Detrital zircon ages and the origins of the Nashoba terrane and Merrimack belt in southeastern New England, USA

J. Christopher Hepburn^{1*}, Yvette D. Kuiper², Kristin J. McClary¹, MaryEllen L. Loan¹, Michael Tubrett³, and Robert Buchwaldt⁴

Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, Massachusetts 02467, USA
 Department of Geology and Geological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA
 Department of Earth Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X5, Canada
 Department of Earth and Environment, Boston University, Boston, Massachusetts 02215, USA
 *Corresponding author <john.hepburn@bc.edu>

Date received: 27 April 2021 9 Date accepted: 11 November 2021

ABSTRACT

The fault-bounded Nashoba-Putnam terrane, a metamorphosed early Paleozoic, Ganderian arc/back-arc complex in SE New England, lies between rocks of Avalonian affinity to the southeast and middle Paleozoic sedimentary rocks, interpreted as cover on Ganderian basement, in the Merrimack belt to the northwest. U-Pb detrital zircon laser ablation inductively coupled plasma mass spectrometry analysis were conduced on six samples from the Nashoba terrane in Massachusetts and seven samples associated with the Merrimack belt in Massachusetts and SE New Hampshire to investigate their depositional ages and provenance. Samples from the Nashoba terrane yielded major age populations between ~560 and ~540 Ma, consistent with input from local sources formed during the Ediacaran-Cambrian Penobscot orogenic cycle and its basement rocks. Youngest detrital zircons in the terrane, however, are as young as the Early to Middle Ordovician. Six formations from the Merrimack belt were deposited between ~435 and 420 Ma based on youngest zircon age populations and crosscutting plutons, and yielded large ~470-443 Ma age populations. Three of these formations show only Gondwanan provenance. Three others have a mixed Gondwanan-Laurentian signal, which is known to be typical for younger and/or more westerly sedimentary rocks and may indicate that they are the youngest deposits in the Merrimack belt (late Silurian to early Devonian) and/or have been deposited in the equivalent of the more westerly Central Maine basin. Detrital zircon age populations from the Tower Hill Formation, along the faulted contact between the Merrimack belt and Nashoba terrane, are different from either of these tectonic domains and may indicate that the boundary is complex.

RÉSUMÉ

Le terrane limité par des failles de Nashoba-Putnam, un complexe d'arc/arrière-arc métamorphisé gandérien du Paléozoïque précoce dans le sud-est de la Nouvelle-Angleterre, se trouve entre des roches ayant une affinité avalonienne au sud-est et des roches sédimentaires du Paléozoïque moyen, interprétées comme une couverture du socle gandérien, dans la ceinture de Merrimack au nord-ouest. Six échantillons provenant du terrane de Nashoba au Massachusetts et sept échantillons associés à la ceinture de Merrimack au Massachusetts et dans le sud-est du New Hampshire ont fait l'objet d'une analyse par spectrométrie de masse avec plasma à couplage inductif et par ablation par laser de datation U-Pb sur zircon détritique aux fins de l'examen de leurs âges sédimentaires et de leur provenance. Les échantillons provenant du terrane de Nashoba ont révélé des populations principalement âgées entre environ 560 et 540 Ma, ce qui correspond à la contribution des sources locales apparues durant le cycle orogénique édiacarien-cambrien de Penobscot et aux roches de son socle. Les zircons détritiques les plus récents dans le terrane remontent cependant seulement à l'Ordovicien précoce à moyen. Six formations de la ceinture de Merrimack se sont déposées à peu près entre 435 et 420 Ma selon les populations des âges les plus récents sur zircon et les plutons transversaux, et elles ont présenté de vastes populations âgées d'environ 470 à 443 Ma. Trois de ces formations témoignent uniquement d'une provenance gondwanienne. Trois autres évoquent de façon mixte le Gondwanien et le Laurentien, ce qui est reconnu comme un trait typique des roches sédimentaires plus récentes ou plus à l'ouest et qui pourrait révéler qu'il s'agit de dépôts plus récents dans la ceinture de Merrimack (du Silurien tardif au Dévonien précoce) ou qui se seraient mis en place dans l'unité équivalente du bassin plus occidental du centre du Maine. Les populations d'un âge sur zircon détritique de la Formation de Tower Hill le long de la zone de contact faillé entre la ceinture de Merrimack et le terrane de Nashoba diffèrent de l'un et l'autre de ces domaines tectoniques et pourraient indiquer que leur limite est complexe.

[Traduit par la redaction]

INTRODUCTION

Two Neoproterozoic to early Paleozoic Gondwananderived terranes form the eastern portion of southeastern New England: Avalonia to the southeast and the Nashoba– Putnam terrane of Ganderian affinity to its northwest. These are followed westward by a thick succession of Silurian– Devonian cover rocks in the Merrimack belt (Fig. 1). In order to develop a comprehensive overview of the sedimentary and tectonic history of Ganderia in southeastern New England, analyses of detrital zircon from representative metasedimentary rocks in both the Nashoba terrane and Merrimack belt were carried out by U–Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) to determine their maximum depositional ages, provenance and potential correlations in the northern Appalachians. Six samples from the Nashoba terrane in Massachusetts and six from the Merrimack belt in Massachusetts and southeastern New Hampshire were analyzed. One additional sample was taken from along the faulted boundary between the Merrimack belt and the Nashoba terrane.

Geological background

Nashoba terrane

The Nashoba terrane in eastern Massachusetts (Fig. 1) is an early Paleozoic arc/back-arc complex that, based on Sm/ Nd isotope compositions and model ages, developed on an older crustal basement (e.g., Goldsmith 1991a; Hepburn *et al.* 1995; Kay *et al.* 2017; Walsh *et al.* 2021). It has been interpreted as the trailing edge of Ganderia in SE New England

ANR - Anostok-Matapedia basin ANR - Annidale - New River belt ARGF - Appleton Ridge and Ghent formations B - Brookville belt BF - Bucksport Formation BHA - Bronson Hill Anticlinorium BO - Bras d'Or belt CBG - Casco Bay Group CF - Calef Fault CMB - Central Maine basin CVG - Connecticut Valley-Gaspé trough ET - Ellsworth terrane FBG - Falmouth Brunswick Group GMI - Grand Manan island FT - Fredericton trough K - Kingston belt MB - Merrimack belt (includes Merrimack basin/trough in New Hampshire)
MT - Miramichi terrane
NFS - Norumbega fault system
NRF - Nonesuch River Fault
P-NT - Putnam Nashoba terrane
SC - Saint Croix terrane
VF - Vassalboro Formation

Figure 1. Simplified geological map of the northern Appalachians. Modified after Hibbard *et al.* (2006). CT – Connecticut, MA – Massachusetts, ME – Maine, NB – New Brunswick, NH – New Hampshire, NS – Nova Scotia, NY – New York, PEI – Prince Edward Island, RI – Rhode Island, QC – Quebec, VT – Vermont.

(e.g., Hibbard et al. 2006; van Staal et al. 2009; Walsh et al. 2011b, 2015, 2021; Kay et al. 2017). The Nashoba terrane consists of highly metamorphosed and multiply deformed early Paleozoic volcanic and volcanogenic sedimentary rocks that are intruded by abundant middle Paleozoic dioritic and granitic plutons (e.g., Wones and Goldsmith 1991; Zartman and Marvin 1991; Hepburn et al. 1995). It is separated from the Avalonian rocks to the southeast by the Burlington mylonite zone, which was later overprinted by the more brittle Bloody Bluff fault zone (Castle et al. 1976; Zen et al. 1983; Skehan et al. 1998; Kohut and Hepburn 2004), and from the Merrimack belt to the northwest by the Clinton-Newbury fault zone (Figs. 1, 2; Skehan 1968; Castle et al. 1976; Zen et al. 1983; Goldsmith 1991b). The stratified units generally dip moderately to steeply northwest (Bell and Alvord 1976; Goldsmith 1991a). In the southeast, the terrane consists largely of mafic metavolcanic and metasedimentary rocks of the Marlboro Formation, while to the northwest predominantly volcanogenic metasedimentary rocks of the Nashoba Formation dominate (Bell and Alvord 1976; Goldsmith 1991a; Hepburn *et al.* 1995). Other major units include a schistose unit (Tadmuck Brook Schist), an orthogneiss (Fish Brook Gneiss) and a paragneiss (Shawsheen Gneiss) (Fig. 2; Bell and Alvord 1976; Zen *et al.* 1983; Goldsmith 1991a; Hepburn *et al.* 1995). The metavolcanic and metasedimentary units in the southeast are interpreted to have been part of an arc or formed in a near-arc basin, while those in the northwest have been interpreted to represent largely contemporaneous to somewhat younger sedimentary deposits with minor volcanic input in a back-arc basin developed farther from an arc (e.g., Goldsmith 1991a; Hepburn *et al.* 1995; Kay *et al.* 2017).

The terrane is intruded by abundant Silurian to Carboniferous granitic and dioritic plutons. Some of these plutons have been dated using various methods of U–Pb zircon geochronology. These include the 430 \pm 5 Ma Sharpner's Pond Diorite (Zartman and Naylor 1984), two phases of the Andover Granite, which are 419 \pm 0.5 Ma (Dabrowski

Figure 2. Simplified geological map and sample locations (labeled in italic) for the Nashoba terrane and Merrimack belt. Modified after Robinson and Goldsmith (1991), Hepburn *et al.* (1995) and Lyons *et al.* (1997). Subbelts of the Merrimack belt from Robinson and Goldsmith (1991).

2013; Dabrowski *et al.* 2013) and 412 \pm 2 Ma (Hepburn *et al.* 1995), the 420.5 \pm 0.5 Ma Sudbury granite (Dabrowski 2013; Dabrowski *et al.* 2013), the 385 \pm 10 Ma Straw Hollow diorite (Acaster and Bickford 1999) and the 349 \pm 4 Ma Indian Head Hill Granite (Hepburn *et al.* 1995).

Previous age determinations on rocks associated with the stratified units in the Nashoba terrane are limited. They include a ~540 Ma mafic boudin in the Quinebaug Formation (a unit in the Putnam terrane to the south in Connecticut correlated with the Marlboro Formation), a 515 ± 4 Ma date on the Grafton Gneiss that cross-cuts part of the Marlboro Formation, and a 500.6 \pm 4.2 Ma date on a feldspathic granofels in the Marlboro Formation structurally above the Grafton Gneiss (U-Pb zircon SHRIMP, Walsh et al. 2009, 2011a, b, 2021). The granofels was derived from a proximal volcanic source and its age is interpreted as the approximate age of deposition (Walsh et al. 2021). In addition to the ~540-500 Ma volcanic rocks of the Marlboro Formation and the Grafton Gneiss, the Fish Brook orthogneiss (Fig. 2) has also been dated as Cambrian (499 +6/-3 Ma, U-Pb zircon ID-TIMS, Hepburn et al. 1995).

Deformation and metamorphism in the Nashoba terrane are primarily a result of the late Silurian–Devonian Acadian orogeny that resulted from accretion of Avalonia and its subsequent westward convergence (e.g., Hepburn *et al.* 1995; van Staal *et al.* 2009, 2020; Kuiper *et al.* 2014; Walsh *et al.* 2015, 2021; Severson 2020). Post-Acadian zircon and monazite in the Nashoba terrane have been interpreted to be a result of the late Devonian Neoacadian and/or Pennsylvanian–Permian Alleghanian orogenic events and/or hydrothermal fluids (Wintsch *et al.* 2007; Stroud *et al.* 2009; Loan 2011; Buchanan *et al.* 2017; Walsh *et al.* 2021).

Late Ordovician to Early Devonian cover successions

Late Ordovician to Early Devonian calcareous and pelitic turbiditic rocks form extensive cover successions on older Ganderian rocks throughout the northern Appalachians from southern New England to Newfoundland (e.g., Williams 1978; Tucker et al. 2001; Tremblay and Pinet 2005; Hibbard et al. 2006). In New England, these sedimentary rocks show increasing Laurentian affinity to the west where they define the Connecticut Valley-Gaspé trough (Fig. 1; e.g., Hibbard et al. 2006; Rankin et al. 2007). To the east (Fig. 1), two extensive depocenters of these rocks, the Fredericton trough and Central Maine basin, are defined by their location with respect to inliers of Cambrian-Ordovician basement rocks (e.g., Reusch and van Staal 2012; Ludman et al. 2018). However, the terminology that has been applied to these rocks across New England is complex and varied as it includes both structural and sedimentary terms (i.e., belt, synclinorium, basin, trough) as well as various stratigraphic names and correlations. Figure 3 summarizes the principal stratigraphic names by location for the relevant Late Ordovician to Early Devonian cover rocks in eastern and central New England and southern New Brunswick. Below we explain, from north to south, some of the definitions of

In eastern Maine and New Brunswick, the Fredericton trough lies between the Late Ordovician and older rocks of the St. Croix terrane to the SE and the Miramichi terrane to the NW (Fig. 1; e.g., Reusch and van Staal 2012; Ludman et al. 2017, 2018; Dokken et al. 2018). The broader Central Maine basin, including the along-strike Aroostock-Matapedia basin to the north, formed between the Miramichi terrane to the SE and older rocks of the Bronson Hill arc and related inliers to the NW (Fig. 1; Osberg et al. 1985; Tucker et al. 2001; Fyffe et al. 2009, 2011; Reusch and van Staal 2012; Bradley and O'Sullivan 2017; Ludman et al. 2017, 2018). Both the Fredericton trough and Central Maine basin contain late Ordovician (?) and Silurian sedimentary rocks. Deposition ended in the Fredericton trough by the late Silurian as it was deformed prior to intrusion by the 421.9 \pm 2.4 Ma Pocomooshine gabbro-diorite (West *et* al. 1992; Ludman et al. 2018), while deposition continued into the Devonian in the Central Maine basin (Osberg 1988; Bradley et al. 2000; Tucker et al. 2001; Bradley and O'Sullivan 2017; Ludman et al. 2018). In south-central Maine and coastal southern Maine the Fredericton trough includes the Late Ordovician (?) and Silurian Ghent, Appleton Ridge and Bucksport formations (Figs. 1, 3; Hussey 1988; Berry and Osberg 1989; Hussey et al. 2010; West and Condit 2016; Cartwright et al. 2019) that lie southeast of Miramichi terrane-correlative Ordovician and older rocks in the Falmouth-Brunswick Group and Casco Bay Group (West et al. 2004, 2006; Hussey et al. 2010; Reusch and van Staal 2012; West and Hussey 2016, Hussey and West 2018).

In southwestern Maine and southeastern most New Hampshire, Late Ordovician and Silurian rocks that are approximately along strike, and can be correlated with those of the Fredericton trough and eastern part of the Central Maine basin form the Merrimack basin or Merrimack trough (Lyons et al. 1997; Fig. 1) and were originally included in the Merrimack Group (Fig. 3; Eliot, Kittery and Berwick formations; e.g., Hitchcock 1877; Katz 1917; Billings 1956; Lyons et al. 1997; Fargo and Bothner 1995; Hussey et al. 2010; see Hussey et al. 2010 for details). Hussey et al. (2010), however, redefined the Merrimack Group in SW Maine and New Hampshire to include only sedimentary rocks interpreted as Late Ordovician-early Silurian (Eliot and Kittery formations) and correlated them with those in the Fredericton trough. They correlated sedimentary rocks interpreted to be late Silurian-Early Devonian (Berwick Formation) with the Central Maine basin. Hussey et al. (1999, 2010) suggested that their redefined Late Ordovician-early Silurian Merrimack Group, in addition to the Fredericton trough deposits, including the Bucksport and associated formations of south-central Maine, represent a potentially continuous single basin and named it the Merribuckfred basin (Fig. 3). However, it is now known that the Fredericton trough also includes late Silurian deposits (Dokken et al. 2018; Ludman et al. 2018). Therefore, the Merribuckfred basin now refers

	astern Aaine	antral Maine	basin			adrid			Prentiss Group			ocks in ichi terrane
	<u>ш</u> <	Cer	5		:	≥ ≥	dno					Miram
5	SW New Brunswick		on trough	NW of Fredericton Fault (FF)			Taxis FF River	 Burtts Corner 	Cross Creek			amichi terrane oix terrane in Group)
_	Eastern Maine and SW New	Brunswick	Frederict	SE of Fredericton Fault			duo	G Flume Ridge b Sand (fred b	Kingscle Digdeguar Bribuch Merribuch			Rocks in Mir and St. Ci (Cookso
4	Central	Central Maine	basin	(eastern structural margin)		Madrid	•	Vassalhoro	Group			Rocks in Falmouth- Brunswick Group
7	South-0 Mai	Eradaricton	trough				- - nia	ed ba	Appleton Ridge Ghent Phyllite Merribuckfr			Rocks in Casco Bay Group and St. Croix terrane
-	ern Maine Iew Hampshire	Central Maine	basin		Littleton		Berwick					Rocks in Casco Bay Group and Falmouth- Brunswick Group
m	Southwest Southeastern N	Merrimack helt	basin or trough				(uis	Group	Merrimack Eigt Merribuckfr			Rocks in Casco Bay Group and Falmouth- Brunswick Group
2	Northeastern		Merrimack belt	(Rockingham subbelt)			Group	Kittery Vittery	Merrin			Rocks in Nashoba terrane
-	East Central Massachusetts		Merrimack belt	(Wachusett Mtn. and Nashua subbelts)	Littleton		Paxton	Oakdale				Rocks in Nashoba terrane (east); Bronson Hill anticlinorium (west)
-					Early		Pridoli Ludlow	Wenlock	Llando- very	Late		Pre-Late Ordovician
			/a)				N	רחצו/		VICIAN		
			Age (N		400		420 -			445	460	

more to a location than an age range and may include multiple basins deposited through time. We will use Merribuckfred basin as a general term for the Late Ordovician–Silurian basins east of the Miramichi terrane and its equivalents to the south, to differentiate them from the Central Maine basin on the west. We will use Fredericton trough and Merrimack basin when referring to deposits in specific locations (Figs. 1, 3).

The Central Maine basin continues southwest from eastern Maine and New Brunswick into southeastern New Hampshire (Fig. 1; Osberg et al. 1985; Zen et al. 1983; Lyons et al. 1997; Tucker et al. 2001; Hibbard et al. 2006; Wintsch et al. 2007; Hussey et al. 2010; Reusch and van Staal 2012). However, Ordovician and older rocks of the Miramichi terrane, Casco Bay Group or Falmouth-Brunswick Group are not present south of southwestern Maine, making the boundary between rocks in the Central Maine and Merribuckfred basins difficult to distinguish. In SE New Hampshire, Dorais et al. (2012) and Reusch and van Staal (2012) interpret these basins to be separated by the Ganderian Neoproterozoic Massabesic Gneiss Complex (Fig. 1). However, Hussey et al. (2010, 2016) separate these basins east of the Massabesic Gneiss Complex along the Nonesuch River fault in southwestern Maine and its continuation, the Calef fault, in New Hampshire (Fig. 1).

Merrimack belt in Massachusetts and SE New Hampshire

In Massachusetts, there is no clearly identified boundary between rocks correlative with those in the Merribuckfred or Central Maine basins. Therefore, Zen et al. (1983) and Robinson and Goldsmith (1991) included all the late Ordovician (?), Silurian and early Devonian metasedimentary rocks between Ordovician and older rocks in the Nashoba terrane to the east and the Bronson Hill anticlinorium to the west in the Merrimack belt (Figs. 1, 2). However, on some maps, the Central Maine basin continues south into Massachusetts between the Merrimack belt and the Bronson Hill anticlinorium (e.g., Hibbard et al. 2006; Rankin et al. 2007; Wintsch et al. 2007, 2014; Reusch and van Staal 2012; Kopera and Walsh 2014, Walsh et al. 2021). Here, we will follow the usage of Zen et al. (1983) and Robinson and Goldsmith (1991) and use the inclusive term Merrimack belt to include the Worcester, Oakdale, Paxton, Eliot, Kittery and Berwick formations (Figs. 2, 3) in Massachusetts and SE New Hampshire, but recognize that the Merrimack belt likely includes rocks that can be correlated with those in both the Merribuckfred and Central Maine basins (Tucker et al. 2001; Wintsch et al. 2007; Hussey et al. 2010). The Tower Hill Formation occurs along the Clinton-Newbury fault zone on the east side of the Merrimack belt in east-central Massachusetts (Fig. 2; Zen et al. 1983; Robinson and Goldsmith 1991). However, its placement within the Merrimack belt has been debated (see Robinson and Goldsmith 1991) and it will be considered separately below.

The Merrimack belt, excluding the Tower Hill Formation, generally consists of a thick succession of metamorphosed

calcareous and pelitic turbiditic units containing sandstone, siltstone, phyllite and impure quartzite (e.g., Grew 1973; Peck 1976; Robinson 1981; Zen et al. 1983; Robinson and Goldsmith 1991; Hussey and Bothner 1993; Lyons et al. 1997; Hussey et al. 2010). Because of (1) the lack of fossils, (2) the presence of thick successions of similar rock types in various areas, (3) a paucity of clear sedimentary structures to give facing directions, (4) varying degrees of metamorphism across and along strike, and (5) structural complexities due to several generations of folds, the internal stratigraphic order and along-strike correlations of units of the Merrimack belt has long been debated (e.g., Billings 1956, Robinson and Goldsmith 1991, Hussey et al. 2010). Robinson and Goldsmith (1991) presented a thorough discussion of the stratigraphic arguments for rocks in the Merrimack belt in central Massachusetts and Hussey et al. (2010) for SE New Hampshire. These are not repeated or further discussed here.

The Merrimack belt in Massachusetts is divided into six stratigraphic-tectonic subbelts by Robinson and Goldsmith (1991). Our samples are from the eastern three: the Wachusett Mountain, Nashua and Rockingham subbelts (Fig. 2). The Rockingham subbelt continues into SE New Hampshire and contains the Eliot, Kittery and Berwick formations of the original Merrimack Group (Hitchcock 1877; Katz 1917; Billings 1956; Lyons *et al.* 1997; Fargo and Bothner 1995; Hussey *et al.* 2010). The Tower Hill Formation is within Robinson and Goldsmith's (1991) Nashua subbelt, but occurs along the Clinton-Newbury fault zone adjacent to the contact with the Nashoba terrane and will be discussed separately.

The metamorphic grade of the sedimentary rocks of the Merrimack belt in central Massachusetts varies from lower greenschist facies in the southeast to upper amphibolite facies in the northwest (Thompson and Norton 1968; Zen et al. 1983; Goldsmith 1991b; Robinson and Goldsmith 1991; Lyons et al. 1997). The Merrimack belt has been intruded by a series of Silurian to Devonian granitic to dioritic plutons (Gore 1976; Zen et al. 1983; Zartman and Naylor 1984; Robinson and Goldsmith 1991; Wones and Goldsmith 1991; Zartman and Marvin 1991; Bothner et al. 1993, 2009; Fargo and Bothner 1995; Lyons et al. 1997; Watts et al. 2000; Wintsch et al. 2007; Walsh et al. 2013a, b, 2015, 2021; Charnock 2015) and is deformed by at least four generations of folds, including large recumbent folds (Peck 1975, 1976; Hepburn 1976; Robinson 1978, 1981; Goldstein 1992, 1994; Goldsmith 1991b; Hussey and Bothner 1993; Kopera and Walsh 2014; Kuiper et al. 2014). Deformation and metamorphism in the Merrimack belt resulted from Acadian, Neoacadian and/or Alleghanian events (Zen et al. 1983; Goldstein 1994; Attenoukon et al. 2006; Attenoukon 2009; Kuiper et al. 2014; Kopera and Walsh 2014).

