maritimes 
basin. Abundant faults in the BSGSB strike ~NE–SW 
(Knight 1983), an ori-entation termed the “Appalachian 
trend” by Waldron et al. (2015); major faults include the  

(a)

Figure 4. Core photographs from LR-98-1 composed 
pre-dominantly of halite and mudstone showing 
different breccia textures and ratios of halite to 
mudstone increas-ing with depth. (a) At 632 m, 
dominantly mudstone brec-cia with halite matrix. (b) At 
668 m, halite and sylvite with minor brecciation. (c) At 
669 m, mylonitized halite with mudstone, halite, and 
rare limestone clasts. Arrows drawn in shallowing 
direction.
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Long Range fault and the Snakes Bight fault (Fig. 2). 
Several smaller NE–SW and NW–SE faults separate 
Codroy Group strata from Anguille or Barachois Group 
strata (Fig. 2).

Knight (1983) measured steep faults striking E–W in 
two locations in the BSGSB: Ship Cove and Capelin Cove 
(Fig. 2). At Ship Cove, multiple E–W faults separate Rob-
inson River Formation from Codroy Road Formation. The 
E–W fault at Capelin Cove separates Searston Formation 
(Barachois Group) to the south, and Woody Cape Member 
(Codroy Group) to the north. We reinterpret these (below) 
as structures related to evaporite tectonics.

Knight (1983) suggested that the northern sub-basin is 
less structurally complex than the south due to a shallow 
depth to basement. In the south, Hobson and Overton 
(1973) used seismic refraction data to suggest the presence 
of up to 6 km of Carboniferous strata in the sub-basin. Kil-
foil (1988) used magnetic and gravity data to determine a 
depth to basement in the Bay St. George sub-basin as up to 
12 km offshore and 3 km onshore. Marillier et al. (1989) in-
terpreted a NW–SE Lithoprobe deep-seismic reflection line 
southwest of Codroy (Fig. 1), showing a geometry consis-
tent with the half-graben hypothesis. Durling and Marilli-
er (1993) used additional marine seismic reflection data to 
estimate a depth to the base of the Horton Group ranging 
from 2 km in the north to >10 km in the south. Sedimentary 
thicknesses recorded by Knight (1983) suggest that this con-
trast is due to much greater thicknesses of Anguille Group 
(>4900 m) in the south, compared with the northern subba-
sin where it is less than 200 m thick.

Folds in the BSGSB trend generally NE–SW and are typ-
ically doubly plunging (Knight 1983). Onshore, the major 
folds in the northern sub-basin include the Flat Bay anticline 
and Barachois syncline (Fig. 2). In the southern sub-basin, 
the dominant fold structure is the Anguille anticline (Fig. 2) 
the hinge of which roughly parallels the Snakes Bight fault. 
Knight (1983) noted tight to isoclinal outcrop-scale folds 
in the thick Anguille and Codroy groups of the southern 
BSGSB, contrasting with open folds in the north, and in the 
Codroy Group, suggesting that the contrast is due to the dif-
ference in thickness between the two successions. Howev-
er, a similar contrast in correlative rocks of the Deer Lake 
sub-basin to the NE (Fig. 1) was attributed by Hyde et al. 
(1988) to a Mississippian deformation episode following 
deposition of the Anguille Group.

Outcrop-scale structures:  
role of soft-sediment deformation

To investigate the development of these structures, we 
remapped and reinterpreted two detailed sections from 
Ship Cove and Capelin Cove to compare structural style in 
the northern and southern sub-basin, respectively. We also 
compared the structures present in the Anguille Group with 
those in the Codroy Group at Boswarlos on the Port au Port 
Peninsula (Fig. 2).

 Many of the structures present show evidence of having

been formed before the sediments were lithified, as previ-
ously noted by Knight (1983) at Cape Anguille and Codroy 
Island (Fig. 2). These structures we recorded include 
soft-sediment folds, bulb structures, sedimentary boudins, 
and clastic dykes.

Folds

Cape Anguille and Codroy Island: The Snakes Bight For-
mation at Cape Anguille and on Codroy Island displays 
spectacular folds at a range of scales (Figs. 5a–d). The folded 
layers are interlaminated siltstone and mudstone (Fig. 6a). 
Sharp contacts separate deformed layers above and below 
from undeformed strata. In some locations, rafts containing 
folded laminae are surrounded by more layers of homoge-
neous sediment that themselves show larger scale folds (Fig. 
5b); as a result, the internal laminated rafts may show super-
imposed fold patterns (Fig. 5b). Individual folds are tight 
to isoclinal and range from <1 to 75 cm in half-wavelength 
measured perpendicular to regional bedding. As shown 
by a stereographic projection (Fig. 7), folds predominantly 
plunge gently to the NNE. Their axial surfaces dip moder-
ately NW (Fig. 7). Viewed down plunge these folds are com-
monly s-folds, verging WNW. Hyde et al. (1988) describe 
similar tight to isoclinal folds with shallow plunge in An-
guille Group strata in the Deer Lake sub-basin (Fig. 1).

At outcrop scale, hinges of the folds appear as approxi-
mately similar folds: Class 2 of Ramsay and Huber (1987); 
both sandstone and mudstone layers are thickened in fold 
hinges. However, on close examination, many sandstone 
layers show class 1C geometry (i.e., inner surface more 
tightly curved than outer surface) while adjacent mudstone 
shows class 3 (i.e., inner arc is less tightly curved than outer 
arc), indicating that the sand was stronger than mud during 
deformation, the normal condition for clastic sedimentary 
rocks deformed at low temperature. However, in some cases 
sandstone shows class 3 geometry (Fig. 5e), showing that it 
was weaker than adjacent mudstone at the time of defor-
mation; Waldron and Gagnon (2011) cited this geometry 
as a clear indicator of deformation while sand was 
liquidized.