METHODS

All samples were processed and minerals separated in

the mineral separation laboratory in the Department of Earth and Environmental Sciences at Boston College using standard mineral separation methods. Approximately 150 to 200 zircon grains per sample (if present) were selected by picking all grains from random splits and were then mounted in epoxy. All mounts were then polished with a Struers Labo-Pol 5 in order to expose the inner cores of the zircon grains. Zircon grains were imaged using back-scattered electron (BSE) and cathodoluminescence (CL) image analysis at either the Massachusetts Institute of Technology in Cambridge, Massachusetts, or at the Bruneau Centre for Research and Innovation at Memorial University in St. John's, Newfoundland, Canada. The carbon coating was removed by polishing and the surfaces of the grain mounts were cleaned with dilute nitric acid prior to further analysis.

U-Pb analysis was carried out using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) on a Finnigan ELEMENT XR double focusing magnetic-sector field ICPMS connected to a Geolas 193 nm excimer laser at the INCO Innovation Centre at Memorial University in St. John's, Newfoundland (Bennett and Tubrett 2010). Zircon cores and occasionally rims were targeted, based on the CL and BSE images. A 10 µm laser beam was rastered over each selection and sampled a 40×40 µm square spot. For grains less than \sim 50 µm, or for small zones, the raster was set to 30×30 µm. Laser energy was set at 5 (for Nashoba terrane) or 6 (for Merrimack belt) J/cm³, the scan velocity was $10 \mu m/s$, and the laser repetition was set at 8 Hz. Once material was ablated from each grain it was nebulized and introduced into the ELEMENT XR using a mixed Ar-He carrier gas (Bennett and Tubrett 2010). A standard tracer solution was also nebulized with the sample material and included a mixture of natural Tl (²⁰⁵Tl/²⁰³Tl = 2.3871), ²⁰⁹Bi, and enriched ²³³U, and ²³⁷Np (ca. 1 ppb), in a Ar-He carrier gas, this was used to correct for instrumental mass bias (Košler et al. 2002).

Standards PL, 91500, and 02123 were used for reference and quality control purposes (Slama et al. 2008; Bennett and Tubrett 2010). Each of the three zircon standards were analyzed for every six unknowns. Measurements were taken for each grain using time-resolved data acquisitions that were roughly 120-205 seconds long. Prior to measurements taken of ablated material, data were acquired for the Ar-He gas and tracer solution for approximately 20-30 seconds (Bennett and Tubrett 2010). Elemental masses measured during the time-resolved measurements included: 204(Hg), 203(Tl), 205(Tl), 206(Pb), 207(Pb), 209(Bi), 232(Th), 233(U), 237(Np), 238(U), 249(233U16O), 253(²³⁷Np¹⁶O) and 254(238U16O) (Bennett and Tubrett 2010). Data correction and reduction was carried out by Mike Tubrett and Wilfredo Diegor at Memorial University of Newfoundland. Raw data were corrected for dead time (20 ns) of the electron multiplier using the Excel spreadsheet-based program LAMdate (Košler et al. 2002, 2008). Data reduction included correction for gas blank, laser-induced elemental fractionation (cf. Sylvester and Ghaderi 1997), and instrument mass bias (cf. Horn et al. 2000; Košler et al. 2002). There was no common Pb correction. Ages of the unknowns were calculated using LAMdate (Košler *et al.* 2002, 2008) with Isoplot v. 2.06 of Ludwig (1999).

Where possible, approximately 150-200 grains, mostly randomly selected, ensuring representation of various grain sizes and morphologies, were analyzed per sample to provide a strong statistical representation, following Vermeesch's (2004) recommendation that at least 117 grains must be analyzed to be sure that no fraction comprising more than .05 of the population is missed at the 95% confidence level. Concordia diagrams and relative probability plots were made using Isoplot v. 3.7 (Ludwig 2008). Data with a <0.05 probability of concordance, or with a 1σ error for ²⁰⁶Pb/²³⁸U or ²⁰⁷Pb/²⁰⁶Pb ages greater than 10% of the calculated age were excluded from further analysis. Zircon with Th/U ratios <0.1 were considered to have a metamorphic origin (Hoskin and Schaltegger 2003; Rubatto 2017; Yakymchuk et al. 2018). If concordant metamorphic grains were present that were older than the youngest igneousdetrital age populations (see below) they were included in the detrital zircon analysis as detrital zircon grains derived from a metamorphic source. The grains younger than the youngest igneous-detrital age populations (Nashoba terrane units only) are plotted and discussed separately. Zircon morphologies were analyzed using transmitted light, BSE and CL images, and compared with age populations. No clear relationships between ages and morphologies emerged. Details can be found in Loan (2011) and Sorota (2013).

Concordia age has recently become the recommended way to report detrital zircon data because it is a mathematical combination of multiple ratios and makes optimal use of all U/Pb and Pb/Pb ratios (Ludwig 1998; Pollock *et al.* 2009). However, we report ²⁰⁶Pb/²³⁸U ages for zircon <800 Ma and ²⁰⁷Pb/²⁰⁶Pb ages for zircon >800 Ma to be consistent with most previous U–Pb detrital zircon studies in the Appalachians. The difference between one method and the other is minimal for data in this study. Uncertainties are reported at the 1 σ confidence level. Zircon grains with a probability of concordance less than 0.05, based on 2 σ uncertainty, were considered discordant and not used for data interpretation (cf. Košler and Sylvester 2003).

The youngest age population for each sample was determined by taking the weighted average of the ²⁰⁶Pb/²³⁸U ages for a population of the youngest 3-10 zircon grains with a >0.05 probability of concordance based on 2σ uncertainty. These analyses excluded overgrowths and had Th/U ratios >0.1, and therefore are unlikely to represent metamorphism. Youngest grains were selected to be re-analyzed using CA-TIMS at the Massachusetts Institute of Technology, to improve precision and avoid the effects of Pb-loss (Mattinson 2005; Condon and Bowring 2011). About 3 or 4 grains per sample were selected, but only 13 grains survived sample preparation including chemical annealing. A mixed ²⁰⁵Pb-²³³U-²³⁵U tracer solution (spike) was used. Details of zircon pretreatment, dissolution, and U and Pb chemical extraction procedures are described in Ramezani et al. (2007). U and Pb isotopic measurements were performed on a VG Sector-54 multicollector TIMS. Pb and U were loaded together

on a single Re filament in a silica gel-phosphoric acid mixture (Gerstenberger and Haase 1997). Pb isotopes were measured by peak-hopping using a single Daly photomultiplier detector, and U isotopic measurements were made in static mode using multiple Faraday collectors. Details of fractionation and blank corrections are given in Table 1. Data reduction, age calculation, and the generation of concordia plots were carried out using the method of McLean *et al.* (2011), and the statistical reduction and plotting program REDUX (Bowring *et al.* 2011).

SAMPLE DESCRIPTIONS AND RESULTS

Nashoba terrane

Sample descriptions and LA-ICPMS detrital zircon results

Sample locations and LA-ICPMS data are presented in Appendix Tables A1 and A2, respectively. Rock unit and sample descriptions, and data for detrital zircon based on the criteria outlined above are presented in this section (Fig. 4). Data from metamorphic zircon are discussed separately below.

The Marlboro Formation occurs in the southeastern Nashoba terrane (Fig. 2). It is composed largely of hornblende-plagioclase amphibolite, but it also contains felsic granofels, gneiss and metasedimentary rocks that commonly include rusty weathering sillimanite-bearing schist (Bell and Alvord 1976; DiNitto et al. 1984; Goldsmith 1991a; Kopera et al. 2006). The amphibolites include rocks with basaltic and basaltic-andesite compositions with inferred arc, MORB and alkalic signatures. Whole-rock major and trace-element geochemistry and Sm-Nd isotopes indicate that they formed in a primitive volcanic arc/back-arc setting (DiNitto et al. 1984, Goldsmith 1991a, Kay et al. 2017) with minimal crustal contamination (Kay et al. 2009, 2017; Walsh et al. 2015, 2021). This arc has been interpreted to be the source for the majority of the metasedimentary rocks in the Nashoba terrane (Hepburn and Munn 1984, Goldsmith 1991a, Kay et al. 2017).

Zircon in metasedimentary rocks of the Marlboro Formation is rare, and commonly metamict. In order to obtain enough grains for a statistical representation, the Marlboro Formation was sampled in four different locations (Fig. 2; Loan 2011). Of the approximately 150 kg of rock processed, a total of only 9 zircon grains yielded concordant data. The data were combined as one sample, MLMRC (Table A2). Sample MLMR1 is from a rusty weathering, black to darkgrey garnet-muscovite-biotite-quartz (± sillimanite) schist interlayered with a biotite-quartz-hornblende-plagioclase amphibolite. Garnet and sillimanite are present in thin layers within the schist and the unit is locally mylonitic. The sample was collected from the pelitic layers only and yielded four concordant analyses. Sample MLMR2 is from a silvery to dark-grey, rusty weathering, fine-grained garnet-biotitemuscovite-quartz schist. It resulted in one concordant analysis. Sample MLMR5 showed two distinct layers in hand specimen: (1) a muscovite-rich schistose layer and (2) a coarser-grained quartz-rich layer with larger, black, quartz crystals. Black quartz forms due to radiation damage (Klein and Hurlbut 1993). The radiation damage extended to the zircons, resulting in rusty, amorphous, highly metamict grains that gave no concordant data. Sample MLMR6 is from a rusty, heavily weathered garnet-bearing schist that yielded four concordant analyses.

The youngest detrital zircon analysis from the combined Marlboro Formation samples yielded a $^{206}Pb/^{238}U$ age of 470 \pm 46 Ma. Sample MLMR6 contained the oldest grain found in the Nashoba terrane with a core of ~3.36 Ga and a rim of ~2.58 Ga. The relative probability plot of the Marlboro Formation shows a peak in age at ~532 Ma and a minor peak at ~642 Ma (Fig. 4a).

The Shawsheen Gneiss (Fig. 2) is separated from the Nashoba Formation by the Fish Brook Gneiss and the Assabet River fault zone (Zen *et al.* 1983; Goldsmith 1991a). It is generally quartz-plagioclase-muscovite-biotite schist to paragneiss, which is interpreted to have been derived from the detritus of volcanic rocks of intermediate to mafic composition (Olszewski 1980). Sample MLSG1 is a medium-grained garnet-plagioclase-muscovite-biotite-quartz (± sil-limanite) schist to gneiss collected from multiple locations around an industrial park to ensure that a statistical representation of detrital zircon was analyzed.

The Shawsheen Gneiss was previously dated by Olszewski (1980) using U–Pb analyses of zircon on multiple-grain fractions. The resulting discordia chord yielded 2042 \pm 52 Ma upper and 517 \pm 16 Ma lower intercept ages, but because these are based on only three zircon fractions (Olszews-ki 1980), the interpretation may not be accurate. Sample MLSG1 yielded 100 concordant detrital zircon analyses. The weighted average ²⁰⁶Pb/²³⁸U age of the three youngest detrital zircon analyses is 470 \pm 22 Ma (MSWD = 0.26). The main age population in the sample is ~562 Ma, and a minor population exists at ~646 Ma (Fig. 4b). In addition, there are small age clusters at ~2.1–2.0 Ga, ~1.8–1.3 Ga and ~1.1 Ga, and a single grain at ~2.4 Ga.

The Nashoba Formation occupies about one-third of the Nashoba terrane and is composed largely of biotite-feldspar gneiss and biotite ± sillimanite schist with subordinate calc-silicate gneiss, impure feldspathic quartzite and pelitic schist (Bell and Alvord 1976; Zen *et al.* 1983; Hepburn and Munn 1984; Goldsmith 1991a). Hornblende amphibolite dominates the Boxford Member (Bell and Alvord 1976) along the eastern margin of the formation. The Nashoba Formation is metamorphosed in the sillimanite and sillimanite - K-feld-spar zones. Samples of the gneiss, schist and calc-silicate gneiss were analyzed.

The Nashoba Formation gneiss (sample MLNB1; Fig. 2) is from a garnet-biotite-muscovite-plagioclase-quartz- (\pm sillimanite) gneiss. The unit contained interbedded layers of mylonitic gneiss with a few ~4 cm thick strongly sheared quartz veins. Areas with large quartz inclusions were not used. The sample yielded 84 concordant detrital zircon analyses.

Table 1. CA-TIMS	data w.	th LA-I(PMS date	s tor comp	arison (s	ee Appe	ndix A2).	atios						Dates [Mal			J	P Dates	[Ma]
)	mending				4	vi ndono	00111						n conna	Inte		ĺ	2	C71177 T	[mtat]
Fraction	Th/ U ^(a)	Pb* ^(b) [pg]	Pb*/ Pbc ^(d)	$^{206}{ m Pb}/$	²⁰⁷ Pb/ ²³⁵ U ^(f)	±2σ [%]	²⁰⁶ Pb/ ²³⁸ U ^(f,g)	±2σ [%]	Corr. coef. ²	$^{207}{ m Pb/}_{06}{ m Pb}^{(f,g)}$	±2σ [%]	²⁰⁶ Pb/ ²³⁸ U	±2σ ² [abs.] ²²	⁰⁷ Pb/ ⁵⁵ U ^(h) [±2σ [abs.] ²	$^{207}{ m Pb/}^{207}{ m Pb/}_{ m (g,h)}$	±2σ [abs.]	²⁰⁶ Pb/ ²³⁸ U	±2σ [abs.]	Analysis number
Sample MLNB1 -	Nashob	a Forma	tion Gnei:	ss																
z002 (mr02a06)	0.34	1.5	196.07	12145.5	0.583	0.21	0.075	0.16	0.82	0.0565	0.12	465.9	0.7	466.5	0.8	469	3	480	13	mr02a06
Sample KSKTI - K	üttery F	ormatio	Ę																	
z5 (mr18b11)	0.21	3.1	11	742	0.57	0.98	0.074	0.16	0.55	0.0562	0.9	461.31	0.71	461.1	3.6	460	20	410	10	mr18b11
z21 mr18b19)	0.71	2.9	9	354	0.60	1.9	0.076	0.25	0.64	0.0568	1.7	473.40	1.10	475	7.1	482	38	417	16	mr18b19
z22 (mr17b32)	1.41	38.3	72	3538	0.53	0.32	0.070	0.11	0.52	0.0557	0.28	434.26	0.46	435	1.1	438.7	6.2	416	11	mr17b32
z50 (mr18a14)	0.85	3.5	8	480	0.53	1.2	0.069	0.16	0.58	0.0556	1.1	432.19	0.68	433	4.2	437	24	409	20	mr18a14
Sample KSBWI - J	Berwick	Format	ion																	
BE48 (mr04b29)	0.02	0.3	43.17	2934.1	0.651	0.35	0.078	0.10	0.12	0.0602	0.35	486.35	0.47	508.9	1.4	611	×	414	8	mr04b29
Sample KSOKI - (Dakdale	Format	ion																	
L44 (mr16a24)	0.47	0.4	49.05	2944.1	0.544	0.39	0.070	0.10	0.38	0.0568	0.36	433.70	0.41	441.4	1.4	482	8	436	8	mr16a24
M21 (mr16b23)	0.64	0.5	33.93	1960.1	0.526	0.58	0.068	0.15	0.36	0.0559	0.54	425.53	0.64	429.2	2.0	449	12	409	17	mr16b23
M77 (mr16b112)	0.37	0.8	10.43	657.3	0.612	1.72	0.077	0.17	0.38	0.0576	1.66	478.68	0.78	484.9	6.6	514	36	432	19	mr16b112
Sample KSPXIII -	Paxton	Format	ion																	
BE23 (se08b31)	1.03	0.4	12.05	645.4	0.552	1.90	0.071	0.37	0.35	0.0565	1.80	441.73	1.60	446.4	6.9	471	40	425	7	se08b31
BE34 (au26a47)	0.45	0.4	21.18	1290.6	0.531	0.88	0.069	0.20	0.13	0.0560	0.88	429.16	0.82	432.6	3.1	451	20	412	18	au26a47
Sample KSWSI - V	Worcest	er Form	ation																	
z23 (mr02a38)	0.32	0.6	46.93	2931.3	0.614	0.46	0.078	0.27	0.62	0.0572	0.36	483.52	1.25	486.1	1.8	498	8	454	6	mr02a38
z83 (mr02a117)	0.37	0.3	6.2	397.7	0.620	2.95	0.078	1.08	0.42	0.0574	2.69	486. 29	5.04	490	11.5	507	59	436	17	mr02a117
Blank: ²⁰⁶ Pb/ ²⁰⁴ Pb	= 18.15	$\pm 0.48;^{2(}$	$^{77}\mathrm{Pb}/^{204}\mathrm{Pb}$	= 15.306 ±	0.29; ²⁰⁸	Pb/ ²⁰⁴ Pb	= 37.11	± 0.88;												
Mass fractionation	correct	on of 0.2	25%/amu :	± 0.02%/an	nu (atom	ic mass 1	unit) was	applied	l to all si	ngle colle	ctor Dal	y analyses.								
(a) Th contents cal	culated	from rad	liogenic ²⁰	³ Pb and the	²⁰⁷ Pb/ ²⁰	⁶ Pb date	of the sa	mple, a	ssuming	concord	ance bet	ween U-Th	and Pb	systems						
(b) Total mass of r	adiogen	ic Pb.																		
(c) Total mass of c	ommon	Pb.																		
(d) Ratio of radiog	enic Pb	(includir	1g ²⁰⁸ Pb) tu	o common	Pb.															
(e) Measured ratio	correct	ed for fra	ctionatior	ı and spike	contribu	ttion onl	y.													
(f) Measured ratio:	s correct	ed for fr	actionatio	n, tracer, bl	ank, con	nmon Pt	is lab bla	unk, U l	blank = (0.1 pg										
(g) Corrected for I	nitial Tŀ	//U disec	luilibrium	using radi	ogenic ²⁰	⁸ Pb and	Th/U [m	agma] :	= 2.8											
(h) Isotopic dates c	calculate	d using t	the decay (constants λ	$_{238} = 1.55$	5125E-1(Jyr, λ235	= 9.84	85E-10/	yr (Jaffey	et al. 197	71), and foi	r the ²³⁸ 1	$J/^{235}U =$	137.81	8 ± 0.045 ((Hiess et	t al., 2012	()	

Figure 4. Relative probability plots for LA-ICPMS U–Pb detrital zircon data (²⁰⁶Pb/²³⁸U ages for zircon <800 Ma and ²⁰⁷Pb/²⁰⁶Pb ages for zircon >800 Ma) for units of the Nashoba terrane. Inset figures show ²⁰⁶Pb/²³⁸U ages for zircon <800 Ma only. Peaks determined using Isoplot. Data are shown in Table A2.

The three youngest grains yielded a weighted average $^{206}Pb/^{238}U$ age of 462 ± 20 Ma (MSWD = 0.061). The major age population is ~544 Ma (Fig. 4c). In addition, there are a few ~2.8–2.6 Ga, ~2.4 Ga, ~2.1 Ga, ~1.6 Ga, ~1.4–1.1 Ga zircons.

The Nashoba Formation schist (sample MLNS1; Fig. 2) is a garnet-muscovite-biotite-quartz- (± sillimanite) schist. Of the abundant schistose units in the Nashoba terrane this

sample was selected because of its minimal quartz vein inclusions. However, the sample yielded only 4 concordant detrital zircon analyses, the other 118 concordant analyses being interpreted as metamorphic (Fig. 4d). The youngest detrital zircon in the Nashoba Formation schist yielded a $^{206}Pb/^{238}U$ age of 477 ± 32 Ma. Two remaining detrital grains yielded $^{206}Pb/^{238}U$ ages of 538 ± 20 Ma, 611 ± 94 Ma, and one a $^{207}Pb/^{206}Pb$ age of 1694 ± 32 Ma.

The Nashoba Formation calc-silicate gneiss outcrop (sample MLBM1; Fig. 2) includes rock types ranging from rusty garnet-bearing schist to calc-silicate gneiss and amphibolite. The calc-silicate gneiss sampled contains diopside, actinolite, phlogopitic biotite, and abundant titanite. It likely formed from original more dolomitic layers (Hepburn and Munn 1984). The unit is deformed by a shear zone separating the more calcareous layers of the outcrop from the schistose layers. Samples were taken away from the shear zone and included a mixture of calc-silicate rocks with and without the micaceous lenses. No detrital zircon was found and all zircon analyzed is interpreted to be of metamorphic or carbonate fluid/hydrothermal origin as discussed below.

The Tadmuck Brook Schist is a rusty-weathering micaceous schist with thin quartzose layers that lies along the northwestern boundary of the Nashoba terrane (Fig. 2) adjacent to the Clinton-Newbury fault zone. The metamorphic grade increases from greenschist facies in the NW to upper amphibolite facies in the SE within the ~1 km thick unit (Jerden and Hepburn 1996; Jerden 1997). It has been uncertain whether the Tadmuck Brook Schist is part of the Nashoba terrane or of the Merrimack belt (Goldsmith 1991a). Sample (MLTMBC; Fig. 2) is from a sillimanite-bearing sulfidic mica schist in the high-grade (southeastern) member and contains thin quartz-rich layers. The Tadmuck Brook Schist has unique mineralogy as it is the only unit that contains scheelite, a fluorescent tungsten-bearing mineral that is commonly associated with high-temperature hydrothermal veins and contact metamorphism in skarns (Klein and Dutrow 2007). The unit also contains abundant titanite. This sample yielded 47 concordant detrital zircon analyses. Due to the small grain size, all the zircons in this sample were ablated using a 30×30 µm square raster, which led to increased uncertainty. The youngest three detrital zircon analyses yielded a weighted average of ²⁰⁶Pb/²³⁸U ages of 462 \pm 47 Ma (MSWD = 0.049). The sample had a major ~537 Ma age peak, and scattered ~2.2-1.9 Ga, ~1.7 Ga and ~1.4-1.1 Ga ages (Fig. 4e).

CA-TIMS zircon analysis

Youngest zircon grains of selected samples were re-dated using CA-TIMS methods (Table 1) with the purpose to better constrain the maximum depositional age of the formations. While three or four grains per sample were selected for analysis, not all survived sample preparation and chemical abrasion. Only one grain remained from the Nashoba terrane, sample MLNB1 from the Nashoba Formation gneiss. Its ²⁰⁶Pb/²³⁸U CA-TIMS age is 465.9 \pm 0.7 Ma, which is within error of the weighted average of ²⁰⁶Pb/²³⁸U LA-ICPMS ages of 462 \pm 20 Ma for the three youngest grains from this sample (Table A2; see above).

Metamorphic zircon

Nashoba terrane samples from the five formations other than the calc-silicate gneiss contained 159 zircons inter353

preted as metamorphic per the criteria listed above (Fig. 5). They range from ~454 Ma to 324 Ma, with the results for the individual formations as follows: Marlboro Formation, ~443–324 Ma (weighted average of 206 Pb/ 238 U ages of 396 ± 20 Ma, n = 10, MSWD = 1.6); Shawsheen Gneiss, 422 ± 19 Ma (n = 5, MSWD = 0.27); Nashoba Formation gneiss ~454–353 Ma (or weighted average age of 408 ± 13 Ma, n = 22, MSWD = 5.6); Nashoba Formation schist ~433–327 Ma (or weighted average age of 377.2 ± 4.4 Ma, n = 118, MSWD = 1.9); and Tadmuck Brook Schist 433 ± 33 Ma (n = 4, MSWD = 0.031) (cf. Table A2).