Folded siltstone rafts within the larger mass of folded ma-
terial are common at this location (Fig. 5b). The rafts thin 
laterally and show convolute laminae suggesting that they 
were partially lithified. Disaggregation implies that partially 
lith-ified layers were incorporated as rafts into a larger 
system of mobile material. Alsop and Marco (2011) and 
Alsop et al. (2019) have shown similar structures in Late 
Pleistocene strata adjacent to the Dead Sea and argued that 
folded strata truncated by undeformed strata of a similar 
facies, and rafts of folded strata incorporated into a larger 
structure, are un-equivocal indicators of deformation prior 
to complete lith-ification.

Boswarlos: At Boswarlos (Fig. 2), an angular unconformity 
between early Paleozoic Humber Zone strata below and Ship 
Cove Formation above is exposed. Above the unconformity 
is dominantly very-fine grained to pebbly limestone dipping   
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Figure 5. (a–d) Soft-sediment folds at Cape Anguille. (a) Large recumbent fold closing west; recumbent human for scale. 
(b) Raft of folded laminae within large-scaled folded material (arrow to highlight raft); field notebook with 5 cm bar for
scale. (c and d) Parasitic folds defining large folds (e.g., s and m folds); 5 cm lens cap for scale. (e and f) Soft-sediment folds on
Codroy Island; hand 20 cm wrist-to-middle finger for scale. (g and h) Soft-sediment folds at Boswarlos. (g) Sheath fold
(arrow to highlight). (h) Folded interval truncated (dashed line) above by undeformed strata.
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Figure 6. Stratigraphic columns from (a) Cape Anguille and (b) Boswarlos highlighting frequency of soft-sediment structures.
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sub-horizontally (~05°) to the southwest. A detailed strati-
graphic column (Fig. 6b) shows four intervals exhibiting 
tight to isoclinal folds, here attributed to soft-sediment 
deformation. Undeformed subhorizontal strata truncate 
limbs and hinges of folds (Figs. 5g, h). These folds com-
prise tight to isoclinal class 2 (similar) folds, some of which 

n = 25

(a) N

(b)

(c) N

n = 40

n = 25

N

have curved hinges, resembling sheath folds (Fig. 5g). Fold 
hinges plunge gently, displaying a girdle distribution when 
plotted together on a spherical projection (Fig. 7c). Plunges 
of fold hinges on the sheath fold shown in Figure 7 range 
from 06° to 53° and the folds close to the north and east. 
Axial surfaces dominantly dip gently S to SW, and strike E 
to SE. Shear at base of the soft-sediment folds and thinning 
of limbs indicate transport to the west.

Interpretation: Soft-sediment folds comprise strata that 
were folded prior to complete lithification, in which in-
ter-granular displacements are the main mechanism of de-
formation (Rossetti 1999; Kang et al. 2010). Soft-sediment 
folds are commonly attributed to down-slope gravity slid-
ing, but Waldron and Gagnon (2011) pointed out that this 
is not necessarily the case: unconsolidated sediments are 
pres-ent in many tectonically active environments where 
they may undergo soft-sediment deformation associated 
with the motion of underlying tectonic faults. Folded beds 
at Cape Anguille and Codroy Island show preferential 
fold hinge orientations within the overall plane of bedding 
(Fig. 7). At Cape Anguille the folds trend NNE, have a 
gentle plunge, and commonly show s-asymmetry verging 
WNW when viewed down plunge. These observations 
show that folds at this location likely formed during 
movement of mobilized sediment downslope towards the 
WNW, consistent with the direction of paleocurrent flow in 
the Snakes Bight and Friars Cove formations (Knight 
1983). The geometries of folds in both the Anguille Group 
and Codroy Group examples clearly indicate that 
sediments were unlithified at the time of deformation but do 
not clearly indicate whether tectonism, topographic slope, 
or some combination of the two provided the necessary 
differential stress to deform the sediments.

Bulb structures

At multiple intervals in the Snakes Bight Formation at 
Cape Anguille (Fig. 6a) are bulbous irregularities that re-
semble load structures but which crop out on the tops of 
beds. Cross-bedding and cross-lamination in adjacent 
sandstone beds clearly indicates that these beds are upright. 
In plan-view, these structures are approximately 1–5 cm 
in diameter and appear as rounded siltstone forms within 
a mudstone matrix (Figs. 8a, b) covering, and protruding 
from, the tops of siltstone beds. In some locations the ex-
posed bulb structures cover three or more square metres of 
a single bedding surface.

Figure 7.  Equal area projections of soft-sediment folds. (a) 
hinges of soft-sediment folds at Cape Anguille. Bingham 
eigenvectors are e1 = 016-05, e2 = 145-82, and e3 = 286-07. 
Best fit great circle orientation is 016/83 SE. (b) Poles to 
axial surfaces at Cape Anguille. Bingham eigenvectors are 
e1 = 116-39, e2 = 258-44, and e3 = 009-20. Average axial 
surface orientation 206/51 NW. (c) Fold hinges (dots) and 
axial surfaces (great circles) at Boswarlos.
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Figure 8. Soft-sediment deformation structures at Cape Anguille. Field notebook with 5 cm bar, Brunton compass, or me-
chanical pencil for scale. (a) Arrow indicates where clastic dyke cross-cuts a bedding-parallel fault. (b, c, d) Bulb structures 
in (b) plan view as polygons on the tops of bedding and in (c) cross-sectional view in outcrop. (d) Cross-sectional view in 
thin section; arrows point to thickness changes in mud immediately adjacent and overlying a bulb. (e) Clastic dykes on the 
top of bedding. Arrows indicate where clastic dyke cross-cuts sedimentary boudins. (f and g) Sedimentary boudins; dashed 
lines highlight orientation. Inset in (f) is a circular histogram showing boudin trends on bedding. (h) Clastic dykes on the 
tops of bedding; inset in (h) is a circular histogram showing dyke trends on bedding.
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1–10 cm in height (Fig. 8c); they are convex-up siltstone 
bodies surrounded by mudstone. Overlying the structures, 
laminated finer siltstone and mudstone and siltstone vary 
in thickness so as to compensate for the greater thickness of 
coarse siltstone in the convex bulb structures, as shown in 
thin section (Fig. 8d). These laminae show laterally uniform 
dip and thickness with the exception of locations immedi-
ately above the siltstone bulbs, where they are thinned. The 
bottom surfaces of the deformed siltstone layers that display 
the bulbs are undulatory and locally may show convention-
al (downward protruding) load structures or soft-sediment 
folds (Fig. 8c). Clastic dykes and sedimentary boudins (de-
scribed below) cross-cut the structures (Fig. 8e).

The structures described above superficially resemble 
conventional load structures noted, for example, in Tur-
key by Hempton and Dewey (1983), in Spain by Alfaro et 
al. (2002) and Ezquerro et al. (2015), in England by Owen 
(2003) and Collinson (2005), and in a physical simulation 
by Moretti et al. (1999); the bulb structures differ in being 
‘upside-down’. Similar structures have been described with 
variable names: ‘cycloids’ by Hempton and Dewey (1983) 
and Scott and Price (1988), ‘mushroom-like silts’ by Ro-
dríguez-Pascua et al. (2000), and ‘bulb-shaped structures’ 
by Nikolaeva (2009). Closely comparable structures in 
the Horton Group of the Windsor-Kennetcook sub-basin 
were described as ‘bulb structures’ by Snyder and Wald-
ron (2016), which is the term used here. In those examples, 
silt was deposited in layers of uniform thickness and was 
later deformed, pinching out laterally as a result of sedi-
ment flow into the bulbs. The contorted nature of the silt 
in the bulb structures indicates that sediment was likely 
liquidized during their formation. Flow of water within the 
layers and between larger silt grains during liquidization 
led to density contrasts which enabled the bulbs to rise dia-
pirically into overlying finer-grained muds, accounting for 
the observed localized variations in grain size and sorting.

Sedimentary boudins

Ribbed features exposed on bedding top surfaces are 
commonly observed within interbedded siltstone and mud-
stone of the Snakes Bight and Friars Cove formations (Fig. 
6a). In plan view these structures are 1–10 mm wide and 
create a pattern of parallel hatching on bedding surfaces 
(Figs. 8f, g). They are commonly found on the top of silt-
stone and sandstone beds; intervening layers of mudstone 
do not show the ribbed features. The contacts above and 
below beds with the ribbed features are parallel; there are 
no erosional features at the bedding surface. At microscopic 
scale, the spaces between the sandstone strips are filled by 
mudstone. These structures show preferential orientation, 
trending dominantly N–S and NE–SW (Fig. 8f), oblique to 
fold hinges.

These structures are likely produced by extension parallel 
to bedding in sediments that were incompletely cemented, 
kinematically equivalent to boudins that are more usually 

resulted from semi-brittle extension of more rigid siltstone 
and sandstone; the spaces created between boudins were 
filled by finer-grained, sediment that clearly behaved in a 
more ductile manner. As there is both a brittle and ductile 
component to these structures, they likely formed prior to 
complete lithification. Their preferred orientation reflects 
stresses originating from slopes or from tectonic deforma-
tion of wet sediment. Comparable features were described 
as “pull-apart structure” by Corbett (1973) in turbidites 
from Tasmania. Other examples of sedimentary boudins 
were described by Waldron et al. (2007) and Snyder and 
Waldron (2016) in correlative rocks in the Windsor-
Kennetcook sub-basin in Nova Scotia.

Clastic dykes

Clastic dykes in the Snakes Bight Formation occur in in-
terlaminated siltstone and mudstone layers (Fig. 6a). Dykes 
are composed of grey siltstone and cross-cut dark grey mud-
stone at a high angle to bedding and bedding-parallel fissil-
ity. The dykes range from 4–14 cm in height (i.e., perpen-
dicular to bedding), and 5 mm–14 cm in width as measured 
where they are visible on the top surfaces of beds, but nar-
row with depth. The dykes are elongate, striking dominant-
ly NE–SW, confirming the observation of Knight (1983). 
Where multiple dykes occur in one horizon, they are most 
often aligned parallel to each other, but some sections show 
perpendicular dykes trending NW–SE (Fig. 8h). We did not 
observe tightly contorted clastic dykes with the geometries 
seen in the Horton Group of Nova Scotia, interpreted as the 
result of compaction of surrounding mud (Martel and Gib-
ling 1996; Snyder and Waldron 2016). However, this may 
have been because the majority of dykes were observed on 
bedding surfaces, not in cross-section.

The clastic dykes are wider at the top and thin with depth, 
typically originating in a single coarser bed but terminating 
at different stratigraphic intervals, indicating that the dyke 
fills were sourced downward from above. They clearly de-
veloped before the sediment was fully lithified. However, 
the contacts between siltstone and adjacent mudstone are 
sharp, which suggests brittle deformation of mud at a shal-
low depth of formation (Parnell and Kelly 2003). Waldron 
and Gagnon (2011) argued that when mud acts more rigidly 
than coarser sediment, it indicates that the coarser sediment 
behaved as a fluid with a lower yield stress than the mud, 
suggesting that the dyke-filling silt was mobilized by sedi-
ment liquidization, while the surrounding mud was suffi-
ciently dewatered to undergo brittle deformation.