The calc-silicate gneiss (MLMB1) yielded 61 ²⁰⁶Pb/²³⁸U zircon ages of ~434-310 Ma (or weighted average age of 354.4 ± 5.9 Ma, n = 61, MSWD = 2.2; Fig. 5f). Fifty-three of these zircon analyses gave Th/U ratios <0.20, with only one Th/U ratio below 0.10, and 9 analyses gave ratios of 0.20-0.37. These Th/U ratios are higher than the typical <0.1 ratio for metamorphic zircon (Rubatto 2017; Yakymchuk et al. 2018). The calc-silicate gneiss is within the stratified succession of the Nashoba terrane, is gradational with the rest of the Nashoba Formation and is similarly metamorphosed under upper amphibolite facies conditions. There is no field evidence to suggest that it is much younger than the other Nashoba terrane rocks. Furthermore, while Th/U ratios >0.1 are not typical for metamorphic zircon, they are not uncommon (Rubatto 2017; Yakymchuk et al. 2018). Yakymchuk et al. (2018) conclude that "igneous zircon rarely has Th/U < 0.1 and metamorphic zircon can have values ranging from <0.01 to >10." For these reasons, the ages of zircons in the calc-silicate gneiss are interpreted as metamorphic, likely having formed in the presence of fluids.

Thus, we interpret metamorphic zircon in the Nashoba terrane to have grown between ~433 Ma and ~356 Ma, based on the weighted averages of $^{206}Pb/^{238}U$ ages. The Marlboro Formation, Shawsheen Gneiss, Nashoba Formation Gneiss and Tadmuck Brook Schist generally record older metamorphic zircon ages (weighted average age of 408.0 ± 8.8 Ma, n = 41, MSWD = 3.5) while zircon growth continued until somewhat later in the Nashoba Formation schist and especially the calc-silicate gneiss (weighted combined average age of 368.4 ± 4.0 Ma, n = 180, MSWD = 3.8).

Merrimack belt

Sample descriptions and LA-ICPMS detrital zircon

The six formations analyzed from the Merrimack belt are presented below in a general NE to SW order (Fig. 2). The Eliot Formation consists of thinly layered grey to green phyllite, calcareous feldspathic metasiltstone and quartzite, quartz-mica schist, and calc-silicate gneiss (Lyons *et al.* 1997; Hussey *et al.* 2010, 2016). It has been interpreted as Silurian–Ordovician based on correlation with parts of the Casco Bay Group in Maine (Hussey *et al.* 2010). Sample KSELI from SE New Hampshire (Fig. 2) consists of generally thin-bedded alternations of tan-grey weathering, turbiditic calcareous quartzite and silvery dark phyllite (Fargo and

Figure 5. Relative probability plots for ${}^{206}Pb/{}^{238}U$ ages of metamorphic zircon for units of the Nashoba terrane. Inset figures show float bar charts and weighted averages of ${}^{206}Pb/{}^{238}U$ ages with 2 σ uncertainties. Data are shown in Table A2.

Bothner 1995). Quartz veins were avoided during sample collection and removed prior to crushing. The sample yield-ed 119 concordant analyses. The weighted average of the $^{206}Pb/^{238}U$ ages of the four youngest detrital zircon grains is 409 ± 19 Ma (MSWD = 0.046). The major population peaks at ~446 Ma (Fig. 6a). Two grains are ~2.9 Ga and ~2.7 Ga and other ages spread between ~1.9 Ga and ~512 Ma.

The Kittery Formation consists of feldspathic and calcareous, ankeritic metaturbidite successions and minor finegrained metasiltstone and feldspathic quartzite (Robinson and Goldsmith 1991; Bothner and Hussey 1999; Hussey *et al.* 1984, 2010, 2016). The fine-grained, thinly bedded to laminated rocks and thicker quartzitic beds contain cross lamination and other primary sedimentary structures (Hussey *et al.* 1984, 2010, 2016). Several paleocurrent indicators in the Kittery Formation in New Hampshire suggest a source to the southeast (Rickerich 1983, 1984; Hussey *et al.* 1984). Sample KSKTI (Fig. 2) was taken from an outcrop in SE New Hampshire, immediately across the Piscataqua River from the type locality in Maine (Katz 1917; Bothner and Hussey 1999) and is a tan weathering, grey to purplish, massive, fine-grained, feldspathic quartzite and quartzitic phyllite. It yielded 101 concordant analyses. The weighted average of 206 Pb/ 238 U ages of the four youngest detrital zircon grains is 413 ± 13 Ma (MSWD = 0.089). The main age group is ~461 Ma, and older populations are ~2.8 Ga, ~1.8– 1.0 Ga, and ~769 and 543 Ma (Fig, 6b).

The Berwick Formation is composed primarily of thin to thick tabular and lenticular beds of calcareous metasiltstone, biotite-rich metasiltstone, purplish biotite-quartz-feldspar granofels, and fine-grained metasandstone (Robinson and Goldsmith 1991; Fargo and Bothner 1995; Hussey et al. 2016). Some layers contain actinolite were metamorphosed to the greenschist facies, while at higher metamorphic grade, diopside, hornblende, and plagioclase are common (Robinson and Goldsmith 1991). Most of the Berwick Formation is in the garnet zone, although portions reach the sillimanite zone (Zen et al. 1983; Robinson and Goldsmith 1991; Hussey et al. 2016). Sample KSBWI, taken from NE Massachusetts (Fig. 2) consists of a fine-grained, light-grey to purplish-grey calcareous metasiltstone with beds a few cm to 1 m thick and interbeds of a dark-grey micaceous phyllite. It yielded 133 concordant analyses. The five youngest zircon grains provided a weighted average of ²⁰⁶Pb/²³⁸U ages of 409 ± 12 Ma (MSWD = 0.27). Zircon yielded a main age peak at 443 Ma, a few analyses at ~2.8-2.7 Ga and ~2.3 Ga and small populations between ~1.8 Ga and ~1.0 Ga and at ~634 Ma (Fig. 6d).

The Oakdale Formation is a thick unit composed of interlayered brownish-grey to light-grey ankeritic metasiltstone, green-grey to purplish-grey impure quartzite, muscovite schist, and greenish-grey, grey, and dark brown calcareous phyllite (Grew 1973; Hepburn 1976; Peck 1976; Zen et al. 1983; Robinson and Goldsmith 1991). Sample KSOKI (Fig. 2) is from the type area in east-central Massachusetts (Emerson 1917; Hepburn 1976; Robinson and Goldsmith 1991) and consists of a grey weathering, light-grey quartzrich phyllite and micaceous phyllite, interbedded with tan to grey-green weathering beds of metasiltstone and impure quartzite. It yielded 108 concordant zircon analyses. The youngest detrital zircon age population of the four youngest grains is 431 ± 12 Ma (weighted average ²⁰⁶Pb/²³⁸U age, MSWD = 0.69) and the main age peak is ~451 Ma (Fig. 6c). One analysis is ~2.7 Ga, and other ages show a continuous spread between ~2.0 Ga and the main age population.

The Worcester Formation, also called Worcester Phyllite, is a turbidite succession composed of grey and darkgrey carbonaceous slate, well foliated micaceous phyllite or schist containing andalusite, including chiastolite, interbedded with layers a few centimetres to one metre thick of impure quartzite, calc-silicate or metasiltstone (Grew 1973; Hepburn 1976; Peck 1976; Robinson and Goldsmith 1991). Sample KSWSI (Fig. 2) was taken largely from turbiditic sandy layers in a grey-weathering, light-grey, fine-grained turbidite with fissile phyllite interlayered with metasandstone and siltstone layers that range from a few cm to ~0.5 m thick. The sample yielded 138 concordant analyses. The weighted average of $^{206}Pb/^{238}U$ ages of the four youngest grains is 436 ± 9 Ma (MSWD = 0.89). The main age group is ~470 Ma. One grain is ~2.2 Ga, and other populations are between ~2.0 Ga and ~950 Ma, and ~800–470 Ma (Fig. 6e).

The Paxton Formation contains several sub-lithologies (Robinson and Goldsmith 1991). In the area of our study it is composed predominantly of grey-weathering, slabby, quartz-plagioclase-biotite granofels and well-layered purplish biotite granofels with calcic plagioclase (Robinson et al. 1982; Robinson and Goldsmith 1991). Sample KSPXIII from east-central Massachusetts (Fig. 2), is composed of a greenschist grade (garnet zone or lower at the locality sampled) laminated, slabby, quartz-rich, purple-grey granofels to schist. It yielded 113 concordant analyses. The youngest detrital zircon age population for the Paxton Formation is 426 ± 6 Ma (MSWD = 0.56) based on the weighted average of the ²⁰⁶Pb/²³⁸U ages of the ten youngest grains. The main peak is ~463 Ma with a smaller peak at ~431 Ma. Two analyses are ~2.6 Ga and most other analyses are between ~1.8-0.9 Ga with a few grains between ~700 and ~528 Ma (Fig. 6f).

CA-TIMS zircon analyses

Youngest zircon grains of selected samples from the Merrimack belt were re-dated using CA-TIMS methods (Table 1; Fig. 7), but as with the Nashoba terrane samples above, not all survived the processing. All CA-TIMS data for the Merrimack belt were within error of, or older (some much older, see below) than the LA-ICPMS data (Tables 1, A2). The youngest CA-TIMS ²⁰⁶Pb/²³⁸U ages from five grains from the Kittery, Paxton and Oakdale formations ranged from 434 Ma to 425 Ma.

Tower Hill Formation

The Tower Hill Formation is a relatively thin unit (up to ~130 m thick) along the Clinton-Newbury fault zone (Fig. 2). It is light-grey to buff and consists of massive orthoquartzite beds and subordinate dark-grey phyllite or mica-schist containing biotite, and locally garnet porphyroblasts (Grew 1970, 1973; Peck 1976; Hepburn 1976). However, in places it includes successions of phyllite reaching 65 m in thickness (Robinson and Goldsmith 1991). It is located along the Clinton-Newbury fault and its position in the stratigraphy and potential affinity with the Merrimack belt or Nashoba terrane are unclear (see Robinson and Goldsmith 1991). At the location of sample KSTHI (Fig. 2) in Berlin, Massachusetts it consists of fine-grained, light to dark-grey, massive quartzite. The youngest detrital zircon age population within the 106 concordant analyses is 513 ± 15 Ma (MSWD = 1.01) based on the weighted average of ²⁰⁶Pb/²³⁸U ages of three grains. One analysis (mr12a30) yielded a ²⁰⁶Pb/²³⁸U age of 463 ± 9 Ma but is not part of a population. The main population is ~630 Ma with a satellite peak at ~530 Ma and

a continuum of ages exists from there tapering off to ~1.8 Ga (Fig. 6g). Three grains are ~2.9 Ga and ~2.1 Ga.

DISCUSSION

Nashoba terrane

Age of deposition

Based on the LA-ICPMS results, the youngest detrital zircon population of all samples of the Nashoba terrane combined is 466 ± 13 Ma (MSWD = 0.12, n = 11). Given this, and taking the errors into account, the maximum ages of the Nashoba terrane metasedimentary rocks could range from Early to Late Ordovician. If the higher precision but single CA-TIMS age of 465.9 \pm 0.7 Ma (Table 1; Fig. 7) on grain mr02a06 of the Nashoba Formation gneiss (LA-ICPMS age of 480 ± 13 Ma) is representative, portions of the Nashoba Formation could have a maximum depositional age of early Middle Ordovician. Similar results were reported by Walsh et al. (2021) for two samples from the Nashoba Formation in southern Massachusetts and its correlative in Connecticut, the Tatnic Hill Formation, where detrital zircons gave an age of deposition between the ~485 Ma age of the youngest detrital zircon, and the ~435 Ma age of metamorphism. Because the 515 Ma granitic Grafton Gneiss cuts some of the mafic metaigneous rocks of the Marlboro Formation, and a ~500 Ma feldspathic granofels structurally overlies these (Walsh et al. 2009, 2011a, b, 2021), at least part of the Marlboro Formation is late Cambrian or older. The scarcity of detrital zircon in the metasedimentary rocks of the Marlboro Formation may indicate that they are primarily derived from the local, largely mafic, volcanic rocks of the Marlboro Formation. Thus, at least parts of the Marlboro Formation, and likely portions of the other Nashoba terrane units, are Cambrian, while other units, or parts of them, are Ordovician or younger.

The Assabet River fault zone (Fig. 2) is a major fault zone within the Nashoba terrane, separating the Nashoba Formation and Tadmuck Brook Schist to the northwest from the Shawsheen Gneiss and Marlboro Formation to the southeast (Bell and Alvord 1976; Hepburn and DiNitto 1978; Zen *et al.* 1983; Goldsmith 1991a, b; Kopera *et al.* 2006). To determine the significance of this fault zone, samples from the northwestern and southeastern Nashoba terrane were plotted separately in Figs. 8a and b. Samples from both sides show very similar patterns with a significant ~560–540 Ma detrital zircon age population and minor Mesoproterozoic and Paleoproterozoic populations. Archean grains are rare in both. The similarity of these data indicates that there is no significant difference in detrital age populations across the

Assabet River fault zone and that it thus does not represent a terrane boundary. The combined Nashoba terrane data are plotted in Fig. 8c. The similarity of the detrital zircon age distribution in the Tadmuck Brook schist (Fig. 4e) to that of the other units of the Nashoba terrane, and its difference from the distributions in the Merrimack belt (Figs. 6, 8f) indicates that it is part of the Nashoba terrane.

Provenance and correlations

The Nashoba terrane has been interpreted as a primitive arc/back-arc complex (Hepburn *et al.* 1995; Kay *et al.* 2009, 2011, 2017; Walsh *et al.* 2011b, 2015, 2021). Archean and Proterozoic detrital zircon and Mesoproterozoic depleted mantle Sm/Nd model ages (Kay *et al.* 2017) suggest that this complex formed on older crustal material. Paleoproterozoic and Mesoproterozoic detrital zircon in the metasedimentary rock samples support this, and similar youngest zircon age populations and provenance in all four units of the Nashoba terrane indicate that they all formed as part of the same early Paleozoic arc/back-arc complex.

Both Avalonia and at least part of Ganderia experienced active ~650-590 Ma magmatism (e.g., Murphy et al. 2004; Fyffe et al. 2009; Satkoski et al. 2010; Thompson et al. 1996, 2007, 2010; Pollock et al. 2009; van Staal et al. 2009, 2020; Barr et al. 2012, 2019). For Ganderia, this abundant arc magmatism continued until the Cambrian, whereas in Avalonia it ceased or greatly decreased by ~565 Ma as Avalonia became a stable platform (Barr et al. 2003a; Murphy et al. 2004; Samson et al. 2005; Rogers et al. 2006; Hibbard et al. 2007; van Staal et al. 2009, 2020; van Staal and Barr 2012). Detrital zircon age populations from the metasedimentary units of the Nashoba terrane are generally consistent with those from the Ediacaran-early Silurian Ganderian rocks from Newfoundland, New Brunswick and east-central Maine (Fig. 9b; e.g., White and Barr 1996; Barr et al. 2003b, 2019; Valverde-Vaquero et al. 2006b, Pollock et al. 2007, 2009; Schulz et al. 2008; Fyffe et al. 2009; Ludman et al. 2018). The large ~540 Ma detrital zircon age population in all units, and the smaller ~640 Ma age population with minor Mesoproterozoic and Paleoproterozoic populations suggest a Ganderian affinity (Barr et al. 2014; Rogers et al. 2006; Fyffe et al. 2009; Pollock et al. 2007, 2009). It is less consistent with Avalonia, which is characterized by a large ~640 Ma population and a smaller ~540 Ma population (Fig. 9c; cf. Keppie et al. 1998; Thompson and Bowring 2000; Barr et al. 2003b, 2012; Murphy et al. 2004; Pollock et al. 2009; Satkoski et al. 2010; Thompson et al. 2014). Strongly negative $\boldsymbol{\epsilon}_{_{Nd (500)}}$ values and Paleoproterozoic model ages for the metasedimentary rocks in the Nashoba terrane (Kay et al. 2017) are also characteristic for Ganderian sedimentary rocks (Samson et al. 2000; Schofield and D'Lemos 2000;

Figure 6. (next page) Relative probability plots for LA-ICPMS U–Pb detrital zircon data for units of the Merrimack belt and Tower Hill Formation. Main figures show ²⁰⁶Pb/²³⁸U ages for zircon <800 Ma and ²⁰⁷Pb/²⁰⁶Pb ages for zircon >800 Ma, and inset figures show ²⁰⁶Pb/²³⁸U ages for zircon <800 Ma only. Data are shown in Table A2.

HEPBURN ET AL. – Detrital zircon ages and the origins of the Nashoba terrane and Merrimack belt in southeastern New England, USA

Figure 7. U-Pb CA-TIMS data for youngest zircon grains of the Nashoba Formation gneiss of the Nashoba terrane and for various units of the Merrimack belt. Data are shown in Table 1.

Rogers *et al.* 2006; Pollock *et al.* 2012) and not for typical Avalonian crust (Nance and Murphy 1996; Barr *et al.* 1998; Hibbard *et al.* 2007 Thompson *et al.* 2012). We therefore interpret the Nashoba terrane as having Ganderian affinity.

Ganderia is interpreted to have formed along the Iapetus ocean-facing Amazonian margin of Gondwana in the Neoproterozoic and rifted away in the middle Cambrian, opening the Rheic ocean behind it (Figs. 10a, b) (e.g., van Staal et al. 1996, 2009, 2012, 2020; Fyffe et al. 2009, 2011; Schulz et al. 2008; Pollock et al. 2012; Barr et al. 2014; van Staal and Barr 2012; Willner et al. 2014). Prior to rifting a ~550-528 Ma extensive arc complex developed on the Ganderian margin (Fyffe et al. 2011; van Staal and Barr 2012). It formed the basement to the ~515-485 Ma Penobscot arc/back-arc complex that developed on the leading edge of Ganderia as it moved into the Iapetus ocean (Fig. 10b) (Valverde-Vaquero et al. 2006a; Rogers et al. 2006; Murphy et al. 2006; van Staal et al. 2009; Fyffe et al. 2009, 2011; Zagorevski et al. 2007a, b, 2010; van Staal and Barr 2012). At ~486-478 Ma, the Penobscot arc and back-arc fragments consolidated outboard of Laurentia during the Penobscot orogeny (Fig. 10c) (Zagorevski et al. 2007b, 2010; van Staal et al. 2009; Johnson et al. 2009, 2012; van Staal and Barr 2012). Penobscot arc/ back-arc rocks are found, south of Newfoundland, in the Brookville, New River and Annidale belts in New Brunswick, the Bras d'Or belt in Cape Breton Island, and the Ellsworth Formation and St. Croix terrane in eastern Maine and share many characteristics with the Nashoba terrane (White et al. 1994; Barr et al. 1998; Schulz et al. 2008; Johnson et al. 2009, 2012; Fyffe et al. 2011; van Staal and Barr 2012).

Shortly after the Penobscot orogeny, a second expansive arc/back-arc complex (Popelogan-Victoria cycle) formed from ~478-453 Ma on the remnants of the now consolidated Penobscot arc/back-arc deposits (Fig. 10d) (e.g., van Staal 1994; van Staal et al. 1998, 2016; Zagorevski et al. 2010; van Staal and Barr 2012; Wilson et al. 2017) and opened up the expansive Tetagouche and Exploits back-arc basins in Atlantic Canada - New England and in Newfoundland, respectively. These basins divided the Ganderian terrane into a separate active leading margin and a passive trailing margin (where the Nashoba terrane is located). The leading margin collided with Laurentia at about 455-450 Ma (Taconic phase 3 orogeny of van Staal et al. 2009). During the next ~20–25 myr the Tetagouche-Exploits basin gradually closed by west-directed subduction under Laurentia (Salinic orogenic cycle) (Figs. 10e, f) until the trailing margin of Ganderia collided with Laurentia in the terminal 426-420 Ma Salinic orogeny (Fig. 10g) (e.g., van Staal et al. 1998, 2003, 2008, 2012, 2016; Valverde-Vaquero et al. 2006a; Zagorevski et al. 2008; Fyffe et al. 2011; Zagorevski and van Staal 2011; van Staal and Barr 2012).

In the Nashoba terrane, igneous rocks of the ~540-500 Ma Marlboro Formation, the 515 Ma Grafton Gneiss and the 499 Ma Fish Brook Gneiss (Hepburn et al. 1995; Acaster and Bickford 1999; Walsh et al. 2011a, 2015, 2021) originated during the time of formation of the Cambrian Penobscot arc/back-arc complex (Figs. 10a, b) or its Ediacaran-Cambrian basement. An abundance of detrital zircon of that age in metasedimentary units of the Nashoba terrane reflects internal sources within the Penobscot arc/back-arc complex and its basement. Older zircon grains in the Nashoba terrane were eroded into the sedimentary basins from either Gondwanan (Amazonian) sources prior to the Cambrian rifting and drifting of Ganderia, or originated from reworked basement rocks beneath the Nashoba terrane. Such Proterozoic basement is exposed beneath Penobscot-cycle Ganderian rocks in the Brookville and New River terranes and on Grand Manan Island in New Brunswick (Johnson et al. 2009, 2012; Fyffe et al. 2009, 2011; Pollock et al. 2012; van Staal and Barr 2012; Fyffe 2014; Barr et al. 2019), the Bras d'Or terrane in Cape Breton Island (Barr et al. 1998; van Staal and Barr 2012) and the Islesboro block in coastal Maine (Reusch et al. 2018, 2021). The combined LA-ICPMS youngest detrital zircon age population of all samples from the Nashoba terrane (466 ± 13 Ma) and the single CA-TIMS age (465.9 \pm 0.7 Ma) suggest that Ordovician metasedimentary rocks also exist in the terrane and may have formed during the Popelogan tectonic cycle (Fig. 10d).

Metamorphic zircon

The Nashoba terrane contains abundant metamorphic zircon grains. These show a significant spread of weighted average ages between ~433 Ma and ~356 Ma (Fig. 5) and primarily indicate zircon growth during the Acadian orogeny. Younger zircon ages, while showing scatter and large uncertainties, likely reflect growth and/or recrystallization that extended into the Neoacadian and Alleghanian orogenies. Metamorphic zircon formed prior to ~425 Ma may have originated during the earlier Salinic orogeny. Our ages are consistent with published ages of metamorphism in the

Figure 8. Relative probability plots for LA-ICPMS U–Pb detrital zircon data for the eastern, western and all Nashoba terrane (a-c), (d) combined Kittery, Berwick and Paxton formations, (e) combined Worcester, Oakdale and Eliot formations, (f) combined all Merrimack belt. See figures 4 and 6 for data for individual units and further explanation.

Nashoba terrane using various methods (Hepburn *et al.* 1995; Wintsch *et al.* 2007; Stroud *et al.* 2009; Walsh *et al.* 2013a, 2015, 2021; Buchanan *et al.* 2016a, b; Severson 2020). Because the precision of our ages is not higher than those reported previously, and because of consistency between the various data sets, we will not discuss the ages of metamorphism further.

Tower Hill Formation

Age of deposition and correlations

The youngest LA-ICPMS detrital zircon age population in the Tower Hill Formation is 513 ± 15 Ma (3 grains), considerably older than any of the six formations sampled from the Merrimack belt (Figs. 6, 8f). A single grain from this unit

(not included in the grouping at 513 Ma) has a LA-ICPMS $^{206}Pb/^{238}U$ age of 463 ± 9 Ma, which is within error of the youngest age population of the Nashoba terrane. However, the ~513 Ma population is older than any youngest populations in the metasedimentary rocks of the Nashoba terrane and other aspects of the zircon population in the Tower Hill Formation, such as the 630 Ma main age peak, are different from any of the other samples (Figs. 4, 8c). Of particular interest is the ~950–750 Ma age population that is not characteristic for known Avalonian or Ganderian rocks.