The clastic dykes at Cape Anguille cross-cut sedimentary  
boudins and soft-sediment folds (Fig. 8e). The top surface 
of one sandstone bed shows a bedding-parallel fault (219/23 
NW) and clastic dykes on the same surface. The sand-
stone fill of the clastic dyke appears in positive relief clearly 
cross-cutting gently WSW-plunging (254-14) slickenlines 
(Fig. 8a.), which indicates that the dyke formed after the 
fault moved. 

described in metamorphic rocks. The extensional structuresIn cross-sectional view, these polygonal structures range
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tuations, paleoslope, wave and tide action, seismicity, rapid 
sediment loading, and overpressured conditions (Moretti et 
al. 1999; Alfaro et al. 2002; Moretti and Sabato 2007; Owen 
and Moretti 2011; Hermanrud et al. 2013; Alsop et al. 2019; 
Tang et al. 2020). Many of these can be excluded as the trig-
ger for deformation in the BSGSB. Soft-sediment deforma-
tion structures are present on multiple, closely spaced strati-
graphic surfaces; explanations that invoke large, rare events, 
such as tsunami and meteorite impacts (Long 2004; Tang 
et al. 2020) are unlikely. Permafrost may be eliminated as 
a cause because, at the time of deposition, Newfoundland 
was at a low latitude in a warm climate (Calder 1998). Pref-
erential orientation of many of the structures suggests that 
vertical fluctuations in the groundwater table are not a likely 
trigger for deformation.

Waldron and Gagnon (2011) show that soft-sediment 
deformation structures with preferred orientation can be 
induced by down-slope gravity-driven processes, by move-
ment on underlying tectonic faults, or by combinations 
of the two (for example, where tectonic activity produc-
es steep topographic slopes). Because soft-sediment folds 
are observed in three different formations (Snakes Bight, 
Spout Falls, and Ship Cove), we suggest that the BSGSB was 
tectonically active throughout deposition of the Anguille 
Group, and that deformation continued into deposition of 
the Ship Cove Formation of the Codroy Group. However, 
at its type locality the Ship Cove Limestone is uniform, with 
no soft-sediment structures. This distribution suggests that 
soft-sediment deformation was localized, possibly to the 
vicinity of active faults. The immediate triggers for soft- 
sediment deformation may have included causes as diverse 
as rapid sediment loading, waves, tides, and seismic shaking 
(Sims 1975; Gatmiri 1990; Rossetti 1999; Owen and Moret-
ti 2011; Moretti et al. 2016). Regardless of the immediate 
trigger, the presence of soft-sediment structures with tec-
tonically controlled orientations shows that tectonism was 
active during sedimentation. Our observations suggest that 
part of the contrast in deformation style between the north-
ern and southern BSGSB may be due to the abundance of 
soft-sediment deformation structures in the thick, rapidly- 
deposited strata of the southern sub-basin.

Map-scale structures: role of evaporites

Large-scale tectonic structures onshore have been noted  
by Knight (1983) and include the Flat Bay anticline and 
Barachois syncline in the north and the Anguille anticline 
and the Snakes Bight fault in the south.

Drilling data

Mineral exploration directed at gypsum, potash, and ha-
lite in the Codroy Group in the Flat Bay anticline area (Fig. 
2) has produced a significant amount of drilling data. Rho-
den et al. (1999) examined drill core from Leeson Resources
Inc. LR-98-1 and LR-98-2, east of the Flat Bay anticline (Fig.
2) in the northern part of the basin, and interpreted a salt-

Interpretation

Soft-sediment deformation structures are features that 
form soon after deposition of sediment and before complete 
lithification. Soft-sediment structures provide information 
on early deformation of sedimentary rocks in tectonically 
active environments such as strike-slip systems and sed-
imentary basins cut by faults (Hempton and Dewey 1983; 
Plint 1985; Rossetti 1999; Sibson 2003; Berra and Fellet-
ti 2011; Waldron and Gagnon 2011; Snyder and Waldron 
2016; Tang et al. 2020). Liquidization (liquefaction and/or 
fluidization) is the most common deformation mechanism 
(Maltman 1994; Maltman and Bolton 2003; van Loon and 
Mazumder 2011, Alsop et al. 2019). Liquidization of sedi-
ment commonly occurs at or near the sediment–water in-
terface, although if unlithified wet sediments are sealed by 
an overlying impermeable layer, overpressured conditions 
may develop, and liquidization can therefore occur deeper 
in a sediment pile (Maltman and Bolton 2003; van Rensber-
gen et al. 2003). Overpressure can liquidize a fluid-saturated 
bed if it is either rapidly buried or horizontally compressed 
by tectonic processes (Maltman 1994; Jolly and Lonergan 
2002; Maltman and Bolton 2003; Taki and Pratt 2012).

The soft-sediment deformation structures described 
above can be broadly classified into those that were exposed 
at the sediment–water interface and those that formed lat-
er in the sediment pile. Alsop et al. (2019) note that struc-
tures truncated by undeformed strata are an indication of 
formation near the sediment surface, before minor erosion. 
Amongst the structures we observed, soft-sediment folds 
are in some cases truncated and unconformably overlain 
by undisturbed strata, suggesting that they formed near the 
sediment surface.

The sedimentary boudins and bulb structures show no 
evidence of exposure at sediment surfaces; both are best ex-
plained as products of liquidization during overpressuring, 
where overlying impermeable mudstone (or evaporite) pro-
vided a seal and prevented the expulsion of interstitial water 
during burial. The lack of erosional features and presence of 
overlying mudrock suggest these structures formed within 
the sediment pile after some amount of burial. Sedimenta-
ry boudins were observed to cross-cut the bulb structures, 
indicating that these structures also probably formed within 
the sediment pile.

Clastic dykes show diverse relationships. In some cases 
they were truncated at the sediment surface, whereas in oth-
er cases they cross cut features such as sedimentary boudins 
and bulb structures, indicating formation within the sedi-
ment pile. A single example of a dyke cutting a fault with 
subhorizontal slickenlines (Fig. 8a) suggests that strike-slip 
faulting was active during early stages of diagenesis. Clastic 
dykes may therefore have formed at intervals throughout 
deposition and early stages of diagenesis.

A range of triggering mechanisms are recognized to have 
the potential to create soft-sediment deformation structures 
of the types identified in the BSGSB. These include meteor-
ite impact, tsunami, permafrost thawing, groundwater fluc-
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expulsion minibasin in the area. The two wells penetrated 
681 m and 359 m of Carboniferous strata, respectively. Drill 
core contains sandstone, siltstone, mudstone, conglomerate, 
and an increasing amount of evaporites (gypsum and halite) 
with depth; halite is the dominant lithology below ~360 m 
in LR-98-1 and LR-98-2 (Rhoden et al. 1999). Immediately 
above the Ship Cove Formation, the Codroy Road Forma-
tion is logged as thick foliated intervals of dominant halite 
and anhydrite with frequent limestone bands. The thick ha-
lite package contains bands and/or inclusions of mudstone 
and siltstone that make up between 2 and 40% of the drilled 
section (Fig. 4). We infer that stratigraphic sections exposed 
in outcrop, now devoid of halite, originally contained sig-
nificantly larger proportions of evaporite, and that sections 
of siltstone breccia observed in outcrop represent residues, 
after solution, of originally much thicker successions of in-
terstratified siltstone and evaporite in the subsurface.

Seismic reflection data

To supplement outcrop and drill-core information, 
time-migrated 2-D seismic reflection data were acquired 
from the Newfoundland and Labrador Department of Nat-
ural Resources (Figs. 2, 9). The data are of poor to moderate 
quality, and we have not attempted any reprocessing. Ini-
tial horizon identification and interpretations were made by 
comparison with maps, drill core, and data from offshore 
BSGSB. Because we lack logged wells tied to the seismic 
lines, our horizon interpretations are necessarily tentative. 
Nonetheless, we identify evaporites based on their lack of 
coherence and weak internal reflectivity. Evaporites are 
commonly recognizable on seismic profiles from passive 
margins as zones of incoherent low reflectivity (Jackson 
and Hudec 2017) showing major fluctuations in thickness, 
an interpretation confirmed from our experience in other 
parts of the Maritimes basin, where thick evaporites (“low-
er Windsor salt”) commonly occur above a highly reflective 
basal anhydrite interval (gypsum in outcrop), that in turn 
rests upon limestone (Macumber Formation and equiva-
lents).

Based on the above arguments we identify a consistent 
deep reflection (horizon BA, possibly representing a bas-
al anhydrite unit of the Codroy Road Formation that rep-
resents the boundary between bright but poorly coherent 
reflections below and a discontinuous convex-up zone of 
incoherent reflections above, interpreted to represent evap-
orites.

Above both these units is a reflective interval that defines 
antiform-synform pairs (Fig. 9). The base of this reflective 
interval can be traced across most lines, here termed hori-
zon TS (Fig. 9) possibly representing a top-salt reflection. In 
parts of the section where the inferred evaporites are absent, 
BA and TS join to form a single reflection. Horizons in the 
moderately reflective package above TS appear to downlap 
directly on to the merged BA-TS surface. To the southeast, 
reflections overlying horizon TS, dipping moderately to the 
southeast, change dip to parallel the subhorizontal horizon 

BA. We interpret these relationships to suggest that the len-
ticular interval between BA and TS represents remnants of 
an originally more continuous evaporite layer that has been 
expelled from the section into adjacent salt structures.

The interval above horizon TS shows significant varia-
tions in two-way travel time between reflections across the 
seismic profile, interpreted to indicate thickness changes. 
On the line shown in Figure 9, thickness between reflections 
increases near the hinge of a syncline; thickness between re-
flections decreases near the hinge of an anticline.

The geometries on these seismic lines are similar to salt- 
related structures on passive continental margins (Hudec et 
al. 2009) where expulsion of evaporites is caused by young-
er sediment subsiding into an evaporite-filled layer. Lateral 
thickness changes in overlying sediment record differential 
subsidence during sedimentation. The surface where mate-
rial above and below the evaporite package (horizon TS and 
horizon BA) are juxtaposed is therefore interpreted as a pri-
mary salt weld (Fig. 9).

Ship Cove Section

Ship Cove (Fig. 2) was mapped by Knight (1983) and von 
Bitter and Plint-Geberl (1982) as a continuous conformable 
succession spanning the Spout Falls, Ship Cove, Codroy 
Road, and Robinsons River formations. We remapped this 
area and measured a detailed section from the top of the 
Ship Cove Formation into the base of the Codroy Road For-
mation (Fig. 10). In this section, laminated limestone, mud-
stone, massive conglomerate, gypsum, and multicoloured 
weakly foliated siltstone breccia (Figs. 11a, b) alternate. Thin 
beds of gypsum occur within the siltstone breccia packages. 
The repetitive character of the succession suggests that the 
Codroy Road Formation was deposited during cyclic chang-
es in the depositional environment. Giles (1981, 2009) in-
terpreted correlative rocks from the Windsor Group in the 
Shubenacadie sub-basin in Nova Scotia and noted similar 
cycles at mesoscopic and macroscopic scale. von Bitter and 
Plint-Geberl (1982), Utting and Giles (2004, 2008) revisited 
these sections focusing on conodonts and palynomorphs 
respectively. These results were incorporated into our sec-
tions, resolving questions on younging and dip directions.

The new map and cross-section in Figure 12 show uni-
formly dipping Spout Falls and Ship Cove Formation at 
the stratigraphic base of the section. Above these units, the 
cross-section (C–D in Fig. 12), perpendicular to major fold 
axes, shows alternating folded sections of foliated siltstone 
breccia, gypsum, and minor carbonates. The gypsum sec-
tions have varying texture, but consistently show foliated 
dark and light bands in which the foliation is broadly par-
allel to layering. The lithological intervals can be broadly 
correlated across folds, but map relationships require that 
the thickness of the lowest Codroy Road Formation gypsum 
varies dramatically when traced laterally, which suggests 
extreme ductility due to evaporite flow. In the overlying 
Codroy Road Formation, a series of anticline–syncline pairs 
comprise the remainder of the section. Interbedded bound-
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stone, sandstone, siltstone breccia, and gypsum form a large 
anticline further north. Gypsum outcrops near the core of 
this anticline are steeply foliated at water-level, but the foli-
ation is itself folded about a near-horizontal secondary axial 
trace, suggesting the presence of refolded folds.