The 513 \pm 15 Ma youngest age population of the Tower Hill Formation is similar to the maximum ages of deposition for Cambrian rocks found in several Ganderian terranes in New England and New Brunswick. These include the Ellsworth Formation of the Ellsworth terrane, the Calais Formation of the St. Croix terrane, and the Baskahegan Lake Formation of the Miramichi terrane (Fyffe et al. 2009). However, these formations do not show a large peak at ~630 Ma. Basement rocks (Martinon Fm.) below the Ganderian Brookville terrane and on Grand Manan Island in New Brunswick (Flagg Cove and Long Pond Bay Formations, Fyffe et al. 2009; Fyffe 2014; Barr et al. 2019) do show a Neoproterozoic peak of approximately this age. Rocks with both Cambrian youngest detrital zircon age populations and ~630 Ma peaks occur in some samples in the Moretown, Albee and Dead River formations of the Moretown terrane in western Massachusetts, Vermont, New Hampshire and western Maine (Karabinos et al. 2017) and the Ganderian Kedears Hill greywacke of North Islesboro, Maine (Reusch et al. 2018, 2021). However, because none of their detrital zircon signatures is similar to the Tower Hill formation, no specific correlations can be made. The detrital zircon ages do indicate that the Tower Hill Formation is not a part of the Merrimack belt stratigraphy and that the boundary between the Nashoba terrane and Merrimack belt is complex and likely incorporates exotic fault-bounded slices.

Merrimack belt

Age of deposition

The LA-ICPMS youngest detrital zircon populations for individual formations of the Merrimack belt in southeastern New Hampshire and Massachusetts range between 436 \pm 9 Ma (Worcester Formation) and 409 \pm 12 Ma (Berwick Formation). The CA-TIMS ²⁰⁶Pb/²³⁸U ages for the five youngest detrital zircon grains from the Merrimack belt samples are between 434 and 425 Ma. Three CA-TIMS ages from the Merrimack belt are within error of LA-ICPMS analyses that were used as part of the youngest populations (Tables 1, A2). These include two grains from the Oakdale Formation (mr16b23, LA-ICPMS: 409 \pm 17 Ma, CA-TIMS: 425.53 \pm 0.64 Ma and mr16a24 LA-ICPMS: 436 \pm 8 Ma, CA-TIMS: 433.70 \pm 0.41 Ma respectively) and grain au26a47 of the Paxton Formation (LA-ICPMS: 412 \pm 18 Ma, CA-TIMS: 429.16 \pm 0.82 Ma). The remainder of the CA-TIMS ages on grains from the youngest groups of zircons are older than the LA-ICPMS ages, up to ~30 myr for a grain from the Worcester Formation with a CA-TIMS age of 486 Ma (Ta-ble 1). This may reflect either unaccounted for Pb-loss in the LA-ICPMS analyses or the presence of older cores that survived chemical abrasion better than overgrowths prior to analysis. These older CA-TIMS ages are not interpreted as reflecting the ages of the youngest zircon populations.

The CA-TIMS ages for the three youngest detrital zircons in the Oakdale and Paxton formations (434–426 Ma) are consistent with the 429 \pm 5 Ma LA-ICPMS youngest detrital zircon age population (MSWD = 0.82, n = 18) for the three formations in the central Massachusetts portion of the belt (Worcester, Oakdale, and Paxton formations). The Worcester Formation is intruded by a 424 \pm 3 Ma phase of the Ayer granodiorite at Eddy Pond, near Auburn, Massachusetts (U–Pb secondary ion mass spectrometry (SIMS) zircon data; Walsh *et al.* 2013a; Walsh and Merschat 2015), and the Oakdale Formation is intruded by the 420.1 \pm 0.1 Ma Clinton facies of the Ayer granodiorite (U–Pb CA-TIMS zircon data; Charnock 2015). Therefore, the ages of these two formations are constrained between ~434 Ma and ~420 Ma (late Llandovery to Pridoli).

The combined youngest detrital zircon age population for the Kittery, Eliot and Berwick formations in the northeastern part of the sample area is 411 ± 8 Ma (MSWD = 0.14, n = 13). The LA-ICPMS weighted average of ²⁰⁶Pb/²³⁸U ages of the four youngest detrital zircon grains from the Eliot Formation is 409 ± 19 (MSWD = 0.046), of the four youngest grains from the Kittery Formation is 413 ± 13 Ma (MSWD = 0.089), and of the five youngest detrital zircon grains from the Berwick Formation is 409 ± 12 Ma (MSWD = 0.27). Two grains from the Kittery Formation youngest population yielded CA-TIMS ages of 432 Ma and 434 Ma (Table 1). The previously folded and regionally metamorphosed Kittery and Eliot formations are intruded in SE New Hampshire by the 418 \pm 1 Ma Newburyport quartz diorite and the 407.4 \pm 0.5 Ma Exeter diorite (U-Pb ID-TIMS and CA-TIMS zircon data; Bothner et al. 1993, 2009; Hussey and Bothner 1993; Fargo and Bothner 1995; Wintsch et al. 2007). The Berwick Formation was intruded by the 407 \pm 4 Ma Devens Long Pond facies of the Aver Granite in Westford, Massachusetts (U-Pb SHRIMP, Walsh et al. 2013b, 2021). This indicates that at least the Kittery and Eliot formations must be older

Figure 9. (previous page) Relative probability plots for (a) Laurentia, (b) Ganderia, (c) Avalonia, compiled by Severson *et al.* (in press), from Keppie *et al.* (1998); Barr *et al.* (2003b); Murphy *et al.* (2004); Hepburn *et al.* (2008); Pollock *et al.* (2009); Satkoski *et al.* (2010); Thompson *et al.* (2012); Willner *et al.* (2013); Henderson *et al.* (2016); Barr *et al.* (2019); Kuiper *et al.* (in press). (d, e, f) Kittery Berwick and Hebron formations of Wintsch *et al.* (2007), and (g) the Central Maine basin of Bradley and O'Sullivan (2017).

HEPBURN ET AL. – Detrital zircon ages and the origins of the Nashoba terrane and Merrimack belt in southeastern New England, USA

Figure 10. Simplified schematic diagrams showing the suggested development of the Nashoba terrane and Merrimack belt through time. Variation and movement of terranes along strike is not represented. Dashed arrows indicate sedimentary source areas.

than 418 Ma and that the LA-ICPMS youngest average detrital zircon age for these formations is inconsistently young.

Based on the LA-ICPMS and CA-TIMS data and the dated intrusive rocks, the Merrimack belt units in Massachusetts and SE NH are interpreted to have been deposited between ~434 Ma and ~420 Ma. However, since the Berwick and Paxton formations are not intruded by any pre-407 Ma dated igneous rocks in the area their minimum age limit is not well constrained, and they could be somewhat younger.

Correlations and changes in provenance through time

In Massachusetts and SE New Hampshire, the Merrimack belt rocks have ages of deposition between ~434 and ~420 Ma, large Middle to Late Ordovician zircon populations, smaller ~500-800 Ma populations, significant Mesoproterozoic populations, and scattered Archean grains. The Mesoproterozoic populations are much more prominent in the Kittery, Berwick and Paxton formations than in the Eliot, Oakdale, and Worcester formations (Figs. 6, 8d, e). While both Laurentia and Gondwana are potential viable sources for Mesoproterozoic zircon (e.g., Murphy et al. 2004; Fyffe et al. 2009; Pollock et al. 2009; Barr et al. 2019; Figs. 9a, b), Laurentia is a better source for ~1.2-1.0 Ga zircon (e.g., Cawood and Nemchin 2001; Hibbard et al. 2007; Waldron et al. 2014, 2018; Dokken et al. 2018; Severson 2020; Kuiper and Hepburn 2021). Furthermore, ~2.2-2.0 Ga zircons are largely absent in Laurentia, while Gondwana provides some zircon of this age, and Neoproterozoic zircon is characteristic for Gondwana, but not for Laurentia (Figs. 9a, b; Pollock et al. 2007; Waldron et al. 2009, 2014; Severson 2020). In the Merrimack belt samples the detrital zircon signatures of the Kittery, Berwick and Paxton formations show a Mesoproterozoic population, including a prominent 1.2-1.0 Ga population, no ~2.2-2.0 Ga grains and minor Neoproterozoic zircon, indicating evidence of Laurentian input. In contrast, the Eliot, Oakdale, and Worcester formations have a much smaller Mesoproterozoic population, three ~2.2-2.0 Ga grains and abundant Neoproterozoic zircon (Figs. 6, 8d, e), indicating Gondwanan but not Laurentian input.

In south-central Maine, Cartwright et al. (2019) concluded that detrital zircon in the older rocks of the Fredericton trough (Llandovery Appleton Ridge Formation and Ghent Phyllite; Figs. 1, 3) have a Gondwanan source and no evidence of Laurentian sediment input, similar to the Llandovery Digdeguash Formation of the Kingsclear Group, southeast of the Fredericton fault (northern extent of the Norumbega fault system; Fig. 1) in southern New Brunswick (Dokken et al. 2018). However, the overlying Wenlock-Ludlow Flume Ridge Formation in the eastern Fredericton trough in New Brunswick and the Llandovery Hayes Brook and Wenlock-Ludlow Burtts Corner formations northwest of the Fredericton fault contain detrital zircon with Mesoproterozoic Laurentian input (Dokken et al. 2018). Likewise, rocks deposited in the Central Maine basin (Vassalboro Group) contain mixed Gondwanan and Laurentian detrital zircon signatures with Mesoproterozoic Laurentian input to its eastern structural margin in central Maine (Cartwright et al. 2019). Thus, rocks that contain a Laurentian detrital zircon signature were either deposited in a more westerly location, i.e., in the Central Maine basin or western portion of the Fredericton trough, or else are younger deposits in the eastern Fredericton trough.

In the Merrimack belt in Massachusetts and SE New Hampshire the Worcester, Oakdale and Eliot formations, with minor Laurentian Mesoproterozoic detrital zircon likely correlate with the early Silurian deposits in the Fredericton trough in Maine and New Brunswick. The mixed detrital zircon source of the Kittery Formation with the presence of Laurentian detrital Mesoproterozoic input is consistent with the younger Silurian rocks in the Fredericton trough in New Brunswick (Dokken 2018) and the interpretation of Hussey et al. (2010) and Wintsch et al. (2007) that it represents the youngest deposit in the Merrimack Group in SE Maine and New Hampshire. The Paxton and Berwick formations (Figs. 6d, f) also have mixed Gondwanan and Laurentian detrital zircon signatures. Hussey et al. (2010, 2016; cf. Wintsch et al. 2007) place the Berwick Formation stratigraphically above the Kittery and Eliot formations in SE Maine and New Hampshire and interpret it as part of the Central Maine basin. The similar lithologies of the Paxton and Berwick formations, their similar detrital zircon signatures including Laurentian 1.2-1.0 detrital zircons, and the fact that neither is known to be crosscut by late Silurian-Early Devonian plutons support their potential correlation (Robinson and Goldsmith 1991). Thus, the Paxton and Berwick formations are interpreted to be the youngest rocks of those sampled in the Merrimack belt in SE New Hampshire and Massachusetts, consistent with interpretations by Hussey et al. (2010, 2016; cf. Wintsch et al. 2007) and further suggesting that the Paxton Formation was likely deposited in the Central Maine basin or its equivalent in Massachusetts.

Dokken *et al.* (2018) and Cartwright *et al.* (2019) propose that Laurentian detrital material only reached the eastern Fredericton trough by the middle Silurian and that a barrier existed between Laurentian margin and Gondwanan sources prior to this time (see also Ludman *et al.* 2018). A similar barrier may have existed during the deposition of the Worcester, Oakdale and Eliot formations, which was not present during deposition of the Kittery, Paxton and Berwick formations.

Our detrital zircon age populations for the Kittery and Berwick formations are generally similar to those based on the SHRIMP U-Pb analysis of Wintsch et al. (2007; Figs. 9d, e). Although minor differences exist in the sizes of the populations, these may be a result of differences in the number of analyses. Wintsch et al. (2007) correlated the Berwick Formation in Maine with the Hebron Formation in Connecticut. The Hebron Formation has a zircon age distribution (Fig. 9f) similar to the Berwick Formation, although the Hebron Formation contains a relatively larger ~1.2-1.0 Ga Laurentian population. This may be a result of local provenance differences, e.g., a higher local input from a Grenville source. Alternatively, it may indicate that the Hebron Formation, where sampled, is somewhat younger than the Berwick Formation, resulting in an increased Laurentian signal. The similarity of the detrital zircon distributions in the Berwick, Paxton and Hebron formations to those of samples from the Central Maine basin (Fig. 9g; Bradley and O'Sullivan 2017) indicate that they all were likely deposited in the Central Maine basin or its equivalent in Massachusetts and Connecticut.

Potential source areas and tectonic synthesis

The Merrimack belt in Massachusetts and SE New Hampshire, the Merribuckfred basin and eastern portion of the Central Maine basin in Maine and New Brunswick all show a mix of Gondwanan and Laurentian sources. Here we briefly summarize the spatial and temporal differences in sources for the Merribuckfred and Central Maine basins, from north to south, so as to better identify the sources for Merrimack belt. Ludman et al. (2018, 2019) interpret the rocks in the Fredericton trough in eastern Maine to have originated largely from Gondwanan sources, either from emergent basement highlands underlain by Ganderian rocks such as in the Miramichi terrane, or by Wenlock-Ludlow time, from arc sources to the east as Avalonia approached and docked with the trailing edge of Ganderia. Such arc sources are present in the Coastal Volcanic belt in eastern Maine and the Kingston belt in New Brunswick (Fig. 1; Gates and Moench 1981; Seaman et al. 1999, 2019; Barr et al. 2002; Van Wagoner et al. 2002; Piñán-Llamas and Hepburn 2013; Ludman et al. 2017, 2018). In southern coastal Maine, Hussey et al. (2010) interpreted the Llandovery Bucksport and Appleton Ridge formations in the Fredericton trough to have Gondwanan sources and to have been deposited between a western Ganderian Ordovician arc (present in the Casco Bay and Falmouth-Brunswick Groups; Fig. 1) and the eastern trailing margin of Ganderia. Similarly, late Ordovician (?) to early Silurian deposits in the eastern Fredericton trough in New Brunswick (Dokken et al. 2018) and in southcentral Maine (Cartwright et al. 2019) show only Gondwanan sources. However, younger deposits in the Kingsclear Group in the eastern Fredericton trough in southern New Brunswick and those in the western Fredericton trough (Fig. 3) include Laurentian detrital zircon material (Dokken et al. 2018).

The majority of the zircon in the Merrimack belt in Massachusetts and SE New Hampshire (Figs. 6, 8f) has Gondwanan affinity and most formed during the ~478-453 Ma Popelogan-Victoria volcanic arc/back-arc cycle that included the opening of the broad Tetagouche-Exploits back-arc basin (Fig. 10d; e.g., Valverde-Vaquero et al. 2006a; Fyffe et al. 2009; Johnson et al. 2009; Zagorevski et al. 2007a, 2010; van Staal and Barr 2012; Wilson et al. 2015; van Staal et al. 2016). Input of zircons into the Merrimack belt during the existence of the Tetagouche-Exploits back-arc basin likely came from erosion of emergent local highlands underlain by Ganderian Ordovician rocks, such as in the Miramichi and St. Croix terranes in eastern Maine and New Brunswick (Fig. 10e; Fyffe 1995; Fyffe et al. 2009, 2011; Ludman et al. 2017, 2018) and in the Casco Bay and Falmouth-Brunswick Groups in south-central and coastal southern Maine (West et al. 2003, 2004, 2008; Gerbi and West 2007; Hussey 2010, West and Hussey 2016, Hussey and West 2018). Input of Laurentian-derived zircons to the eastern portions of the trailing margin of Ganderia during this time was probably minor as the Tetagouche-Exploits basin and perhaps these highlands formed a barrier to Laurentian zircon transport

(Fig. 10e), but was more prominent to the west in the Central Maine basin (Bradley and O'Sullivan 2017; Cartwright *et al.* 2019).

The boundary between the Merribuckfred and Central Maine basins in New England has been interpreted as the line of closure of the Tetagouche-Exploits basin (the Dog Bay line in Newfoundland) during the Salinic orogeny (Reusch and van Staal 2012). During the closure of this basin, it is likely that the younger Silurian deposits in the Merrimack belt (Kittery, Berwick and Paxton formations) received increasing amounts of Laurentian detritus (Fig. 10f). By the middle Silurian, when the Tetagouche-Exploits basin was closing, the oceanic crust between the approaching Avalonia and Ganderia was subducting below the trailing margin of Ganderia (Fig. 10f). The Silurian volcanic arc formed at this time is represented in Massachusets by the Newbury Volcanic Complex (Shride 1976a, b; Zen et al. 1983) along the northeastern boundary of the Nashoba terrane (Fig. 2). Avalonia collided by ~425 Ma (Fig. 10g; e.g., Fyffe et al. 1999; Bradley et al. 2000; van Staal et al. 2009; van Staal and Barr 2012; Piñán-Llamas and Hepburn 2013; Wilson et al. 2017). Paleocurrent directions in the Kittery Formation in the Merrimack belt suggest that some of the youngest detritus was sourced east of the belt (Rickerich 1983, 1984; Hussey et al. 1984). Thus, middle to late Silurian detrital zircon in the Merrimack belt could have been derived from the Salinic orogen and Laurentian margin to the west and/or from arc volcanism and orogenesis related to the approach and collision of Avalonia to the east (Figs. 10f, g). As the Acadian orogenic front advanced westward, earlier deposits to the east were uplifted and likely provided reworked detritus for younger, more westerly, deposits in the Central Maine basin (Bradley et al. 2000; Hussey et al. 2010; Bradley and O'Sullivan 2017; Ludman et al. 2018).

SUMMARY

Nashoba terrane

Detrital zircon from five units in the Nashoba terrane in eastern Massachusetts have similar U-Pb LA-ICPMS age patterns with main age peaks between ~560 and ~540 Ma and an average peak for all Nashoba terrane samples at 548 Ma. The Shawsheen Gneiss and Marlboro Formation have small peaks at ~640 Ma and all samples have input between ~1.1 and 1.7 Ga, scattered grains between ~2.0 and 2.1 Ga and a few grains at ~2.4 Ga. One sample from the Marlboro Formation has a detrital core with an Archean age of 3.36 Ga. Populations of youngest detrital zircons ranged from 470 \pm 22 Ma to 462 ± 20 Ma with an average of 466 ± 13 Ma. CA-TIMS analysis of one grain from the youngest population of the Nashoba Formation gneiss gave a ²⁰⁶Pb/²³⁸U age of 465.9 \pm 0.7 Ma. The similarity of the zircon detrital pattern of the Tadmuck Brook schist to that of the other units indicates that it is part of the Nashoba terrane.

The strong ~540 Ma peak in the detrital zircon abun-

dance with a much smaller ~640 Ma peak indicates that the Nashoba terrane is a part of Ganderia, a conclusion that is consistent with earlier work (e.g., Hepburn 2004; Walsh *et al.* 2011b, 2013a, 2021; Kay *et al.* 2017). The large input of ~540 Ma zircons indicates that most of the detrital input was from local sources formed during the Cambrian Penobscot orogenic cycle and its Ediacaran basement.

Metamorphic zircon is common in the Nashoba terrane and yielded an approximately continuous spectrum of ages from ~440 Ma to ~335 Ma, consistent with previous studies.

Tower Hill Formation

The Tower Hill Formation lies along the terrane bounding Clinton-Newbury fault zone and has significantly different detrital zircon abundances than either the Nashoba terrane or Merrimack belt metasedimentary rocks. The main population is ~630 Ma, with a continuum of ages from that age to ~1.8 Ga and three grains at ~2.9 Ga and ~2.1 Ga. The youngest detrital zircon population is 513 ± 15 Ma based on the weighted average of three grains. Zircon data from the Tower Hill Formation indicates that it is different from the rocks of the Merrimack belt and Nashoba terrane, suggesting that the boundary between the Nashoba terrane and Merrimack basin is complex.

Merrimack belt

Metasedimentary rocks of the Merrimack belt in Massachusetts and SE New Hampshire yielded large Ordovician zircon populations (average peaks at 443-460 Ma), smaller 500-800 Ma populations and scattered Archean grains. Some units (Worcester, Oakdale and Eliot formations) show only Gondwanan provenance, while three units (Kittery, Paxton and Berwick formations) include a minor, but significant Mesoproterozoic Laurentian provenance input. This may indicate that these formations are younger than the others and/or were deposited in a more westerly position in the equivalent of the Central Maine basin. All units were deposited between ~435 and ~420 Ma based on youngest LA-ICPMS and CA-TIMS zircon populations and the ages of crosscutting plutons. The majority of the sedimentary material was derived from Ordovician Ganderian arcs and basement, or reworked arc material, due to the expansion and contraction of the Tetagouche-Exploits basin during the Popelogan/Victoria arc/back-arc cycle and Salinic orogeny. Late Silurian deposits in the Merrimack basin originated from input of both Laurentian material from the west and arc and orogenic sources to the east as the seaway between Ganderia and Avalonia closed by subduction under the trailing edge of Ganderia and the beginning of Acadian orogenesis.

ACKNOWLEDGEMENTS

We would like to thank Wally Bothner for many helpful

discussions and field trips to the Merrimack belt in New Hampshire. Wilfredo Diegor is thanked for help with some of the LA-ICPMS analysis, data correction and reduction at the Memorial University of Newfoundland. We thank journal reviewers Douglas Reusch and John Waldron for their careful reviews and helpful suggestions that led to improvements in the clarity and presentation of the manuscript. David West is thanked for his helpful editorial handling of the manuscript.

Research was funded by Geological Society of America Graduate Student Research Grants to MLL and KJM, an ExxonMobil Geoscience Grant to KJM, and a Boston College Research Incentive Grant to YDK.