We interpret expulsion of evaporites along the top of the 
Ship Cove Formation that created the thickened evaporite 
package shown in the cross-section in Figure 12. The paral-
lel contact between the Ship Cove Formation limestone and 
an overlying siltstone breccia and gypsum (Fig. 10) likely 
represents a surface where evaporites were expelled or dis-
solved forming a primary salt weld.

Capelin Cove Section

One of the most structurally complex coastal sections in 
the BSGSB mapped by Knight (1983) extends from Stormy 
Point to Cape Anguille (Fig. 2), passing through Capelin 
Cove. For this study, the Capelin Cove section was remapped 
(Fig. 13). The strata were separated into three mappable silt-
stone breccia units, two separate gypsum-dominated pack-
ages, and two black limestone packages (Fig. 13).

To the south of the Capelin Cove section are sandstone, 
dark shale, siltstone, and rare gypsum beds of the Woody 
Cape Member. One sandstone bed within the member has 

quartz pseudomorphs after halite (Fig. 11c) suggesting that 
parts of the Woody Cape Member were deposited in hyper-
saline water. Crossbedding and climbing ripples in the sand-
stone provide unequivocal way-up indicators. This package 
of rock has variable dip, ranging from steeply dipping (~75° 
south) and younging to the south, to near horizontal (~07° 
north), to overturned (~58° south) and younging to the 
north (Fig. 13). The pattern of bedding orientations clearly 
shows that the Woody Cape Member is folded in a down-
ward-facing fold: an antiformal syncline. Such structures 
typically require two episodes of shortening in their forma-
tion, the first to form an upward-facing fold and the second 
to rotate it so that strata at the hinge are upside-down.

The contact between Woody Cape Member and Searston 
Formation to the south comprises a near-vertical brecciated 
zone exposed in the cliff. The contact zone is ~5.5 m wide 
and strikes approximately E–W (250°) (Figs. 11d, e). With-
in this zone is fine-grained very poorly consolidated brec-
cia and gouge. Broken sandstone layers are present near the 
edges of the zone, with orientations subparallel to bedding 
in the adjoining units. Multiple surfaces on the competent 
rocks display slickenlines and deformation bands of varying 
orientations.

To the south of the brecciated zone are sandstone, silt-
stone, and coal measures of the Searston Formation that 
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dip 50–60° and young to the southeast. Searston Formation 
rocks measured inland also young to the south and east 
forming a synclinal elliptical pattern (Fig. 2).

The contact between Woody Cape Member and Searston 
Formation was interpreted by Knight (1983) as the steeply  
dipping Stormy Point fault, striking approximately east-
west. Traced inland, this structure passes through a poorly 
exposed valley of the Grand Codroy River, interpreted by 
Knight (1983) as underlain by a belt of Codroy Group be-
tween the Anguille Mountains to the north and a structur-
al basin filled with Searston Formation (Barachois Group) 
which lies to the south. However, the diametrically opposed 
younging directions of the formations on either side of the 
interpreted fault make reconstruction of fault slip very diffi-
cult. In contrast, the configuration of two oppositely young-
ing, steeply dipping formations, separated by breccia, closely  
resembles the geometry of some salt welds observed in seis-
mic profiles of passive continental margins (Jackson and 
Hudec 2017). Secondary salt welds represent steeply dip-
ping zones where salt migrated into a diapiric salt wall, and 
tertiary salt welds represent subhorizontal salt canopies; in 
both cases a weld is formed when salt is expelled from the 
wall or canopy, and the resulting weld may show divergent 
younging directions of strata preserved on either side. Sec-
ondary and tertiary salt welds are rare in outcrop. However, 
the structure at Capelin Cove resembles salt welds described 
by Rowan et al. (2012) in the La Popa Basin in Mexico and 
by Thomas and Waldron (2017) at Little Judique, Cape Bret-
on Island in rocks of comparable age in the Maritimes basin. 
It is therefore interpreted that the contact separating Woody 
Cape Member and Searston Formation is a salt weld, not a 
fault. The brecciated zone represents the material left after 
salt expulsion or solution. Bedding measurements from the 
Searston Formation, to the south and inland (Fig. 2) outline 
an elliptical structural basin suggesting that the Searston 
Formation strata occur within a salt-expulsion minibasin. 
Inland, the expression of the salt weld could route through 
Grand Codroy River (Fig. 2), which is a low elevation area 
with poor exposure consistent with the former presence of a 
diapiric evaporite wall. To the north, the Woody Cape Mem-
ber probably represents an earlier, late Visean minibasin that 
also subsided into salt of the Codroy Road Formation. The 
downward-facing fold in the Woody Cape Member proba-
bly represents an originally recumbent, SE-facing fold that 
formed during late Visean minibasin subsidence and devel-
opment of a salt canopy as shown schematically in Figure 
14a. Expulsion of salt from the canopy allowed deposition 
of the Searston Formation above. Subsequent tilting associ-
ated with the development of the Anguille anticline rotated 
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the fold into its downward-facing orientation (Fig. 14b). We 
therefore reinterpret the Stormy Point fault of Knight (1983) 
as a Serpukhovian salt weld.

Snakes Bight fault and associated structures

The Snakes Bight fault (Fig. 2) is the largest fault within 
the onshore Bay St. George sub-basin separating Carbonif-
erous stratigraphy. The fault comes onshore at Snakes Bight, 
striking NE–SW. Knight (1983) mapped the Snakes Bight 
fault as striking more E–W at Ship Cove near the bound-
ary between the southern and northern sub-basin (Fig. 2). 
Figures 2 and 3 show that the Snakes Bight fault lies ~5 km 
southeast of the subsurface boundary between contrasting 
Anguille Group stratigraphies of the northern and southern 
sub-basins. We therefore suggest that the Snakes Bight fault 
branches off a deep subsurface normal fault, here termed the 
Ship Cove fault, that separates the northern and southern 
sub-basins.

Figure 15 shows a detailed map of the Snakes Bight 

area. A vertical orthomosaic of Snakes Bight, made in the 
photogrammetry program Agisoft Photoscan, shows bed-
ding orientation differences on either side of a narrow 
fault-bounded section. To the west is slightly overturned 
red sandstone of the Spout Falls Formation, the youngest 
formation in the Anguille Group, that youngs to the west. 
The area north of Snakes Bight shows the older Spout Falls 
Formation, steeply dipping and also younging to the west. 
To the east of the faults are moderately inclined mudstone 
and siltstone of the Snakes Bight Formation younging to the 
east. The fault-bounded area in the centre consists of mod-
erately to steeply dipping grey conglomerate and sandstone 
of the Kennels Brook Formation, the oldest formation in the 
Anguille Group, that youngs to the east. At two locations 
(marked with an x in Fig. 15), we observed brecciated rocks 
with no measurable bedding. Z-Z’ in Figure 15 shows a 
cross-section perpendicular to both faults. The hanging wall 
of the northern fault (footwall of the southern fault) is the 
only place where Kennels Brook Formation crops out. The 
hanging wall of the southern fault is the higher stratigraphy 

(b)(b)

Figure 11. Photographs of (a) outcrop view Codroy Road Formation siltstone breccia showing near-vertical foliation;  
(b) cut hand sample of siltstone breccia showing dominantly siltstone clasts; and (c) halite pseudomorphs in outcrop from
the Woody Cape Member; (d) salt weld at Capelin Cove and (e) interpretation of (d) showing brecciated zone interpreted
as a salt weld and younging directions.

(d)(d)
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of the Snakes Bight Formation. We interpret the fault to the 
north as a footwall shortcut thrust, branching off the main 
Snakes Bight fault (southern fault).

DISCUSSION

Extensional geometry of the Bay St. George sub-basin

The Bay St. George sub-basin formed during Devonian 
subsidence and strike-slip motion along major NE–SW 
faults, including the Long Range fault, that created the Mari-
times basin (Gibling et al. 2008; Hibbard and Waldron 2009; 
Waldron et al. 2015; Gibling et al. 2019). Initial deposition 

into the Bay St. George half-graben started with the Tour-
naisian Anguille Group. The Anguille Group is dramatically 
thicker in the southern sub-basin compared to the northern 
sub-basin. In the hanging wall of the Ship Cove fault, a thick 
package of Kennels Brook, Snakes Bight, Friars Cove, and 
Spout Falls formations is exposed in the Anguille anticline 
and surrounding area (Figs. 2, 15). In the footwall, the An-
guille Group rapidly thins, such that only ~150 m remains 
in the Flat Bay Anticline. This suggests that the Ship Cove 
fault and the NW limb of the Anguille anticline approxi-
mately marks a SE-side-down growth fault active during the 
Tournaisian. Continuing movement allowed accumulation 
of much thicker Anguille Group strata on the SE side.
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Tectonic environment of soft-sediment deformation

The Snakes Bight, Friars Cove, Spout Falls, and Ship Cove 
formations record a protracted history of soft-sediment de-
formation. Bulb structures are interpreted to have formed 
by liquidization of already buried sediment and are very 
commonly cross-cut by other soft-sediment structures sug-
gesting continuing liquidization during deposition. As the 

complexly folded beds and bulb structures occur in multiple 
sections within the Snakes Bight Formation and continue 
into the Friars Cove Formation, we infer that the sub-basin 
was tectonically active throughout deposition.

At Cape Anguille, soft-sediment folds shed light on the 
timing of deformation. The rafts of folded laminae within 
larger masses of convolutely folded material (Fig. 5) formed 
when partially-lithified layers broke and became part of a 
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larger folded system. The structures in these rafts would 
have formed early in the deformation process; the rafts sepa-
rated and became incorporated into the larger soft-sediment 
fold, later in the deformation history. Similar soft-sediment 
folds in the overlying Ship Cove Formation suggest that the 
sub-basin remained tectonically active into the Visean.

The bulb structures and sedimentary boudins do not 
show evidence of interaction with the sediment-water in-
terface; our observations suggest that they formed deeper in 
the sediment pile during a period of overpressure. In sedi-
mentary basins, either rapid burial of sediment or tectonic 
strain can induce overpressured conditions (Osborne and 
Swarbrick 1997), and seismic shaking can trigger soft-sed-
iment deformation. Therefore, rapid burial of the Snakes 
Bight Formation, and/or tectonism associated with the ac-
tive Snakes Bight fault, probably created overpressure and 
led to formation of the observed suite of soft-sediment de-
formation structures.

These structures, and the paleocurrents and thickness 
changes in the Anguille Group (Knight 1983), suggest a 
model in which the southern part of the basin was actively 
tilted down to the WNW by a synsedimentary extensional  
component of movement on the Snakes Bight fault or its 
precursor, forming a westward-thickening half-graben. 
While the basin was under-filled, paleoslope was also down 
towards the WSW; Knight (1983) notes a combination of 
axial and westward paleocurrents in the Snakes Bight and 
Friars Brook formations. Seismic shaking during episodes 
of fault movement may have led to liquidization of the wa-
terlogged sediments; sliding of portions of the sedimentary 
pile toward the fault led to the development of soft-sedi-
ment folds and sedimentary dykes. The direction of topo-
graphic slope may have been reversed as the basin became 
over-filled during deposition of the Spout Falls Formation; 
Knight (1983) records paleocurrents towards the SE at this 
time. Our observations do not allow us to unequivocally  
determine the direction of transport that produced the 
soft-sediment folds in the Spout Falls and higher units.