REFERENCES

- Acaster, M. and Bickford, M.E. 1999. Geochronology and geochemistry of Putnam-Nashoba terrane metavolcanic and plutonic rocks, eastern Massachusetts: Constraints on the early Paleozoic evolution of eastern North America. Geological Society of America, Bulletin, 111, pp. 240– 253. <u>https://doi.org/10.1130/0016-7606(1999)111<0240:-</u> GAGOPN>2.3.CO;2
- Attenoukon, M.B. 2009. Thermochronological and petrographic constraints on the timing of terrane assembly in eastern New England. Unpublished Ph.D. thesis, Indiana University, Bloomington, Indiana, 300 p.
- Attenoukon, M.B., Kunk, M.J., and Wintsch, R.P. 2006. Constraining the absolute age of multiple fabric-forming events in polymetamorphic argillites, Merrimack Terrane, Massachusetts. Geological Society of America, Northeastern Section, 41st Annual Meeting Abstracts with Programs, 38, no. 2, p. 86. <u>https://gsa.confex.com/ gsa/2006NE/webprogram/Paper100887.html</u>
- Barr, S.M., Raeside, R.P., and White, C.E. 1998. Geological correlations between Cape Breton Island and Newfoundland, Northern Appalachian orogen. Canadian Journal of Earth Sciences, 35, p.1252–1270. <u>https://doi.org/10.1139/ e98-016</u>
- Barr, S.M., White, C.E., and Miller, B.V. 2002. The Kingston terrane, southern New Brunswick, Canada: Evidence for an Early Silurian volcanic arc. Geological Society of America, Bulletin, 114, pp. 964–982. <u>https://doi. org/10.1130/0016-7606(2002)114<0964:TKTSNB>2.0.</u> <u>CO:2</u>
- Barr, S.M., White, C.E., and Miller, B.V. 2003a. Age and geochemistry of Late Neoproterozoic and early Cambrian igneous rocks in southern New Brunswick: similarities and contrasts. Atlantic Geology, 39, pp. 55–73. <u>https://doi.org/10.4138/1050</u>
- Barr, S.M., Davis, D.W., Kamo, S., and White, C.E. 2003b. Significance of U–Pb detrital zircon ages in quartzite from peri-Gondwanan terranes, New Brunswick and Nova Scotia, Canada. Precambrian Research, 126, pp. 123–145. https://doi.org/10.1016/S0301-9268(03)00192-X

Barr, S.M., Hamilton, M.A., Samson, S.D., Satkoski, A.M.,

and White, C.E. 2012. Provenance variations in northern Appalachian Avalonia based on detrital zircon age patterns in Ediacaran and Cambrian sedimentary rocks, New Brunswick and Nova Scotia, Canada. Canadian Journal of Earth Sciences, 49, pp. 533–546. <u>https://doi.org/10.1139/e11-070</u>

- Barr, S.M., White, C.E., Davis, D.W., McClelland, W.C., and van Staal, C.R. 2014. Infrastructure and provenance of Ganderia: evidence from detrital zircon ages in the Brookville terrane, southern New Brunswick, Canada. Precambrian Research, 246, pp. 358–370. <u>https://doi. org/10.1016/j.precamres.2014.03.022</u>
- Barr, S.M., van Rooyen, D., Miller, B.V., White, C.E., and Johnson, S.C. 2019. Detrital zircon signatures in Precambrian and Paleozoic sedimentary units in Ganderia and Avalonia of southern New Brunswick, Canada - more pieces of the puzzle. Atlantic Geology, 55, pp. 275–322. https://doi.org/10.4138/atlgeol.2019.010
- Bell, K.G. and Alvord, D.C. 1976. Pre-Silurian stratigraphy of Northeastern Massachusetts. *In* Contributions to the stratigraphy of New England. *Edited by* L.R. Page. Geological Society of America, Memoir, 148, pp. 179–216. https://doi.org/10.1130/MEM148-p179
- Bennett, V. and Tubrett, M. 2010. U–Pb isotopic age dating by LAM ICP-MS, INCO Innovation Centre, Memorial University: sample preparation methodology and analytical techniques. *In* Yukon Exploration and Geology 2009. *Edited by* K.E. MacFarlane, L.H Weston, and L.R. Blackburn. Yukon Geological Survey, pp. 47–55.
- Berry, H.N., IV and Osberg, P.H. 1989. A stratigraphic synthesis of eastern Maine and western New Brunswick. *In* Studies in Maine Geology, Volume 2. *Edited by* R.D. Tucker and R.G. Marvinney. Maine Geological Survey, Augusta, Maine, pp. 1–32.
- Billings, M.P. 1956. The Geology of New Hampshire: Part2. Bedrock Geology. New Hampshire State Planning and Development Commission, Concord, 203 p.
- Bothner, W.A. and Hussey, A.M., II 1999. Norumbega connections: Casco Bay, Maine, to Massachusetts? *In* Norumbega Fault System of the Northern Appalachians. *Edited* by A. Ludman and D.P. West, Jr. Geological Society of America, Special Paper, 331, pp. 59–72. <u>https://doi.org/10.1130/0-8137-2331-0.59</u>
- Bothner, W.A., Gaudette, H.E., Fargo, T.G., Bowring, S.A., and Isachsen, C.E. 1993. Zircon and sphene U/Pb ages of the Exeter pluton: Constraints on the Merrimack Group and part of the Avalon composite terrane. Geological Society of America, Abstracts with Programs, 25, no. 6, p. 485.
- Bothner, W.A., Blackburn, T., Bowring, S., Buchwaldt, R., and Hussey, A.M., II 2009. Temporal constraints on Paleozoic plutonism in southwestern Maine and southeastern New Hampshire: Revisions and implications. Geological Society of America, Northeastern Section, 44th Annual Meeting, Abstracts with Programs, 41, no. 3, p. 32. https://gsa.confex.com/gsa/2009NE/webprogram/Paper155255.html

- Bowring, J.F., McLean, N.M., and Bowring, S.A. 2011. Engineering cyber infrastructure for U–Pb geochronology: Tripoli and U–Pb_Redux. Geochemistry, Geophysics, Geosystems, 12, Q0AA19. <u>https://doi.org/10.1029/2010GC003479</u>
- Bradley, D.C. and O'Sullivan, P. 2017. Detrital zircon geochronology of pre-and syncollisional strata, Acadian orogen, Maine Appalachians. Basin Research, 29, pp. 571– 590. <u>https://doi.org/10.1111/bre.12188</u>
- Bradley, D.C., Tucker, R.D., Lux, D., Harris, A.G., and Mc-Gregor, D.C. 2000. Migration of the Appalachian Orogen and foreland basin across the Northern Appalachians of Maine and adjacent Areas. U.S. Geological Survey, Professional Paper, 1624, 49 p. <u>https://doi.org/10.3133/pp1624</u>
- Buchanan II, J.W., Kuiper, Y.D., Hepburn, J.C., and Kelly, N.M. 2016a. Linking partial melting in the Nashoba Formation to the Andover Granite, Eastern Massachusetts. Geological Society of America, Northeastern Section, 51st Annual Meeting, Abstracts with Program, 48. <u>https://gsa.confex.com/gsa/2016NE/webprogram/Paper271913.html</u>
- Buchanan II, J.W., Kuiper, Y.D., Williams, M.L., and Hepburn, J.C. 2016b. Ductile extrusion of the Nashoba Formation during convergence of the Avalon terrane with the composite Laurentian margin, Eastern Massachusetts. Geological Society of America Annual General Meeting, Abstracts with Programs, 48. <u>https://gsa.confex.</u> <u>com/gsa/2016AM/webprogram/Paper284455.html</u>
- Buchanan II, J.W., Kuiper, Y.D., Hepburn, J.C., Williams, M.L. 2017. Constraints on Devonian-Carboniferous deformation in the Nashoba terrane, Eastern Massachusetts. Geological Society of America, Joint 52nd Northeastern and 51st North-Central Annual Section Meeting, Abstracts with Programs, 49, no. 2. <u>https://gsa.confex. com/gsa/2017NE/meetingapp.cgi/Paper/290834</u>
- Cartwright, S.F.A., West, Jr., D.P. and Amidon, W.H. 2019. Depositional constraints from detrital zircon geochronology of strata from multiple lithotectonic belts in south-central Maine, USA. Atlantic Geology, 55, pp. 93– 136. <u>https://doi.org/10.4138/atlgeol.2019.003</u>
- Castle, R.O., Dixon, H.R., Grew, E.S., Griscom, A., and Zietz, I. 1976. Structural dislocations in eastern Massachusetts. U. S. Geological Survey. Bulletin, 1410, 39 p.
- Cawood, P.A. and Nemchin, A.A. 2001. Paleogeographic development of the East Laurentian margin: Constraints from U-Pb dating of detrital zircons in the Newfoundland Appalachians. Geological Society of America, Bulletin, 113, pp. 1234–1246. <u>https://doi. org/10.1130/0016-7606(2001)113<1234:PDOTEL>2.0.</u> <u>CO;2</u>
- Charnock, R.D. 2015. Origin and evolution of the southeastern Merrimack belt, Massachusetts. Unpublished M.S. thesis, Colorado School of Mines, Boulder, Colorado, 107 p.
- Condon, D.J. and Bowring, S.A. 2011. A user's guide to Neoproterozoic geochronology. *In* The Geological record of Neoproterozoic glaciations. *Edited by* E. Arnaud, G.

P. Halverson, and G. Shields-Zhou. Geological Society, London, Memoirs, 36, Chapter 9, pp. 135–149. <u>https://doi.org/10.1144/M36.9</u>

- Dabrowski, D. 2013. Implications of Silurian granite genesis to the tectonic history of the Nashoba terrane, Eastern Massachusetts. Unpublished M.S. thesis, Boston College, Chestnut Hill, Massachusetts, 118 p.
- Dabrowski, D., Hepburn, J. C., and Kuiper, Y. 2013. Geochronological constraints on the origin of the Andover granite and its relationship to the tectonic history of the Nashoba terrane, eastern Massachusetts. Geological Society of America, Northeastern Section, 48th Annual Meeting, Abstracts with Programs, 45, no. 1, p. 91. <u>https:// gsa.confex.com/gsa/2013NE/webprogram/Paper215158.</u> <u>html</u>
- DiNitto, R.G., Hepburn, J.C., Durfee Cardoza, K., and Hill, M. 1984. The Marlboro Formation in its type area and associated rocks just west of the Bloody Bluff fault zone, Marlborough area, Massachusetts. *In* Geology of the coastal lowlands, Boston, Massachusetts to Kennebunk, Maine. *Edited by* L. Hanson. New England Intercollegiate Geological Conference, 76th Annual Meeting, Salem, Massachusetts, pp. 271–291.
- Dokken, R.J., Waldron, J.W.F., and Dufrane, S.W. 2018. Detrital zircon geochronology of the Fredericton trough, New Brunswick Canada: constraints on the Silurian closure of remnant Iapetus ocean. American Journal of Science, 318, pp. 684–725. https://doi.org/10.2475/06.2018.03
- Dorais, M.J, Wintsch, R.P., Kunk, M.J., Aleinikoff, J., Burton, W., Underdown, C., and Kerwin, C.M. 2012. P-T-t conditions, Nd and Pb isotopic compositions and detrital zircon geochronology of the Massabesic Gneiss Complex, New Hampshire: Isotopic and metamorphic evidence for the identification of Gander basement, Central New England. American Journal of Science, 312, pp. 1049–1097. https://doi.org/10.2475/10.2012.01
- Emerson, B.K. 1917. Geology of Massachusetts and Rhode Island. U.S. Geological Survey, Bulletin, 597, 289 p.
- Fargo, T. and Bothner, W.A. 1995. Polydeformation in the Merrimack Group, southeastern New Hampshire and southwestern Maine. *In* Guidebook to fieldtrips in southern Maine and adjacent New Hampshire. *Edited by* A.M. Hussey, II and R.A. Johnson. New England Intercollegiate Geological Conference, 87, pp. 15–28.
- Fyffe, L.R. 1995. Fredericton belt. *In* Geology of the Appalachian-Caledonian Orogen in Canada and Greenland. *Edited by* H. Williams. Geological Survey of Canada, Geology of Canada, 6, pp.351–354.
- Fyffe, L.R. 2014. The Grand Manan terrane of New Brunswick: Tectonostratigraphy and relationship to the Gondwanan margin of the Iapetus Ocean. Geoscience Canada, 41, pp. 483–502. <u>https://doi.org/10.12789/geocanj.2014.41.051</u>
- Fyffe, L.R., Pickerill, R.K., and Stringer, P. 1999. Stratigraphy, sedimentology and structure of the Oak Bay and Waweig formations, Mascarene basin: implications for the paleotectonic evolution of southwestern New

Brunswick. Atlantic Geology, 35, pp. 59-84. <u>https://doi.org/10.4138/2024</u>

- Fyffe, L.R., Barr, S.M., Johnson, S.C., McLeod, M.J., McNicoll, V.J., Valverde-Vaquero, P., van Staal, C.R., and White, C.E. 2009. Detrital zircon ages from Neoproterozoic and Early Paleozoic conglomerate and sandstone units of New Brunswick and coastal Maine: implications for the tectonic evolution of Ganderia. Atlantic Geology, 45, pp. 110–144. <u>https://doi.org/10.4138/atlgeol.2009.006</u>
- Fyffe, L.R., Johnson, S.C., and van Staal, C.R. 2011. A review of Proterozoic to Early Paleozoic lithotectonic terranes in the northeastern Appalachian orogen of New Brunswick, Canada, and their tectonic evolution during Penobscot, Taconic, Salinic, and Acadian orogenesis. Atlantic Geology, 47, pp. 211–248. <u>https://doi.org/10.4138/atlgeol.2011.010</u>
- Gates, O. and Moench, R. 1981. Bimodal Silurian and Lower Devonian volcanic rock assemblages in the Machias-Eastport area, Maine. U.S. Geological Survey, Professional Paper, 1184, 32 p. <u>https://doi.org/10.3133/pp1184</u>
- Gerbi, C.C. and West, D.P., Jr. 2007. Use of U-Pb geochronology to identify successive spatially overlapping tectonic episodes during Silurian-Devonian orogenesis in south-central Maine, USA. Geological Society of America, Bulletin, 119, pp. 1218–1231. <u>https://doi.org/10.1130/</u> <u>B26162.1</u>
- Gerstenberger, H. and Haase, G. 1997. A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chemical Geology, 136, pp. 309–312. https://doi.org/10.1016/S0009-2541(96)00033-2
- Goldsmith, R. 1991a. Stratigraphy of the Nashoba Zone, eastern Massachusetts: An enigmatic terrane. *In* The bedrock geology of Massachusetts. *Edited by* N. L. Hatch, Jr. United States Geological Survey, Professional Paper, 1366 E-J, pp. F1–F22.
- Goldsmith, R. 1991b. Structural and metamorphic history of eastern Massachusetts. *In* The bedrock geology of Massachusetts. *Edited by* N. L. Hatch, Jr. United States Geological Survey, Professional Paper, 1366 E-J, pp. H1–H63.
- Goldstein, A.G. 1992. Motion of the Clinton-Newbury and related faults and multiple deformation of the Merrimack Group in eastern Massachusetts: Aspects of the Alleghanian orogeny in southeastern New England. *In* Guidebook for field trips in the Connecticut Valley region of Massachusetts and adjacent states. *Edited by* P. Robinson and J.B. Brady. New England Intercollegiate Geological Conference, 84th Annual Meeting, Amherst, Massachusetts. University of Massachusetts, Amherst, Massachusetts, Geoscience Contribution Series 66-1, pp. 120–131.
- Goldstein, A.G. 1994. A shear zone origin for Alleghanian (Permian) multiple deformation in eastern Massachusetts. Tectonics, 13, pp. 62–77. <u>https://doi.org/10.1029/93TC02522</u>
- Gore, R.Z. 1976. Ayer crystalline complex of Ayer, Harvard, and Clinton, Massachusetts. *In* Studies in New England geology. *Edited by* P.C. Lyons and A.H. Brownlow. Geological Society of America, Memoir, 146, pp. 103–124.

https://doi.org/10.1130/MEM146-p103

- Grew, E.S. 1970. Geology of the Pennsylvanian and pre-Pennsylvanian rocks of the Worcester area, Massachusetts. Unpublished Ph.D. thesis, Harvard University, Cambridge, Massachusetts, 263 p.
- Grew, E.S. 1973. Stratigraphy of the Pennsylvanian and pre-Pennsylvanian rocks of the Worcester area, Massachusetts. American Journal of Science, 273, pp. 113–129. https://doi.org/10.2475/ajs.273.2.113
- Henderson, B.J., Collins, W.J., Murphy, J.B., Gutierrez-Alonso, G., and Hand, M. 2016. Gondwanan basement terranes of the Variscan-Appalachian orogen: Baltican, Saharan, and West African isotopic fingerprints in Avalonia, Iberia, and the Armorican terranes. Tectonophysics, 681, pp. 279–304. <u>https://doi.org/10.1016/j.tecto.2015.11.020</u>
- Hepburn, J.C. 1976. Lower Paleozoic rocks west of the Clinton-Newbury fault zone, Worcester area, Massachusetts. *In* Geology of Southeastern New England. *Edited by* B. Cameron. New England Intercollegiate Geological Conference, 68th Annual meeting, Boston, Massachusetts, Princeton, New Jersey, Science Press, pp. 366–382.
- Hepburn, J.C. 2004. The peri-Gondwanan Nashoba terrane of Eastern Massachusetts: An Early Paleozoic arc-related complex and its accretionary history. *In* Guidebook to field trips from Boston, MA to Saco Bay, ME. *Edited by* L. Hanson. New England Intercollegiate Geological Conference, 96th Annual Meeting, Salem, Massachusetts, pp. 17–38.
- Hepburn, J.C. and DiNitto, R.G. 1978. Preliminary bedrock geologic map of the Marlborough quadrangle, Middlesex and Worcester counties, Massachusetts. United States Geological Survey, Open-File Report 78-222, 29 p., scale 1:24 000. <u>https://doi.org/10.3133/ofr78222</u>
- Hepburn, J.C. and Munn, B. 1984. A geologic traverse across the Nashoba block, eastern Massachusetts. *In* Geology of the Coastal Lowlands Boston, Massachusetts to Kennebunk, Maine. *Edited by* L. Hanson. New England Intercollegiate Geological Conf., 76th Annual Meeting, Salem, Massachusetts, pp. 103–123.
- Hepburn, J.C., Dunning, G.R., and Hon, R. 1995. Geochronology and regional tectonic implications of Silurian deformation in the Nashoba Terrane, Southeastern New England, U.S.A. *In* Current perspectives in the Appalachian-Caledonian orogen. *Edited by* J.P. Hibbard, C.R. van Staal, and P.A. Cawood. Geological Association of Canada, Special Paper, 41, pp. 349–366.
- Hepburn, J.C., Fernández-Suárez, J., Jenner, G.A., and Belousova, E.A. 2008. Significance of detrital zircon ages from the Westboro quartzite, Avalon terrane, eastern Massachusetts. Geological Society of America, Northeastern Section, 43rd Annual Meeting, Abstracts with Programs, v. 40, no. 2, p. 14. <u>https://gsa.confex.com/ gsa/2008NE/webprogram/Paper134762.html</u>
- Hiess, J., Condon, D.J., McLean, N., and Noble, S.R. 2012. ²³⁸U/²³⁵U systematics in terrestrial uranium-bearing

minerals. Science, 335, pp. 1610–1614. <u>https://doi.org/10.1126/science.1215507</u>

- Hibbard, J.P., van Staal, C.R., Rankin, D.W., and Williams, H. 2006. Lithotectonic map of the Appalachian orogen, Canada-United States of America. Geological Survey of Canada, map 2096A, scale 1:1 500 000. <u>https://doi. org/10.4095/221912</u>
- Hibbard, J.P., van Staal, C.R., and Rankin, D.W. 2007. A comparative analysis of pre-Silurian crustal building blocks of the Northern and Southern Appalachian orogen. American Journal of Science, 307, pp. 23–45. <u>https://doi.org/10.2475/01.2007.02</u>
- Hitchcock, C.H. 1877. The Geology of New Hampshire: Part II Stratigraphic Geology. Edward A. Jenks, State Printer, Concord, New Hampshire, 684 p.
- Horn, I., Rudnick R.L., and McDonough, W.F. 2000. Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS: application to U-Pb geochronology. Chemical Geology, 167, pp. 403–423. <u>https://doi.org/10.1016/S0009-2541(99)00168-0</u>
- Hoskin, P.W.O. and Schaltegger, U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. *In* Reviews in mineralogy and geochemistry. *Edited by* J.M. Hanchar and P.W.O. Hoskin. Mineralogical Society of America, Washington, D.C., 53, pp. 27–62. <u>https://doi.org/10.2113/0530027</u>
- Hussey, A.M., II 1988. Lithotectonic stratigraphy, deformation, plutonism, and metamorphism, greater Casco Bay region, southwestern Maine. *In* Studies in Maine Geology: Volume 1. Structure and Stratigraphy. *Edited by* R.D. Tucker and R.G, Marvinney. Maine Geological Survey, Augusta, Maine, pp. 17–34.
- Hussey, A.M., II and Bothner, W.A. 1993. Geology of the coastal lithotectonic belt, SW Maine and SE New Hampshire. *In* Fieldtrip guidebook for the Northeastern United States, Boston GSA. *Edited by* J. T. Cheney and J.C. Hepburn. Geological Society of America Annual Meeting, Boston, Massachusetts, 1, Contribution #67, Department of Geology and Geography, University of Massachusetts, Amherst, Massachusetts, pp. K1–K19.
- Hussey, A.M., II and West, D.P., Jr. 2018. Bedrock geology of the Brunswick quadrangle Maine. Maine Geological Survey, Map 18-04, scale 1:24 000.
- Hussey, A.M., II, Rickerich, S.F., and Bothner, W.A. 1984. Sedimentology and multiple deformation of the Kittery Formation, southwestern Maine and southeastern New Hampshire. *In* Geology of the Coastal Lowlands; Boston, MA to Kennebunk, Maine. *Edited by* L.S. Hanson. New England Intercollegiate Geological Conference Guidebook, Department of Geological Sciences, Salem State College, Salem, Massachusetts, pp. 47–53.
- Hussey, A.M., II, Ludman, A., Bothner, W.A., and West, D.P. 1999. Fredericton and Merrimack troughs: Once one or always two?. Geological Society of America, Abstracts

with Programs, 31, no. 1, p. A-25.

- Hussey, A.M., II, Bothner, W.A., and Aleinikoff, J. 2010. The tectono-stratigraphic framework and evolution of southwestern Maine and southeastern New Hampshire. *In* From Rodinia to Pangea: The Lithotectonic record of the Appalachian region. *Edited by* R.P. Tollo, M.J. Bartholomew, J.P. Hibbard, and P.M. Karabinos. Geological Society of America, Memoir 206, pp. 205–230. <u>https:// doi.org/10.1130/2010.1206(10)</u>
- Hussey, A.M., II, Bothner, W.A., and Thompson, P.J. 2016. Bedrock geology of the Kittery 1:100 000 quadrangle, Southwestern Maine and Southeastern New Hampshire. Maine Geological Survey, Bulletin, 45, 99 p.
- Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C., and Essling, A.M. 1971. Precision measurement of halflives and specific activities of ²³⁵U and ²³⁸U. Physical Review C: Nuclear Physics, 4, pp. 1889–1906. <u>https://doi. org/10.1103/PhysRevC.4.1889</u>
- Jerden, J.L. Jr. 1997. Polyphase metamorphism and structure of the Tadmuck Brook Schist, eastern Massachusetts. Unpublished M.S. thesis, Boston College, Chestnut Hill, Massachusetts, 250 p.
- Jerden, J. L., Jr. and Hepburn, J. C. 1996. The Tadmuck Brook Schist, a phyllonite (?) between the Nashoba terrane and the Merrimack trough, eastern Massachusetts. Geological Society of America, Abstracts with Programs, 28, no. 3, p.68.
- Johnson, S.C., McLeod, M.J., Fyffe, L.R., and Dunning, G.R. 2009. Stratigraphy, geochemistry, and geochronology of the Annidale and New River belts, and the development of the Penobscot arc in southern New Brunswick. *In* Mineral Resource Report 2009-2. *Edited by* G.L. Martin. New Brunswick Division of Natural Resources; Minerals, Policy, and Planning Division, pp. 141–218.
- Johnson, S.C., Fyffe, L.R., McLeod, M.J., and Dunning, G.R. 2012. U–Pb ages, geochemistry, and tectonomagmatic history of the Cambro-Ordovician Annidale Group: A remnant of the Penobscot arc system in southern New Brunswick? Canadian Journal of Earth Sciences, 49, pp. 166–188. <u>https://doi.org/10.1139/e11-031</u>
- Karabinos, P., Macdonald, F.A., and Crowley, J.L. 2017. Bridging the gap between the foreland and hinterland I: geochronology and plate tectonic geometry of Ordovician magmatism and terrane accretion of the Laurentian margin of New England. American Journal of Science, 317, pp. 515–554. <u>https://doi.org/10.2475/05.2017.01</u>
- Katz, F.J. 1917. Stratigraphy in southwestern Maine and southeastern New Hampshire. U.S. Geological Survey, Professional Paper, 108, pp. 165–177. <u>https://doi. org/10.3133/pp108I</u>
- Kay, A., Hepburn, J.C., Kuiper, Y.D. and Inglis, J. 2009. Nd isotopic constraints on the origin of the Nashoba terrane, Eastern Massachusetts. Geological Society of America, Northeastern Section, 44th Annual Meeting, Abstracts with Programs, 41, no. 1, p. 98. <u>https://gsa.confex.com/ gsa/2009NE/webprogram/Paper155884.html</u>

Kay, A., Hepburn, J.C., and Kuiper, Y.D. 2011. Trace ele-

ment and Sm–Nd isotopic geochemical characteristics of the Nashoba terrane, Eastern Massachusetts. Geological Society of America, Northeastern (46th Annual) and North-Central (45th Annual) Joint Meeting, Abstracts with Programs, 43, no. 1, p.150. <u>https://gsa.confex.com/</u> <u>gsa/2011NE/webprogram/Paper185370.html</u>

- Kay, A., Hepburn, J.C., Kuiper, Y.D., and Baxter, E.F. 2017. Geological evidence for a Ganderian arc/back-arc remnant in the Nashoba terrane, SE New England, USA. American Journal of Science, 317, pp. 413–448. <u>https:// doi.org/10.2475/04.2017.01</u>
- Keppie, J. D., Davic, D.W., and Krough, T.E. 1998. U–Pb geochronological constraints on Precambrian stratified units in the Avalon composite terrane of Nova Scotia, Canada: tectonic implications. Canadian Journal of Earth Sciences, 35, pp. 222–236. <u>https://doi.org/10.1139/e97-109</u>
- Klein, C. and Dutrow, B., 2007. Manual of Mineral Science, 23rd edition, John Wiley and Sons, Hoboken, New Jersey, 716 p.
- Klein, C. and Hurlbut, C., Jr. 1993. Manual of Mineralogy, 21st edition, John Wiley and Sons, New York, 681 p.
- Kohut, E.J. and Hepburn, J.C. 2004. Mylonites and brittle shear zones along the western edge of the Avalon terrane west of Boston. *In* Guidebook to field trips from Boston, MA to Saco Bay, ME. *Edited by* L.S. Hanson. New England Intercollegiate Geological Conference, 96th Ann. Mtg., Salem, Massachusetts, pp. 89–110.
- Kopera, J.P. and Walsh, G.J. 2014. The eastern Merrimack terrane in Massachusetts: Revisiting metamorphism, deformation and plutonism. *In* Guidebook to field trips in southeastern New England (MA-NH-RI). *Edited by* M. D. Thompson. New England Intercollegiate Geological Conference, 106th Annual Meeting, Wellesley, Massachusetts, pp. A3–1-20.
- Kopera J., Hepburn J.C., and DiNitto R. 2006. Bedrock geologic map of the Marlborough quadrangle, Massachusetts. Office of the Massachusetts State Geologist, Geologic Map 06-01, scale 1:24 000.
- Košler, J. and Sylvester, P.J. 2003. Present trends and the future of zircon in geochronology; laser ablation ICPMS. Reviews in Mineralogy and Geochemistry, 53, pp. 243– 275. <u>https://doi.org/10.2113/0530243</u>
- Košler, J., Fonneland, H., Sylvester, P., Tubrett, M., and Pedersen, R. 2002. U–Pb dating of detrital zircons for sediment provenance studies-a comparison of laser ablation ICPMS and SIMS techniques. Chemical Geology, 182, pp. 605–618. <u>https://doi.org/10.1016/S0009-2541(01)00341-2</u>
- Košler, J., Forst, L., and Sláma, J. 2008. LamDate and Lam-Tool: spreadsheet-based data reduction for laser ablation ICP-MS. Laser Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada, Short Course Series, 40, pp. 315–317.
- Kuiper, Y.D. and Hepburn, J.C. 2021. Detrital zircon populations of the eastern Laurentian margin in the Appalachians. Geology, 49, pp. 233–237. <u>https://doi.org/10.1130/</u>

<u>G48012.1</u>

- Kuiper, Y.D., Buchanan, J.W., Charnock, R., Hepburn, J.C., and Kopera, J.P. 2014. Structural history of the Nashoba terrane-Merrimack terrane boundary zone, eastern Massachusetts. *In* Guidebook to field trips in Southeastern New England (MA-NH-RI). *Edited by* M.D. Thompson. New England Intercollegiate Geological Conference, 106th Annual Meeting, Wellesley, Massachusetts, pp. C4-1-C4-12.
- Kuiper, Y.D., Murray, D.P., Ellison, S., and Crowley, J.L. in press. U-Pb detrital zircon analysis of sedimentary rocks of the southeastern New England Avalon terrane in the US Appalachians: Evidence for a separate crustal block. *In* New developments in the Appalachian-Caledonian-Variscan orogen. *Edited by* Y.D. Kuiper, J.B. Murphy, R.D. Nance, R.A. Strachan, and M.D. Thompson. Geological Society of America, Special Paper 544. <u>https://doi.org/ 10.1130/2021.2554(05)</u>
- Loan, M.L. 2011. New constraints on the age and deposition of the metasedimentary rocks in the Nashoba terrane, SE New England. Unpublished M.S. thesis, Boston College, Chestnut Hill, Massachusetts, 125 p.
- Ludman, A., Hopeck, J., and Berry, H.N. IV 2017. Provenance and paleogeography of post-Middle Ordovician, pre-Devonian sedimentary basins on the Gander composite terrane, eastern and east-central Maine; implications for Silurian tectonics in the northern Appalachians. Atlantic Geology, 53, pp. 63–85. <u>https://doi.org/10.4138/</u> <u>atlgeol.2017.003</u>
- Ludman, A., Aleinikoff, J., Berry, H.N., IV, and Hopeck, J.T. 2018. SHRIMP U-Pb zircon evidence for age, provenance, and tectonic history of early Paleozoic Ganderian rocks, east-central Maine, USA. Atlantic Geology, 54, pp. 335–387. <u>https://doi.org/10.4138/atlgeol.2018.012</u>
- Ludman, A., Aleinikoff, J. N., and Devlin, B. 2019. Interpreting detrital zircon provenance in the context of regional stratigraphic and tectonic models: an example from Late Ordovician - Early Devonian cover rocks on Ganderia, eastern Maine: Geological Society of America, Northeastern Section, 54th Annual Meeting, Abstracts with Programs, 51, no. 1. <u>https://gsa.confex.com/gsa/2019NE/</u> <u>meetingapp.cgi/Paper/325696</u>
- Ludwig, K. L. 1998. On the treatment of concordant uranium-lead ages. Geochimica et Cosmochimica Acta, 62, pp. 665–676. <u>https://doi.org/10.1016/S0016-7037(98)00059-3</u>
- Ludwig K.L. 1999. User's manual for Isoplot/EX, version 2.06: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 1a, 49 p.
- Ludwig K.L. 2008. Isoplot 3.7. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 4, rev., 77 p.
- Lyons, J. B., Bothner, W. A., Moench, R. H., and Thompson, J. B. 1997. Bedrock geologic map of New Hampshire. U.S. Geological Survey, scale 1:250 000.
- Mattinson, J.M. 2005. Zircon U–Pb chemical abrasion ("CA-TIMS") method: Combined annealing and multistep partial dissolution analysis for improved precision

and accuracy of zircon ages. Chemical Geology, 220, pp. 47–66. <u>https://doi.org/10.1016/j.chemgeo.2005.03.011</u>

- McLean, N.M., Bowring, J.F., and Bowring, S.A. 2011. An algorithm for U–Pb isotope dilution data reduction and uncertainty propagation: Geochemistry, Geophysics, Geosystems, 12, Q0AA18. <u>https://doi.org/10.1029/2010GC003478</u>
- Murphy, J.B., Pisarevsky, S.A., Nance, R.D., and Keppie, J.D. 2004. Neoproterozoic - Early Paleozoic evolution of peri-Gondwanan terranes: implications for Laurentia-Gondwana connections. International Journal of Earth Science (Geologische Rundschau), 93, pp. 659–682. https://doi.org/10.1007/s00531-004-0412-9
- Murphy, J.B., Gutierrez-Alonso, G., Nance, R.D., Fernandez-Suarez, J., Keppie, J.D., Quesada, C., Strachan, R.A., and Dostal, J. 2006. Origin of the Rheic Ocean: Rifting along a Neoproterozoic suture? Geology, 34, pp. 325–328. https://doi.org/10.1130/G22068.1
- Nance, R.D. and Murphy, J.B. 1996. Basement isotopic signatures and Neoproterozoic paleogeography of Avalonian-Cadomian and related terranes in the circum-North Atlantic. *In* Avalonian and related peri-Gondwanan terranes of the circum-North Atlantic. *Edited by* N.D. Nance and M.D. Thompson. Geological Society of America, Special Paper, 304, pp. 333–346. <u>https://doi.org/10.1130/0-8137-2304-3.333</u>
- Olszewski, W.J., Jr. 1980. The geochronology of some stratified metamorphic rocks in northeastern Massachusetts. Canadian Journal of Earth Sciences, 17, pp. 1407–1416. <u>https://doi.org/10.1139/e80-148</u>
- Osberg, P.H. 1988. Geologic relations within the shalewacke sequence in south-central Maine. *In* Studies in Maine Geology: Volume 1. Structure and Stratigraphy. *Edited by* R.D. Tucker and R.G. Marvinney. Maine Geological Survey, Augusta, Maine, pp. 51–73.
- Osberg, P.H., Hussey, A.M., II, and Boone, G.M. 1985. Bedrock geologic map of Maine. Maine Geological Survey, scale 1:500 000.
- Peck, J.H. 1975. Preliminary bedrock geologic map of the Clinton quadrangle, Worcester County, Mass. U.S. Geological Survey, Open File Report, 75-658, 30 p., scale 1:24 000. https://doi.org/10.3133/ofr75658
- Peck, J.H. 1976. Silurian and Devonian stratigraphy in the Clinton quadrangle, central Massachusetts. *In* Contributions to the stratigraphy of New England. *Edited by* L.R. Page. Geological Society of America, Memoir, 148, pp. 241–252. https://doi.org/10.1130/MEM148-p241
- Piñán-Llamas, A. and Hepburn, J.C. 2013. Geochemistry of the Silurian-Devonian volcanic rocks in the Coastal Volcanic Belt, Machias-Eastport area, Maine: Evidence for a pre-Acadian arc. Geological Society of America, Bulletin, 125, pp.1930–1942. <u>https://doi.org/10.1130/B30776.1</u>
- Pollock, J.C., Wilton, D.H.C., van Staal, C.R., and Morrissey, K.D. 2007. U–Pb zircon geochronological constraints on the Late Ordovician-Early Silurian collision of Ganderia and Laurentia along the Dog Bay Line: The terminal Iapetan suture in the Newfoundland Appalachians. Amer-

ican Journal of Science, 307, pp. 399-433. <u>https://doi.</u> org/10.2475/02.2007.04

- Pollock, J.C., Hibbard, J.P., and Sylvester, P.J. 2009. Early Ordovician rifting of Avalonia and birth of the Rheic Ocean: U-Pb detrital zircon constraints from Newfoundland. Geological Society, London, Journal, 166, pp. 501–515. https://doi.org/10.1144/0016-76492008-088
- Pollock, J.C., Hibbard, J.P., and van Staal, C.R. 2012. A paleogeographical review of the peri-Gondwanan realm of the Appalachian orogen. Canadian Journal of Earth Sciences, 49, pp. 259–288. <u>https://doi.org/10.1139/e11-049</u>
- Ramezani, J., Schmitz, M., Davydov, V., Bowring, S., Snyder, W., and Northrup, C. 2007. High-precision U–Pb zircon age constraints on the Carboniferous-Permian boundary in the southern Urals stratotype. Earth and Planetary Science Letters, 256, pp. 244–257. <u>https://doi.org/10.1016/j. epsl.2007.01.032</u>
- Rankin, D.W., Coish, R.A., Tucker, R.D., Peng, Z.X., Wilson, S.A., and Rouff, A.A. 2007. Silurian extension in the upper Connecticut Valley, United States and the origin of Middle Paleozoic basins in the Québec embayment. American Journal of Science, 307, pp. 216–264. <u>https://doi.org/10.2475/01.2007.07</u>
- Reusch, D.N. and van Staal, C. R. 2012. The Dog Bay Liberty Line and its significance for Silurian tectonics of the northern Appalachian orogen. Canadian Journal of Earth Science, 49, pp. 239–258. https://doi.org/10.1139/e11-024
- Reusch, D.N., Holm-Denoma, C.S. and Slack, J.F. 2018. U-Pb zircon geochronology of Proterozoic and Paleooic rocks, North Islesboro, coastal Maine (USA): links to West Africa and Penobscottian orogenesis in southeastern Ganderia? Atlantic Geology, 54, pp. 189–211. <u>https://</u> doi.org/10.4138/atlgeol.2018.007
- Reusch, D.N., Strauss, J. and Smith, L. 2021. Update on detrital zircon U/Pb geochronology from Proterozoic and early Paleozoic rocks of the Penobscot Inlier, Maine. Geological Society of America, Abstracts with Programs, 53, no. 1. <u>https://doi.org/10.1130/abs/2021NE-361615</u>
- Rickerich, S.F. 1983. Sedimentology, stratigraphy and structure of the Kittery Formation in the Portsmouth, New Hampshire, Area. Unpublished M.S. thesis, University of New Hampshire, Durham, New Hampshire, 115 p.
- Rickerich, S.F. 1984. Sedimentology and stratigraphy of the Kittery Formation near Portsmouth, New Hampshire. Geological Society of America, Abstracts with Programs, 16, p. 59.
- Robinson, G.R. Jr. 1978. Bedrock geologic map of the Pepperell, Shirley, Townsend quadrangles, and part of the Ayer Quadrangle, Massachusetts and New Hampshire. US Geological Survey, Miscellaneous Field Studies, Map 957, scale 1:24 000.
- Robinson, G.R. Jr. 1981. Bedrock geology of the Nashua River area, Massachusetts-New Hampshire; supplement to USGS Miscellaneous Field Studies Map MF-957 (Bedrock geologic map of the Pepperell, Shirley, Townsend quadrangles, and part of the Ayer Quadrangle, Massachusetts and New Hampshire). U.S. Geological Survey,

Open File Report, 81-593, 187 p. <u>https://doi.org/10.3133/</u> ofr81593

- Robinson, P. and Goldsmith, R. 1991. Stratigraphy of the Merrimack Belt, Central Massachusetts. *In* The bedrock geology of Massachusetts. *Edited by* N.L. Hatch, Jr. United States Geological Survey, Professional Paper, 1366 E-J, pp. G1–G37.
- Robinson, P., Tracy, R. J., Hollocher, K.T. and Dietsch, C.W. 1982. Stratigraphy and structure of the Ware-Barre area, central Massachusetts. *In* Guidebook for field trips in Connecticut and south-central Massachusetts. New England Intercollegiate Geological Conference, 74th annual meeting. Connecticut Geological and Natural History Survey, Guidebook, 5, pp. 341–373.
- Rogers, N., van Staal, C.R., McNicoll, V., Pollock, J., Zagorevski, A., and Whalen, J. 2006. Neoproterozoic and Cambrian arc magmatism of the Victoria Lake Supergroup: A remnant of Ganderian basement in central Newfoundland? Precambrian Research, 147, pp. 320–341. <u>https:// doi.org/10.1016/j.precamres.2006.01.025</u>
- Rubatto, D. 2017. Zircon: The metamorphic mineral. Reviews in Mineralogy and Geochemistry, 83, 261–295. https://doi.org/10.2138/rmg.2017.83.9
- Samson, S.D., Barr, S.M., and White, C.E. 2000. Nd isotopic characteristics of terranes within the Avalon Zone, southern New Brunswick. Canadian Journal of Earth Sciences, 37, pp. 1039–1052. <u>https://doi.org/10.1139/e00-015</u>
- Samson, S.D., D'Lemos, R.S., Miller, B.V., and Hamilton, M.A. 2005. Neoproterozoic palaeogeography of the Cadomia and Avalon terranes: constraints from detrital zircon U–Pb ages. Geological Society, London, Journal, 162, pp. 65–71. <u>https://doi.org/10.1144/0016-764904-003</u>
- Satkoski, A.M., Barr, S.M., and Samson, S.D. 2010. Provenance of Late Neoproterozoic and Cambrian sediments in Avalonia: Constraints from detrital zircon ages and Sm-Nd isotopic compositions in southern New Brunswick, Canada. Journal of Geology, 118, pp. 187–200. <u>https:// doi.org/10.1086/649818</u>
- Schofield, D.I. and D'Lemos, R. S. 2000. Granite petrogenesis in the Gander Zone, NE Newfoundland: Mixing of melts from multiple sources and the role of lithospheric delamination. Canadian Journal of Earth Sciences, 37, pp. 535–547. <u>https://doi.org/10.1139/e99-116</u>
- Schulz, K.J., Stewart, D.B., Tucker, R.D., Pollock, J.C., and Ayuso, R.A. 2008. The Ellsworth terrane, coastal Maine: Geochronology, geochemistry, and Nd-Pb isotopic composition - implications for the rifting of Ganderia. Geological Society of America, Bulletin, 120, pp. 1134–1158. https://doi.org/10.1130/B26336.1
- Seaman, S.J., Scherer, E.E., Wobus, R.A., Zimmer, J.H., and Sales, J.G. 1999. Late Silurian volcanism in coastal Maine: The Cranberry Island series. Geological Society of America, Bulletin, 111, pp. 686–708. <u>https://doi.org/10.1130/0</u> 016-7606(1999)111<0686:LSVICM>2.3.CO;2
- Seaman, S.J., Hon, R., Whitman, M., Wobus, R.A., Hogan, J.P., Chapman, M., Koteas, G.C., Rankin, D., Piñán-Llamas, A., and Hepburn, J.C. 2019. Late Paleozoic super-

volcano-scale eruptions in Maine, USA. Geological Society of America, Bulletin, 131, pp. 1995–2010. <u>https://doi.org/10.1130/B32058.1</u>

- Severson, A.R. 2020. Across- and along-strike structural and geochronological variations of the Nashoba-Putnam and Avalon terranes, eastern Massachusetts, Connecticut, and Rhode Island, southeastern New England Appalachians. Unpublished Ph.D. thesis, Colorado School of Mines, Golden, Colorado, 131 p.
- Severson, A.R., Kuiper, Y.D., Eby, G.N., Lee, H.Y., Hepburn, J.C. in press. New detrital zircon U-Pb ages and Lu-Hf isotopic data from metasedimentary rocks along the western boundary of the composite Avalon terrane in the southeastern New England Appalachians. *In* New developments in the Appalachian-Caledonian-Variscan orogen. *Edited by* Y.D. Kuiper, J.B. Murphy, R.D. Nance, R.A. Strachan, and M.D. Thompson. Geological Society of America, Special Paper 544. https//:doi.org/10.1130/ 2021.2554(04)
- Shride, A.F. 1976a. Stratigraphy and correlation of the Newbury volcanic complex, northeastern Massachusetts. *In* Contributions to the stratigraphy of New England. *Edited by* L.R. Page. Geological Society of America, Memoir, 148, pp. 147–177. <u>https://doi.org/10.1130/MEM148-p147</u>
- Shride, A.F. 1976b. Stratigraphy and structural setting of the Newbury Volcanic Complex, northeastern Massachusetts. *In* Geology of Southeastern New England. *Edited by* B. Cameron. New England Intercollegiate Geological Conference, 68th Annual Meeting, Science Press, Princeton, New Jersey, pp. 291–300. <u>https://scholars.unh.edu/ neigc_trips/254/</u>
- Skehan, J.W. 1968. Fracture tectonics of southeastern New England as illustrated by the Wachusett-Marlborough tunnel, east-central Massachusetts. *In* Studies of Appalachian geology-Northern and Maritime. *Edited by* E-an Zen, W.S. White, J.B. Hadley, and J.B. Thompson, Jr. Interscience Publishers, New York, pp. 281–290.
- Skehan, J.W., Rast, N., Kohut, E., Hepburn, J.C., and Grimes, S. 1998. Precambrian and Paleozoic mylonites of the Boston Avalon. *In* Guidebook to field trips in Rhode Island and adjacent regions of Connecticut and Massachusetts. *Edited by* D.P. Murray. New England Intercollegiate Geological Conference, 90th Annual Meeting, University of Rhode Island, Kingston, RI, pp. A3-1–A3-24.
- Sláma, J., Košler, J., Condon, D.J., *et al.* 2008. Plešovice zircon - A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249, pp. 1–35. <u>https://doi.org/10.1016/j.chemgeo.2007.11.005</u>
- Sorota, K.J. 2013. Age and origin of the Merrimack terrane, southeastern New England: A detrital zircon U–Pb geochronology study. Unpublished M.S. thesis, Boston College, Chestnut Hill, Massachusetts, 217 p.
- Stroud, M.M., Markwort, R.J., and Hepburn, J.C. 2009. Refining temporal constraints on metamorphism in the Nashoba terrane, southeastern New England, through monazite dating. Lithosphere, 1, pp. 337–342. <u>https://doi. org/10.1130/L50.1</u>

monazite dating. Lithosphere, 1, pp. 337–342. <u>https://doi.org/10.1130/L50.1</u>

- Sylvester, P.J. and Ghaderi, M. 1997. Trace element analysis of scheelite by excimer laser ablation-inductively coupled plasma-mass spectrometry (ELA-ICP-MS) using a synthetic silicate glass standard. Chemical Geology, 141, pp. 49–65. https://doi.org/10.1016/S0009-2541(97)00057-0
- Thompson, J.B., Jr. and Norton, S.A. 1968. Paleozoic regional metamorphism in New England and adjacent areas. *In* Studies of Appalachian geology-Northern and Maritime. *Edited by* E-an Zen, W.S. White, J.B. Hadley, and J.B. Thompson, Jr. Interscience Publishers, New York, pp. 319–328.
- Thompson, M.D. and Bowring, S.A. 2000. Age of the Squantum "Tillite," Boston Basin, Massachusetts, U–Pb zircon constraints on terminal Neoproterozoic glaciation. American Journal of Science, 300, pp. 630–655. <u>https:// doi.org/10.2475/ajs.300.8.630</u>
- Thompson, M.D., Hermes, O.D., Bowring, S.A., Isachsen, C.E., Besancon, J.R., and Kelly, K.L. 1996. Tectonostratigraphic implications of Late Proterozoic U–Pb zircon ages in the Avalon Zone of southeastern New England. *In* Avalonian and related peri-Gondwanan terranes of the circum-North Atlantic. *Edited by* R.D. Nance and M.D. Thompson. Geological Society of America, Special Paper, 304, pp. 179–191. <u>https://doi.org/10.1130/0-8137-2304-3.179</u>
- Thompson, M.D., Grunow, A.M., and Ramezani, J. 2007. Late Neoproterozoic paleogeography of the southeastern New England Avalon zone: implications for Gondwana break-up. Geological Society of America, Bulletin, 119, pp. 681–696. <u>https://doi.org/10.1130/B26014.1</u>
- Thompson, M.D., Ramezani, J., Barr, S.M., Hermes, O.D. 2010. High precision U–Pb zircon dates for Ediacaran granitoid rocks in SE New England: Revised magmatic chronology and correlation with other Avalonian terranes. *In* From Rodinia to Pangea: The lithotectonic record of the Appalachian region. *Edited by* R.P. Tollo, M.J. Bartholomew, J.P. Hibbard, and P.M. Karabinos. Geological Society of America, Memoir, 206, pp. 231–250. <u>https:// doi.org/10.1130/2010.1206(11)</u>
- Thompson, M.D., Barr, S.M., Grunow, A.M. 2012. Avalonian perspectives on Cryogenian-Ediacaran paleogeorgraphy: Evidence from Sm–Nd isotope geochemistry and detrital zircon geochronology in SE New England. Geological Society of America, Bulletin, 124, pp. 517–531. <u>https://doi. org/10.1130/B30529.1</u>
- Thompson, M.D., Ramezami, J., and Crowley, J.L. 2014. U– Pb zircon geochronology of the Roxbury Conglomerate, Boston Basin, Massachusetts: Tectono-stratigraphic implications for Avalonia in and beyond SE New England. American Journal of Science, 314, pp. 1009–1044. <u>https:// doi.org/10.2475/06.2014.02</u>
- Tremblay, A. and Pinet, N. 2005. Diachronous supracrustal extension in an intraplate setting and the origin of the Connecticut-Valley Gaspé and Merrimack troughs, northern Appalachians. Geological Magazine, 142, pp.7–