Following deposition of the Anguille Group, the basal unit 
of the Windsor Group, the Ship Cove formation, was depos-
ited over a wider area, and is relatively constant in thickness, 
suggesting decreased tectonic activity. A corresponding unit 
in Nova Scotia, the Macumber Formation, shows a similar 
relationship, suggesting deposition in an environment of 
relatively uniform subsidence, contrasting with the horst-
and-graben tectonics that characterized the Horton Group 
(Pascucci et al. 2000). However, fault movement and tilting 
continued in parts of the Maritimes basin (e.g., Waldron et 
al. 2013) and may explain the continuing soft-sediment de-
formation seen in the Codroy Group at Boswarlos.

Timing of evaporite movement

The evaporite units in the BSGSB have been highly de-
formed but also dissolved in the exposed sections; as in 
most evaporite basins, the evaporites themselves preserve 
little direct evidence of the timing of deformation. Typically,  

in evaporite successions, overlying minibasin sediments 
provide the best control in the timing of salt movement. In 
the BSGSB, several units have characteristics that suggest 
deposition in minibasins on top of moving evaporites.

In the northern sub-basin, the St. David’s syncline (Fig. 
2) has an orientation unrelated to most other folds in the
sub-basin, which is not easily reconciled with dextral strike-
slip on the Appalachian or Minas fault trends of Waldron et
al. (2015). Our observations of thickness variations at and
north of Ship Cove suggest that salt movement was a sig-
nificant player in the deformation history. The geometry of
the St. David’s syncline is consistent with a salt-withdrawal
minibasin, suggesting salt movement in the early Serpuk-
hovian.

Farther south, at Capelin Cove, an interpreted salt weld 
bounds an elliptical periclinal syncline filled with Searston 
Formation, also closely similar to the geometry of salt- 
expulsion minibasins in passive-margin settings (e.g., Hu-
dec and Jackson 2007). This suggests that salt expulsion con-
tinued into the later Serpukhovian.

Finally, and more speculatively, the Woody Cape Mem-
ber, to the north of the interpreted salt weld at Capelin 
Cove, displays dramatically different facies from the 
time-equivalent strata of the Mollichignick Member. The 
presence of halite pseudomorphs within the section (Fig. 
11c) suggests that a source of halite-rich surface water was 
present during deposition, whereas the absence of limestone 
and gypsum implies that this was not sea-water. We 
suggest that the halite was derived by solution of evaporite 
diapirs that were already breaching the surface during the 
late Visean deposition of the Woody Cape Member, and that 
this laterally confined unit may represent a third minibasin. 
If correct, this would imply that Codroy Group evaporites 
were moving from Visean to Serpukhovian time.

Tectonic inversion

The map pattern of the southern Bay St. George sub- 
basin (Fig. 2) shows thick Anguille Group strata exposed at 
the surface at a higher structural level than its position in 
the northern sub-basin, suggesting SE-up movement along 
the approximate line of the Ship Cove fault. The thickness 
variations in the Anguille Group clearly suggest that the 
present-day Ship Cove fault marks the approximate line 
of a SE-down basin-bounding fault that was active during 
the Tournaisian (Fig. 14). These relationships show that the 
boundary has undergone inversion at some time since depo-
sition of the Anguille Group. Field relationships at Snakes 
Bight (Figs. 14, 15) suggest that the originally SE-dipping 
normal fault was rotated to near-vertical during the inver-
sion process.

The amount of separation across the Ship Cove and Snakes 
Bight faults decreases northeastward. Where the fault is 
dominantly NE-striking, the relative uplift of the south side 
is large, whereas the east-striking part shows a much lower 
degree of inversion. This is perhaps explained by inversion 
during dextral strike slip on faults with the E–W “Minas 
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trend” of Waldron et al. (2015). During motion on these 
faults, NE-striking faults are shortened, whereas E–W struc-
tures are more parallel to the strike-slip faults and therefore 
undergo less shortening (Fig. 2). Murphy et al. (2011) and 
Waldron et al. (2015) suggest major westward displacement 
of the Meguma terrane along Minas trend faults at around 
330 Ma. Tectonic inversion in the Bay St. George sub-basin 
likely occurred at this time.

CONCLUSIONS

Soft-sediment deformation structures are common in the 
Snakes Bight, Friars Cove, Spout Falls, and Ship Cove forma-
tions of the Anguille and Codroy Groups. These structures, 
found in the northern and southern sub-basin, suggest that 
the Bay St. George sub-basin was tectonically active early 
in its history. During and after deposition of the Codroy 
Road Formation, deformation was dominantly related to 
salt movement. Salt structures preserved in Codroy Group 
evaporites and the Searston Formation of the Barachois 
Group, suggest that deformation continued throughout the 
remainder of sub-basin formation. Salt-related structures 
preserved in outcrop are oriented consistently with dextral 
transpression on E–W faults.

Knight (1983) concluded that the southern Bay St. George 
sub-basin was significantly more deformed than the north-
ern Bay St. George sub-basin. Soft-sediment deformation 
structures of similar style occur at Boswarlos in the north 
and Cape Anguille in the south. Salt-related structures at 
Ship Cove in the north and Capelin Cove in the south are 
also similar in style. Therefore, we conclude that structures 
in the northern sub-basin are very similar to those in the 
southern sub-basin.

The Bay St. George sub-basin was tectonically active 
during the much of its development. The final stage of defor-
mation included significant shortening, including inversion 
of the major Ship Cove and Snakes Bight faults, bringing a 
thick package of Anguille Group strata to the surface in the 
southern sub-basin.

Basin development and deformation are often exam-
ined separately by sedimentary and structural geologists, 
respectively, with the result that deposition and deforma-
tion are treated as separate processes. Strike-slip tectonics, 
salt-tectonics, and soft sediment deformation are processes 
that contribute to deformation of sedimentary basins while 
they are being filled. In the BSGSB, all three processes are  
combined. Sedimentary and tectonic processes must be 
treated as a continuum in both time and space, illustrating 
the importance of careful field observations in the analysis 
of both stratigraphy and structure.
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