22. https://doi.org/10.1017/S001675680400038X

- Tucker, R., Osberg, P., and Berry H.N. 2001. The geology of a part of Acadia and the nature of the Acadian orogeny across central and eastern Maine. American Journal of Science, 301, pp. 205–260. <u>https://doi.org/10.2475/</u> <u>ajs.301.3.205</u>
- Valverde-Vaquero, P., van Staal, C.R., McNicoll, V., and Dunning, G.R. 2006a. Mid-Late Ordovician magmatism and metamorphism along the Gander margin in central Newfoundland. Geological Society, London, Journal, 163, pp. 347–362. <u>https://doi.org/10.1144/0016-764904-130</u>
- Valverde-Vaquero, P., Dunning, G.R., and O'Brien, S.J. 2006b. Polycyclic evolution of the Late Neoproterozoic basement in the Hermitage Flexure region (southwest Newfoundland Appalachians): New evidence from the Cinq-Cerf gneiss. Precambrian Research, 148, pp. 1–18. https://doi.org/10.1016/j.precamres.2006.03.001
- van Staal, C.R. 1994. Brunswick subduction complex in the Canadian Appalachians: Record of the Late Ordovician to Late Silurian collision between Laurentia and the Gander margin of Avalon. Tectonics, 13, pp. 946–962. <u>https://doi. org/10.1029/93TC03604</u>
- van Staal, C.R. and Barr, S.M. 2012. Lithospheric architecture and tectonic evolution of the Canadian Appalachians and associated Atlantic margin. *In* Tectonic styles in Canada: the Lithoprobe perspective. *Edited by* J.A. Percival, F.A. Cook, and R.M. Clowes. Geological Association of Canada, Special Paper, 49, pp. 41–95.
- van Staal, C.R., Sullivan, R.W., and Whalen, J.B. 1996. Provenance and tectonic history of the Gander Margin in the Caledonian/Appalachian Orogen: Implications for the origin and assembly of Avalonia. *In* Avalonian and Related Peri-Gondwanan Terranes of the circum-North Atlantic. *Edited by* R.D. Nance and M.D. Thompson. Geological Society of America, Special Paper, 304, pp. 347–367. https://doi.org/10.1130/0-8137-2304-3.347
- van Staal, C.R., Dewey, J.F., MacNiocaill, C., and McKerrow, W.S., 1998. The Cambrian–Silurian tectonic evolution of the northern Appalachians and British Caledonides: history of a complex, west and southwest Pacific-type segment of Iapetus. Geological Society, London, Special Publications, 143, pp. 197–242. <u>https://doi.org/10.1144/</u> <u>GSL.SP.1998.143.01.17</u>
- van Staal, C.R., Wilson, R.A., Rogers, N., Fyffe, L.R., Langton, J.P., McCutcheon, S.R., McNicoll, V., and Ravenhurst, C.E. 2003. Geology and tectonic history of the Bathurst Supergroup, Bathurst Mining Camp, and its relationships to coeval rocks in southwestern New Brunswick and adjacent Maine-A synthesis. *In* Massive sulfide deposits of the Bathurst Mining Camp, New Brunswick, and Northern Maine. *Edited by* W.D. Goodfellow, S.R. McCutcheon, and J.M. Peter. Economic Geology, Monograph, 11, pp. 37–60. https://doi.org/10.5382/Mono.11.03
- van Staal, C.R., Currie, K.L., Rowbotham, G., Goodfellow, W., and Rogers, N. 2008. P-T paths and exhumation of Late Ordovician - Early Silurian blueschists and associated metamorphic nappes of the Salinic Brunswick subduc-

tion complex, northern Appalachians. Geological Society of America, Bulletin, 120, pp. 1455–1477. <u>https://doi.org/10.1130/B26324.1</u>

- van Staal, C.R., Whalen, J.B., Valverde-Vaquero, P., Zagorevski, A., and Rogers, N. 2009. Pre-Carboniferous, episodic accretion-related, orogenesis along the Laurentian margin of the northern Appalachians. *In* Ancient orogens and modern analogues. *Edited by* J.B. Murphy, J.D. Keppie, and A.J. Hynes. Geological Society, London, Special Publications, 327, pp. 271–316. <u>https://doi.org/10.1144/</u> SP327.13
- van Staal, C.R., Barr, S.M., and Murphy, J.B. 2012. Provenance and tectonic evolution of Ganderia: Constraints on the evolution of the Iapetus and Rheic oceans. Geology, 40, pp. 987–990. <u>https://doi.org/10.1130/G33302.1</u>
- van Staal, C.R., Wilson, R.A., Kamo, S.L., McClelland, W.C., and McNicoll, V. 2016. Evolution of the Early to Middle Ordovician Popelogan arc in New Brunswick, Canada, and adjacent Maine, USA: Record of arc-trench migration and multiple phases of rifting. Geological Society of America, Bulletin, 128, pp. 122–146. <u>https://doi. org/10.1130/B31253.1</u>
- van Staal, C.R., Barr, S.M., McCausland, P.J.A., Thompson, M.D., and White, C. E. 2020. Tonian-Ediacaran tectonomagmatic evolution of West Avalonia and its Ediacaran - early Cambrian interactions with Ganderia: an example of complex terrane transfer due to arc-arc collision? *In* Pannotia to Pangaea: Neoproterozoic and Paleozoic orogenic cycles in the circum-Atlantic region. *Edited by* J.B. Murphy, R.A. Strachan, and C. Quesada. Geological Society, London, Special Publications, 503, pp. 143– 167. <u>https://doi.org/10.1144/SP503-2020-23</u>
- Van Wagoner, N.A., Leybourne, M.I., Dadd, L.A., Baldwin, D.K., and McNeil, W. 2002. Late Silurian bimodal volcanism of southwestern New Brunswick, Canada: Products of continental extension. Geological Society of America, Bulletin, 114, pp. 400–418. <u>https://doi.org/10.1130/0016-7606(2002)114<0400:LSBVOS>2.0.CO;2</u>
- Vermeesch, P. 2004. How many grains are needed for a provenance study? Earth and Planetary Science Letters, 224, pp. 441–451. <u>https://doi.org/10.1016/j.epsl.2004.05.037</u>
- Waldron, J.W.F., White, C.E., Barr, S.M., Simonetti, A., and Heaman, L.M. 2009. Provenance of the Meguma terrane, Nova Scotia: Rifted margin of early Paleozoic Gondwana. Canadian Journal of Earth Sciences, v. 46, pp. 1–8. <u>https:// doi.org/10.1139/E09-004</u>
- Waldron, J.W.F., Schofield, D.I., Dufrane, S.A., Floyd, J.D., Crowley, Q.G., Simonetti, A., Dokken, R.J., and Pothier, H.D. 2014. Ganderia-Laurentia collision in the Caledonides of Great Britain and Ireland. Geological Society, London, Journal, 171, pp. 555–569. <u>https://doi.org/10.1144/ jgs2013-131</u>
- Waldron, J.W.F., Schofield, D.I., and Murphy, J.B. 2018. Diachronous Paleozoic accretion of peri-Gondwanan terranes at the Laurentian margin. *In* Fifty years of the Wilson cycle concept in plate tectonics. *Edited by* R.W. Wilson, G.A. Houseman, K.J.W. McCaffrey, A.G. Dore',

and S.J.H. Buiter. Geological Society, London, Special Publications, 470, pp. 289–310. <u>https://doi.org/10.1144/</u>SP470.11

- Walsh, G.J. and Merschat, A.J. 2015. Bedrock geologic map of the Worcester South quadrangle, Worcester County, Massachusetts. U.S. Geological Survey, Scientific Investigations, Map 3345, scale 1:24 000. <u>https://doi.org/10.3133/</u> <u>sim3345</u>
- Walsh, G.J., Aleinikoff, J.N., and Dorais, M.J. 2009. Tectonic history of the Avalon and Nashoba terranes along the western flank of the Milford antiform, Massachusetts. Geological Society of America, Northeastern Section, 44th Annual Meeting, Abstracts with Programs, 41, no. 3, p. 98. <u>https://gsa.confex.com/gsa/2009NE/webprogram/ Paper155504.html</u>
- Walsh, G.J., Aleinikoff, J.N., and Dorais, M.J. 2011a. Bedrock geologic map of the Grafton quadrangle, Worcester County, Massachusetts. U.S. Geological Survey, Scientific Investigations, Map 3171, 39 p., 1:24 000. <u>https://doi. org/10.3133/sim3171</u>
- Walsh, G.J., Aleinikoff, J.N., Wintsch, R.P., and Ayuso, R.A. 2011b. Origin of the Quinebaug-Marlboro belt in south-eastern New England. Geological Society of America, Northeastern (46th Annual) and North-Central (45th Annual) Joint Meeting, Abstracts with Programs, 43, no. 1, p.158. <u>https://gsa.confex.com/gsa/2011NE/webprogram/Paper184582.html</u>
- Walsh, G.J., Aleinikoff, J.N., Wintsch, R.P., and Ayuso, R.A. 2013a. Integrated bedrock mapping and geochronology in the terranes of southeastern New England. Geological Society of America, Northeastern Section, 48th Annual Meeting, Abstract with Programs, 45, no. 1, p. 65. <u>https://gsa.confex.com/gsa/2013NE/webprogram/Paper215305.</u> <u>html</u>
- Walsh, G.J., Jahns, R.H., and Aleinikoff, J.N. 2013b. Bedrock geologic map of the Nashua South quadrangle, Hillsborough County, New Hampshire, and Middlesex County, Massachusetts. U.S. Geological Survey, Scientific Investigations Map, 3200, 31 p., scale 1:24 000. <u>https://doi. org/10.3133/sim3200</u>
- Walsh, G.J., Aleinikoff, J.N., Wintsch, R.P., Ayuso, R.A., McAlleer, R.J., and Mershschat, A.J. 2015. Unravelling the prolonged history of the Ganderian margin of southeastern New England. Geological Society of America, Northeastern Section, 50th Annual Meeting Abstracts with Programs, 47, no. 1, p.42. <u>https://gsa.confex.com/ gsa/2015NE/webprogram/Paper252525.html</u>
- Walsh, G.J., Aleinikoff, J.N., Ayuso, R.A., and Wintsch, R.P. 2021. Age and tectonic setting of the Quinebaug-Marlboro belt and implications for the history of Ganderian crustal fragments in southeastern New England, USA. Geosphere, 17, p. 1–63. <u>https://doi.org/10.1130/ GES02295.1</u>
- Watts, B.G., Dorais, M.J., and Wintsch, R.P. 2000. Geochemistry of Early Devonian calc-alkaline plutons in the Merrimack Belt; implications for mid-Paleozoic terrane relationships in the New England Appalachians. Atlantic

Geology, 36, pp. 79–102. <u>https://doi.org/10.4138/2013</u>

- West, D. P., Jr. and Condit, C.B. 2016. Stratigraphy, structure, and plutonism in the Wiscasset-Dresden region of mid-coastal Maine. *In* Guidebook for field trips along the Maine coast from Maquoit Bay to Muscongus Bay. *Edited by* H.N. Berry, IV and D. P. West, Jr. New England Intercollegiate Geological Conference, 108th Annual Meeting, Bath, Maine, Reprographics, Middlebury College, Middlebury, Vermont, pp. 165–182.
- West, D.P., Jr. and Hussey, A.M., II 2016. Middle Ordovician to Early Silurian terranes of the northern Casco Bay region, Maine. *In* Guidebook for field trips along the Maine coast from Maquoit Bay to Muscongus Bay. *Edited by* H. N. Berry, IV and D.P. West, Jr. New England Intercollegiate Geological Conference, 108th Annual Meetingg, Bath, Maine, Reprographics, Middlebury College, Middlebury, Vermont, pp. 249–266.
- West, D.P., Jr., Ludman, A., and Lux, D. R. 1992. Silurian age for the Pocomoonshine Gabbro-Diorite, southeastern Maine and its regional tectonic implications. American Journal of Science, 292, pp. 253–273. <u>https://doi.org/10.2475/ajs.292.4.253</u>
- West, D.P., Jr., Beal, H.M., and Grover, T.W. 2003. Silurian deformation and metamorphism of Ordovician arc rocks of the Casco Bay Group, south-central Maine. Canadian Journal of Earth Sciences, 40, pp. 887–905. <u>https://doi.org/10.1139/e03-021</u>
- West, D.P., Jr., Coish, R.A., and Tomascak, P.B. 2004. Tectonic setting and regional correlation of Ordovician metavolcanic rocks of the Casco Bay Group, Maine; evidence from trace element and isotope geochemistry. Geological Magazine, 141, pp. 125–140. <u>https://doi.org/10.1017/</u> <u>S0016756803008562</u>
- West, D.P., Jr., Hussey, A.M., II, Berry, H.N., IV, and Cubley, J. 2006. Bedrock geology across the Falmouth-Brunswick-Central Maine sequence boundary in southwestern Maine. *In* Guidebook for field trips in Western Maine. *Edited by* D. Gibson, J. Daly, and D. Reusch. New England Intercollegiate Geological Conference: 98th Annual Meeting, University of Maine, Farmington, Maine, pp. 44–56.
- West, D.P., Jr., Yates, M.G., Gerbi, C.C., and Bernard, N.Q. 2008. Metamorphosed Ordovician Fe- and Mn-rich rocks in south-central Maine: From peri-Gondwanan deposition through Acadian metamorphism. The American Mineralogist, 93, p. 270–282. <u>https://doi.org/10.2138/am.2008.2592</u>
- White, C.E., Barr, S.M., Bevier, M.L., and Kamo, S. 1994. A revised interpretation of the Cambrian and Ordovician rocks in the Bourinot belt in central Cape Breton Island, Nova Scotia. Atlantic Geology, 30, pp. 123–142. <u>https://doi.org/10.4138/2125</u>
- White, C.E. and Barr, S.M. 1996. Geology of the Brookville terrane, southern New Brunswick, Canada. *In* Avalon and related peri-Gondwanan terranes of the circum-North Atlantic. *Edited by* R.D. Nance and M. D. Thompson. Geological Society of America, Special Paper, 304, pp.

133-147. https://doi.org/10.1130/0-8137-2304-3.133

- Williams, H. 1978. Tectonic lithofacies map of the Appalachian Orogen. Memorial University of Newfoundland, Map 1, scale 1:1 000 000.
- Willner, A.P., Barr, S.M., Gerdes, A., Massonne, H.J., and White, C.E. 2013. Origin and evolution of Avalonia: evidence from U–Pb and Lu–Hf isotopes in zircon from the Mira terrane, Canada, and the Stavelot-Venn massif, Belgium. Geological Society, London, Journal, 170, pp. 769–784. <u>https://doi.org/10.1144/jgs2012-152</u>
- Willner, A.P., Gerdes, A., Massonne, H.J., van Staal, C.R., and Zagorevski, A. 2014. Crustal evolution of the northeast Laurentian margin and the peri-Gondwanan microcontinent Ganderia prior to and during closure of the Iapetus Ocean: Detrital zircon U–Pb and Hf isotope evidence from Newfoundland. Geoscience Canada, 41, pp. 345–364. https://doi.org/10.12789/geocanj.2014.41.046
- Wilson, R.A., van Staal, C.R., and McClelland, W.C. 2015. Synaccretionary sedimentary and volcanic rocks in the Ordovician Tetagouche backarc basin, New Brunswick, Canada: Evidence for a transition from foredeep to forearc basin sedimentation. American Journal of Science, 315, pp. 958–1001. <u>https://doi.org/10.2475/10.2015.03</u>
- Wilson, R.A., van Staal, C.R., and Komo, S.L. 2017. Rapid transition from the Salinic to Acadian orogenic cycles in the northern Appalachian orogen: Evidence from northern New Brunswick, Canada. American Journal of Science, 317, pp. 449–482. <u>https://doi.org/10.2475/04.2017.02</u>
- Wintsch, R.P., Aleinikoff, J.N., Walsh, G.J., Bothner, W.A., Hussey, A.M., and Fanning, C.M. 2007. SHRIMP U–Pb evidence for a late Silurian age of metasedimentary rocks in the Merrimack and Putnam-Nashoba terranes, eastern New England. American Journal of Science, 307, pp. 119–167. https://doi.org/10.2475/01.2007.05
- Wones, D.R. and Goldsmith, R. 1991. Intrusive rocks of eastern Massachusetts. *In* The bedrock geology of Massachusetts. *Edited by* N.L. Hatch, Jr. U.S. Geological Survey, Professional Paper 1366 E-J, pp. I1–I61.
- Yakymchuk, C., Kirkland, C.L., and Clark, C. 2018. Th/U ratios in metamorphic zircon. Journal of Metamorphic Geology, 36, pp. 715–737. <u>https://doi.org/10.1111/jmg.12307</u>
- Zagorevski, A. and van Staal, C.R. 2011. The record of Ordovician arc-arc and arc-continent collisions in the Canadian Appalachians during the closure of Iapetus. *In* Arc-continent collisions. *Edited by* D. Brown and

P.D. Ryan. Frontiers in Science, Springer-Verlag, Berlin, Heidelberg, Chapter 12, pp.341–371. <u>https://doi.org/10.1007/978-3-540-88558-0_12</u>

- Zagorevski, A., van Staal, C.R., and McNicoll, V.J., 2007a. Distinct Taconic, Salinic and Acadian deformation along the Iapetus suture zone, Newfoundland Appalachians. Canadian Journal of Earth Sciences, 44, pp. 1567–1585. <u>https://doi.org/10.1139/e07-037</u>
- Zagorevski, A., van Staal, C.R., McNicoll, V., and Rogers, N. 2007b. Upper Cambrian to Upper Ordovician peri-Gondwanan island arc activity in the Victoria Lake Supergroup, Central Newfoundland: Tectonic development of the northern Ganderian margin. American Journal of Science, 307, pp. 339–370. <u>https://doi.org/10.2475/02.2007.02</u>
- Zagorevski, A., van Staal, C.R., McNicoll, V, Rogers, N., and Valverde-Vaquero. P. 2008. Tectonic architecture of an arc-arc collision zone, Newfoundland Appalachians. *In* Formation and applications of the sedimentary record in arc collision zones. *Edited by* A. Draut, P.D. Clift, and D.W. Scholl. Geological Society of America, Special Paper, 436, pp. 309–334. https://doi.org/10.1130/2008.2436(14)
- Zagorevski, A., van Staal, C.R., Rogers, N., McNicoll, V., Dunning, G.R., and Pollock, J.C. 2010. Middle Cambrian to Ordovician arc-backarc development on the leading edge of Ganderia, Newfoundland Appalachians. *In* From Rodinia to Pangea: The lithotectonic record of the Appalachian region. *Edited by* R.P. Tollo, M.J. Batholomew, J.P. Hibbard, and P.M. Karabinos. Geological Society of America, Memoir, 206, pp. 367–396. <u>https:// doi.org/10.1130/2010.1206(16)</u>
- Zartman, R.E. and Naylor, R.S. 1984. Structural implications of some radiometric ages of igneous rocks in southeastern New England. Geological Society of America, Bulletin, 95, pp. 522–539. <u>https://doi. org/10.1130/0016-7606(1984)95<522:SIOSRA>2.0.CO;2</u>
- Zartman, R.E. and Marvin, R.F. 1991. Radiometric ages of rocks in Massachusetts. *In* The bedrock geology of Massachusetts. *Edited by* N.L. Hatch, Jr. U.S. Geological Survey, Professional Paper, 1366 E-J, p. J1–J19.
- Zen, E., editor, Goldsmith, R., Ratcliffe, N.M., Robinson, P., and Stanley, R.S., compilers, 1983. Bedrock geologic map of Massachusetts. United States Geological Survey, Special Geologic Map, scale 1:250 000.

Editorial responsibility: David P. West, Jr.

APPENDIX

Sample Locations and LA-ICPMS U-Pb zircon data

Table A1. Sample locations.

Unit name	Sample number	Coordinates	Location description
Nashoba terrane			
Marlboro Formation	MLMR1	42°19'56.21"N, 71°36'01.70"W	Hayes Memorial Drive, Marlborough, MA.
	MLMR2	42°20'49.35"N, 71°32'52.56"W	Main St. in Marlborough, MA. This is the type- locality of Marlboro Formation schist (Emerson, 1917).
	MLMR5	42°23'45.65"N, 71°28'24.11"W	Massachusetts Fire Fighting Academy in Stowe, MA.
	MLMR6	42°21'35.19"N, 71°31'30.10"W	From a small outcrop in a housing development in Marlborough, MA. The unit was located along strike with the Main St. exposures.
Shawsheen Gneiss	MLSG1	42°31'34.98"N, 71°15'17.17"W	Fresh exposures adjacent to the parking lot of an industrial park at 900 Middlesex Turnpike in Billerica, MA. The samples were collected at multiple locations around the industrial park to ensure a statistical representation of detrital zircon populations across layers.
Nashoba Formation	MLNB1	42°19'50.51"N, 71°40'15.87"W	Fresh exposure due to blasting for a new housing development at Church St. Village, Northboro, MA.
	MLBM1	42°22'50.87"N, 71°38'43.12"W	From the spillway of a flood control dam in Berlin, MA.
	MLNS1	42°20'25.45"N, 71°39'48.17"W	Green Street, Northboro, MA.
Tadmuck Brook Schist	MLTMBC	42°31'55.27"N, 71°31'30.25"W	A combination of several samples taken within 50 m along one continuous road outcrop in Littleton, MA.
Merrimack belt			
Kittery Formation	KSKTI	43°5'12.1"N, 070°46' 06.2" W	Stop 1 of the 1995 NEIGC field trip guide, trip II (Fargo and Bothner, 1995). Located on Michael Succi Drive, Portsmouth, NH, near the National Gypsum Plant.
Eliot Formation	KSELI	43°8'53.9"N, 070°58' 38.9"W	Stop 5, trip A2, NEIGC field trip guide, 1995, p. A2-9 (Fargo and Bothner, 1995). Located at Lee Five Corners, Lee, NH at the intersections of Route 155 and Route 4.
Berwick Formation	KSBWI	43°10'51.3"N, 070°56'51.2"W	Located at the MSPCA/Nevins Farm on Route 28, Methuen, MA near the rear of the property next to a storage facility.
Oakdale Formation	KSOKI	42°23'47.5"N, 071°47'03.9"W	Stop 2, trip F2, NEIGC field trip guide, 1976, p. 373 (Hepburn, 1976). Located in West Boylston, MA along a set of railroad tracks about 150 meters west of Prescott St.
Worcester Formation	KSWSI	42°22'14.4"N, 071°44'53.1"W	Stop 1, trip F-2, NEIGC field trip guide, 1976, p. 372 (Hepburn, 1976). Located on the shore of the Wachusett reservoir on the east side of Shalon Point in Boylston, MA.
Paxton Formation	KSPXIII	42°31'12.5"N, 071°46'22.40"W	Located at Barrett Park, located off Chestnut St., Leominster, MA. The outcrop was located along the edge of the parking lot near the information center of the park.
Tower Hill Formation	KSTHI	42°20'59.1"N, 071°44'23.67"W	Located directly behind the Boylston Fire Station off of Main St., Boylston, MA on Diamond Hill.

Table A2. LA-ICPMS data.

			Measure	ed Isotop	oic Ratio	IS								Calculated Ages (M	a)				Detrital	(Ma)	Metamor	phic (Ma)	CA-TIM	IS (Ma)	
Sample/ Analysis	²⁰⁷ Pb/ ²³⁵ U	±lσ	²⁰⁶ Pb/ ²³⁸ U	±lσ	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±lσ	²⁰⁷ Pb/ ²³⁵ U	±lσ	²⁰⁶ Pb/ ² ³⁸ U	±lσ	²⁰⁷ Pb/ ²⁰⁶ Pb	±lσ	U-Pb/Pb-Pb concordancy (%)	Concordia age	±2σ	Probability of concordance	Th/U	For Prob D	Dens plots ±1σ	For Prob	Dens plots ±1σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	notes
NASHOBA	ERRAN	E																							
Marlboro Fo mr04a20	ormation 0.442	0.031	C) 0.047	0.004	0.67	0.068	0.001	372	22	293	27	857	23	34	353	43	0.00	0.014							
mr04a19	0.508	0.038	0.058	0.005	0.59	0.063	0.001	417	26	361	31	719	29	50	401	50	0.03	0.023							
mr04a24 mr04a28	0.519 3.142	0.015	0.063	0.001	0.37	0.062	0.000	424 1443	10 76	397 1115	8 93	666 1796	16 25	60	406 1296	15 153	0.01	0.008							
mr04a34	5.856	0.301	0.318	0.011	0.34	0.126	0.002	1955	45	1778	55	2044	23	87	1885	83	0.00	0.207							
mr04a33 mr04a26	0.452	0.272	0.318	0.012	0.41 0.50	0.129	0.001	1973 379	40 55	1780 324	58 55	2083 415	17 50	85 78	1927 350	78 96	0.00	0.620			324	55			
mr04a16	0.481	0.015	0.061	0.002	0.46	0.058	0.000	399	10	379	10	525	14	72	389	18	0.07	0.011			379	10			
mr04a35 mr04a10	0.497	0.048	0.061	0.003	0.30	0.055	0.001	410 431	33 29	381 386	32	428 660	53 16	58	387 412	40 53	0.39	0.035			381	21			
mr04a08	0.542	0.033	0.065	0.005	0.61	0.061	0.001	440	22	408	29	639	20	64	435	43	0.18	0.086			408	29			
mr04a14 se14a97	0.586	0.095	0.068	0.010	0.46	0.065	0.001	408	54	411 424	24	617	26 96	55 69	437	46	0.36	0.023			411 424	24			
mr04a31	0.562	0.053	0.070	0.004	0.32	0.060	0.001	453	35	434	26	594	44	73	439	47	0.61	0.611			434	26			1
mr04a09 mr04a17	0.598	0.028	0.071	0.004	0.52	0.050	0.000	432	35	440	40	665	20	67	454	65	0.39	0.003			440	40			
mr04a06	0.589	0.061	0.076	0.008	0.48	0.058	0.002	470 571	39 53	470 504	46 20	515	93 87	91 70	470 514	72	1.00	0.182	470	46					
mr04a05	0.715	0.033	0.081	0.003	0.39	0.059	0.005	548	19	529	18	551	41	96	537	31	0.37	0.889	529	18					
mr04a27 mr04a07	0.784	0.052	0.086	0.005	0.41	0.060	0.001	588 593	30 35	531 545	28 22	586 879	29 37	91 62	555	49 42	0.07	0.922	531 545	28 22					
se14a98	0.898	0.084	0.104	0.007	0.34	0.062	0.001	651	45	640	39	679	23	94	644	68	0.83	0.240	640	39					
mr04a32 se14a95	10.966 12.946	0.283 0.337	0.466 0.511	0.010 0.013	0.42 0.49	0.154 0.172	0.001 0.002	2520 2676	24 25	2467 2661	45 56	2393 2581	11 18	103	2516 2676	48 49	0.19 0.77	0.364 0.595	2393 2581	11 18					
se14a94	30.084	0.955	0.745	0.020	0.42	0.280	0.003	3490	31	3588	73	3364	15	107	3490	62	0.14	0.356	3364	15					
Shawsheen g	neiss (M	LSG1)	0.054	0.002	0.33	0.072	0.001	418	16	338	10	980	29	34	352	20	0.00	0.322							
mr06a120	0.788	0.025	0.069	0.002	0.45	0.083	0.001	590	22	428	18	1260	24	34	467	34	0.00	1.083							
mr05a10 mr06a77	0.799	0.033	0.078	0.003	0.44	0.071	0.001	597 622	19 46	486 512	17	963 995	31 67	50	527 528	31 52	0.00	0.621							
mr05a39	0.750	0.023	0.083	0.002	0.35	0.064	0.002	568	13	515	11	737	25	70	532	20	0.00	0.326							
mr06a66 se13a72	0.788	0.031	0.086	0.002	0.35	0.065	0.001	590 705	17	530 533	14	787 1047	30 38	67 51	548 571	25	0.00	0.762							
mr06a141	0.859	0.062	0.087	0.004	0.30	0.071	0.002	630	34	535	22	964	46	55	554	43	0.01	0.622							
mr06a89 se13a79	1.068 1.132	0.090 0.044	0.088	0.003	0.20	0.084	0.003	738 769	44 21	541 547	18 15	1297 1197	58 25	42	551 582	35 29	0.00	0.262							
mr05a13	1.076	0.037	0.090	0.002	0.37	0.086	0.001	742	18	558	14	1340	21	42	596	26	0.00	0.153							
mr06a76 mr06a81	0.904 2.014	0.076 0.134	0.091 0.092	0.012	0.76 0.28	0.063 0.151	0.001 0.004	654 1120	41 45	561 567	69 20	712 2353	42 43	79 24	676 562	77 40	0.04	0.875 1.099							
sel3a70	1.094	0.145	0.095	0.010	0.41	0.079	0.001	750	70	583	60	1163	20	50	632	111	0.02	0.216							
se13a78 mr06a69	0.875 0.925	0.034 0.041	0.097 0.099	0.001 0.003	0.20 0.32	0.060 0.066	0.001	638 665	18 22	600 606	9 16	591 822	30 30	102 74	604 622	17 30	0.04 0.01	0.735							
mr06a58	1.720	0.119	0.124	0.007	0.39	0.098	0.001	1016	44	751	38	1590	21	47	817	72	0.00	0.212							
mr05a20 se13a76	1.713 1.904	0.095	0.145 0.154	0.004	0.27	0.083	0.001	1013	35 56	872 922	24 42	1274 1424	27 34	68	901 960	46 77	0.00	0.066							
se13a81	2.107	0.108	0.174	0.008	0.43	0.080	0.001	1151	35	1033	42	1187	21	87	1105	66	0.00	0.207							
mr06a108	2.458	0.120	0.175	0.007	0.41	0.099	0.001	1260	68	1042	58 54	1913	10	56	1147	101	0.00	0.548							
mr06a55	2.788	0.255	0.195	0.014	0.39	0.100	0.001	1352	68	1148	75	1621	20	71	1249	124	0.01	0.328							
mr06a105	3.077	0.089	0.202	0.005	0.43	0.109	0.001	1407	29	1248	28	1631	19	77	1364	43	0.00	0.379							
mr06a109 se13a68	3.791	0.304	0.237	0.015	0.40	0.114	0.002	1591	64 24	1371	78	1859	25	74 77	1499	123	0.01	0.555							
mr06a67	4.670	0.204	0.289	0.010	0.40	0.1120	0.001	1762	37	1637	50	1856	19	88	1727	70	0.01	0.764							
se13a77 mr06a155	12.450 0.545	0.290 0.050	0.439 0.063	0.010 0.005	0.49 0.43	0.187 0.062	0.001 0.001	2639 442	22 33	2345 395	45 30	2720 666	7 33	86 59	2635 414	44 53	0.00 0.17	0.331 0.044			395	30			
mr06a71	0.604	0.135	0.066	0.006	0.20	0.081	0.002	480	85	414	36	1213	42	34	419	71	0.45	0.049			414	36			
se13a67 mr05a27	0.493 0.550	0.084 0.023	0.068 0.068	0.005	0.22 0.42	0.059 0.058	0.001 0.001	407 445	57 15	423 426	31 14	570 534	52 20	74 80	420 435	59 25	0.78 0.24	0.120			423 426	31 14			
mr06a128	0.587	0.064	0.069	0.003	0.22	0.068	0.002	469	41	429	20	881	50	49	433	38	0.34	0.019		21	429	20			
se13a69	0.810	0.048	0.071	0.004	0.32	0.084	0.001	485 545	50	441	21	941	54	58 47	452	40	0.17	0.125	441 446	21					2
mr05a29	0.582	0.052	0.073	0.005	0.36	0.060	0.001	466 492	33	452	28 30	613 631	28 42	74 73	457	50 55	0.69	0.342	452	28 30					3
mr04a87	0.532	0.056	0.075	0.003	0.28	0.058	0.001	433	37	468	27	524	47	89	457	49	0.37	0.624	468	27					5
se13a56 se13a57	0.593 0.554	0.035	0.076 0.078	0.002	0.24 0.25	0.059 0.058	0.001 0.001	473 448	22 26	474 484	13 17	566 523	43 46	84 93	474 475	25 31	0.96	0.113 0.537	474 484	13 17					
mr06a47	0.620	0.054	0.080	0.005	0.34	0.054	0.001	490	34	494	28	384	48	129	492	50	0.91	0.362	494	28					
se13a60 mr05a48	0.633 0.616	0.147 0.057	0.080 0.081	0.012	0.32 0.23	0.059 0.060	0.001 0.001	498 487	91 36	497 503	70 21	549 616	43 52	91 82	498 500	127 39	1.00 0.67	0.582	497 503	70 21					
se13a71	0.650	0.059	0.081	0.004	0.26	0.059	0.001	508	36	505	23	555	51	91	505	43	0.92	1.096	505	23					
mr06a119 mr06a140	0.741	0.086	0.082	0.003	0.15	0.077	0.002	563	50 27	508 510	17	612	52 50	45 83	511	33 30	0.29	0.108	508	17					
mr06a137	0.695	0.035	0.083	0.003	0.40	0.056	0.001	536	21	516	20	449	35	115	525	34	0.37	0.528	516	20					
mr05a18	0.712	0.082	0.084	0.009	0.48	0.059	0.001	546	35	526	23	553	40 49	92	535	42	0.39	0.406	526	23					
mr05a51	0.682	0.045	0.085	0.003	0.27	0.061	0.001	528	27	526	18	633	42	83	527	34	0.96	0.580	526	18					
mr06a117	0.740	0.041	0.080	0.003	0.30	0.058	0.001	541	14	535	11	531	26	101	537	20	0.70	0.585	535	11					
mr06a100 mr06a75	0.684	0.042	0.087	0.004	0.34	0.058	0.001	529 585	25 42	536 538	21 34	525 716	34 54	102	534 553	37 62	0.79	0.789	536 538	21 34					
mr06a139	0.731	0.040	0.087	0.003	0.31	0.060	0.001	557	24	540	18	606	41	89	545	32	0.49	0.655	540	18					
mr06a126 mr06a131	0.705 0.748	0.076 0.039	0.088 0.088	0.006 0.003	0.31 0.37	0.062	0.001	542 567	45 22	542 543	35 20	671 632	45 36	81 86	542 552	63 35	1.00	0.656 0.599	542 543	35 20					
mr06a65	0.760	0.025	0.088	0.002	0.36	0.060	0.001	574	14	544	12	600	26	91	555	22	0.05	0.886	544	12					
mr06a97 mr05a30	0.750 0.654	0.060	0.089 0.089	0.004 0.004	0.29 0.27	0.061	0.002	568 511	35 32	548 550	24 23	654 537	54 47	84 102	553 538	44 41	0.58	0.772 0.560	548 550	24 23					
mr06a149	0.702	0.077	0.089	0.004	0.23	0.064	0.002	540	46	550	26	754	50	73	548	50	0.83	1.559	550	26					
mr06a118 mr06a56	0.726 0.823	0.067 0.088	0.089 0.089	0.004 0.006	0.25 0.30	0.062 0.070	0.001 0.001	554 610	39 49	551 552	24 34	670 916	51 43	82 60	552 566	45 63	0.94 0.26	0.337 0.633	551 552	24 34					
mr06a96	0.699	0.050	0.090	0.003	0.23	0.060	0.001	538	30	556	18	591	50	94	553	33	0.57	0.651	556	18					
mr04a90 mr06a125	0.827	0.116 0.074	0.091	0.005	0.19	0.080	0.003	612 558	65 44	559 561	28 28	1196 693	65 67	47 81	564 560	54 52	0.43 0.94	0.839	559 561	28 28					
mr05a32	0.752	0.039	0.091	0.002	0.25	0.063	0.001	569	23	562	14	695	44	81	564	26	0.76	0.383	562	14					

$ \frac{Sample}{Analysis} \left(\begin{array}{c} \frac{30^{9}}{Pb} \\ \frac{2380}{2} \\ \frac{239}{2} \\ \frac{239}$	us ²⁶⁶ Pb/ ²¹⁸ U ² 20 notes
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
sel 3a80 0.804 0.048 0.091 0.003 0.26 0.062 0.01 599 27 563 17 685 39 62 570 32 0.020 0.684 563 17 mr06a50 0.775 0.032 0.092 0.002 0.00 159 12 7 563 17 685 39 62 570 32 0.02 0.681 563 17 mr06a50 0.775 0.032 0.09 0.000 0.00 18 18 564 13 675 32 84 573 24 0.12 0.618 564 13 mr06a51 0.774 0.070 0.093 0.03 0.01 0.002 553 43 564 13 675 91 561 54 0.81 564 13 mr06a51 0.774 0.070 0.093 0.03 1.8 0.002 563 15 19 646 69 570 36 0.92 0.724 571 19 mr05a51 0.74 0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
mr06a51 0.747 0.079 0.093 0.00 0.18 0.00 0.02 566 41 571 19 604 66 95 570 36 0.92 0.724 571 19 mr05a53 0.864 0.054 0.093 0.004 0.20 0.071 0.02 632 35 572 16 588 55 60 578 32 0.10 1.059 572 16 mr05a54 0.404 0.93 0.043 0.03 0.20 0.071 0.02 632 35 172 1.60 561 572 570 0.077 0.818 573 1	
mrt05a35 0.866 0.066 0.093 0.00 0.20 0.071 0.002 632 35 572 16 958 55 60 578 32 0.10 1.059 572 16	
III 00410 0.740 0.050 0.075 0.004 0.25 0.002 0.002 502 54 575 21 000 04 07 576 40 0.77 0.010 575 21	
mr05a43 0.743 0.037 0.093 0.003 0.27 0.059 0.001 564 22 574 15 551 40 102 572 27 0.65 0.487 574 15	
mr05a21 0.741 0.038 0.094 0.002 0.23 0.060 0.001 563 22 579 13 668 41 95 576 24 0.49 0.461 579 13	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
mr06a46 0.844 0.069 0.096 0.007 0.42 0.063 0.001 621 38 591 39 698 42 85 606 66 0.46 0.722 591 39	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
mr06a15 0.806 0.029 0.099 0.002 0.33 0.058 0.001 600 16 606 14 534 32 113 604 24 0.72 0.300 606 14	
mtrobal48 0.33 0064 0.099 0.000 0.29 0.0054 0.002 559 38 00/ 29 566 66 166 590 52 0.23 0.209 60/ 29 mtrobas8 0.940 0.089 10.00 0.010 0.52 0.055 0.001 673 47 613 57 788 44 78 654 89 0.25 0.759 613 57	
mr05a49 0.902 0.660 0.100 0.004 0.33 0.669 0.001 653 32 615 26 901 44 68 627 46 0.27 0.343 615 26	
$ \frac{1}{10} $	
mr06a151 0.887 0.069 0.101 0.004 0.29 0.065 0.001 645 37 620 26 787 39 79 626 48 0.52 0.884 620 26	
mr0als0 0.857 0073 0.01 0.000 0.22 0.061 0.002 0.2 40 0.21 33 040 05 97 0.24 35 0.060 0.080 0.21 33 0.061 0.001 0.35 19 622 16 637 30 98 626 28 0.53 0.851 6.22 16	
mr05a38 0.863 0.086 0.103 0.009 0.45 0.060 0.001 632 47 633 54 600 48 106 632 85 0.99 0.472 633 54	
mrosaly 0.800 0.051 0.104 0.000 0.27 0.050 0.001 597 29 699 21 536 41 119 626 57 0.160 0.800 699 21 mrosaly 0.800 0.34 0.105 0.030 0.43 0.060 0.001 652 18 641 19 596 23 108 647 32 0.59 0.470 641 19	
mr05a58 0.839 0.054 0.105 0.003 0.29 0.060 0.001 619 19 645 15 604 26 107 656 26 0.20 0.789 645 15 mr95a145 0.060 0.070 0.017 0.01 0.23 0.061 0.001 657 75 23 0.57 41 101 654 30 0.06 0.789 645 15	
$ \frac{1}{100} 1$	
mr06a146 0.933 0.111 0.107 0.005 0.21 0.069 0.002 669 58 656 31 892 52 74 658 58 0.82 0.162 655 31	
mrosato 0.586 0.049 0.109 0.109 0.010 0.05 0.016 0.001 0.99 25 055 21 050 45 102 075 57 0.19 0.710 055 21 mrosato 0.058 0.080 0.109 0.011 0.61 0.061 0.001 0.94 41 669 64 630 28 106 693 82 0.62 0.278 669 64	
mr05a07 0.888 0.039 0.110 0.003 0.31 0.061 0.001 645 21 670 17 623 31 108 661 30 0.26 0.847 670 17 mr05a157 0.898 0.054 0.110 0.003 0.31 0.061 0.001 645 21 670 17 623 31 0.5 661 30 0.26 0.847 670 17	
mr0s127 0.5%0 0.05% 0.110 0.000 0.2% 0.00% 0.001 05% 2% 0.52 0.52 2% 73 4% 93 678 59 0.2% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0%	
mr05a47 1.236 0.214 0.114 0.015 0.37 0.085 0.001 817 97 693 85 1311 26 53 7,35 153 0.24 0.203 693 85 mr65a70 1.236 0.214 0.114 0.015 0.37 0.003 819 41 754 13 185 54 75 75 55 0.24 0.203 693 85	
$\frac{1}{100} \frac{1}{100} \frac{1}$	
mr0540 1.369 0.160 0.149 0.008 0.22 0.073 0.002 876 68 897 44 1005 45 89 892 80 0.77 0.601 1005 45	
mrosaos 1.868 0.129 0.159 0.159 0.010 0.49 0.076 0.001 999 52 918 55 1084 52 65 958 91 0.19 0.149 1084 52 mrósalos 1.808 0.102 0.167 0.008 0.43 0.077 0.001 1048 37 994 45 1111 27 88 1029 68 0.21 0.160 1111 27	
mr06a99 1.956 0.099 0.180 0.007 0.41 0.078 0.001 1101 34 1067 41 1138 16 94 1089 62 0.42 0.307 1138 16	
mrosas 2.212 01.7 01.89 0012 041 0083 0001 118 56 1118 0/ 1515 54 65 1100 105 0.30 0.32 1515 54 mrósas 2.360 0.193 0.192 0.012 0.37 0.086 0.001 1231 58 1132 62 1347 33 84 1183 102 0.15 0.260 1347 33	
mr06al16 2.147 0.050 0.194 0.004 0.42 0.077 0.001 1164 16 1145 21 1126 14 102 1158 30 0.36 0.331 1126 14	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
mr05a33 3.274 0.188 0.240 0.016 0.57 0.093 0.001 1475 45 1387 82 1486 28 93 1476 89 0.18 0.495 1486 28 28 29.2 1496	
\$13459 2.595 0.176 0.252 0.013 0.35 0.007 0.009 0.002 1401 40 1448 07 1561 40 92 1409 68 0.45 0.158 1561 40 mr/5228 3.269 0.093 0.256 0.007 0.45 0.090 0.001 1474 22 1471 34 1426 22 103 1473 43 0.94 1.670 1426 22 2	
mr05a17 3.287 0.071 0.257 0.005 0.41 0.093 0.001 1478 17 1476 23 1490 14 99 1477 32 0.92 0.295 1490 14 	
$\frac{1}{100} \frac{1}{100} \frac{1}$	
mr05a57 3.760 0.142 0.278 0.007 0.34 0.100 0.001 1584 30 1584 36 1618 22 98 1584 54 0.99 0.539 1618 22 mr06a78 3718 0.121 0.280 0.006 0.36 0.096 0.001 1572 26 1590 33 1544 26 103 1580 47 0.66 0.639 1544 26	
mercente data ella ella ella ella ella ella ella e	
mr05a23 4.399 0.113 0.303 0.006 0.39 0.105 0.001 1712 21 1708 30 1721 15 99 1711 40 0.89 0.341 1721 15 mr05a22 4.311 0.151 0.072 0.08 0.39 0.105 0.002 1696 29 1776 41 1720 31 100 1702 54 0.45 0.317 1720 31	
mercenti 5.41 0 4.2 0.37 0.316 0.020 0.41 0.125 0.001 1886 68 1772 100 2029 16 87 1861 132 0.22 0.112 2029 16	
sel3a61 5.491 0.090 0.350 0.005 0.44 0.110 0.001 1899 14 1934 24 1800 14 107 1902 28 0.12 0.053 1800 14 mm/6a138 6420 0.301 0.550 0.017 0.51 0.124 0.002 0.354 11 1937 79 2.013 25 96 2.013 82 0.15 1.131 2.013 25	
mr04a88 6.377 0.347 0.365 0.015 0.38 0.128 0.02 48 2007 71 2073 14 97 2025 92 0.75 1.028 2073 14	
mr05a09 7.283 0.186 0.402 0.009 0.45 0.129 0.001 2147 23 2176 43 2082 15 105 2148 45 0.44 0.836 2082 15 105 2148 45 0.44 0.836 2082 15 105 2148 45 0.44 0.836 2082 15 105 2148 45 0.44 0.846 2082 15 105 2148 2082 15 105 2148 2082	
Nashoba Formation gneiss (MLNB1)	
mr06a10 0.685 0.044 0.074 0.003 0.27 0.073 0.001 530 26 460 15 1021 33 45 471 29 0.01 0.191 mr07a46 0.815 0.092 0.080 0.004 0.19 0.075 0.003 605 52 495 21 1.066 89 46 502 41 0.04 0.119	
mr06a04 0.805 0.057 0.083 0.004 0.33 0.073 0.02 599 32 516 23 1001 46 52 535 43 0.01 1.503	
mr04a45 0.720 0.025 0.084 0.002 0.34 0.059 0.001 551 15 518 12 583 33 89 528 21 0.03 0.575 mr07a59 0.783 0.045 0.086 0.004 0.37 0.065 0.001 587 26 531 21 788 43 67 550 39 0.04 0.109	
mr02a77 0.849 0.040 0.087 0.002 0.25 0.069 0.001 624 22 538 12 908 35 59 550 24 0.00 0.183	
mr02a60 1.097 0.064 0.089 0.00 0.32 0.08 0.02 752 31 551 20 1257 42 44 578 39 0.00 0.973 mr02a63 1.554 0.106 0.090 0.002 0.20 0.118 0.003 952 42 556 15 1923 47 29 560 29 0.00 1.006	
more consistent and the second	
mr04a55 1.702 0.197 0.091 0.003 0.14 0.161 0.004 1009 74 563 17 2467 42 23 564 35 0.00 1.836	
mr02a61 2.347 0.270 0.092 0.003 0.14 0.237 0.004 1227 82 569 17 3098 30 18 566 35 0.00 0.278	
mr04a70 0.646 0.051 0.093 0.003 0.22 0.062 0.01 506 31 576 19 674 40 85 559 35 0.03 0.569 mr02a69 0.931 0.041 0.096 0.003 0.40 0.067 0.001 668 21 593 20 836 32 71 672 35 0.00 1.314	
mr04a40 1.000 0.057 0.103 0.006 0.47 0.069 0.001 704 29 634 32 910 31 70 674 53 0.03 0.291	
mr06a38 1.840 0.377 0.106 0.014 0.33 0.128 0.003 100 135 652 83 2070 35 31 673 164 0.01 0.089 mr02a43 1.616 0.087 0.119 0.005 0.36 0.092 0.001 976 34 727 27 1460 23 50 779 51 0.00 0.178	
mr02a05 1.435 0.178 0.121 0.010 0.35 0.082 0.002 904 74 739 60 1239 37 60 783 111 0.04 0.203	
mr02a72 2.026 0.162 0.155 0.009 0.36 0.087 0.001 1124 54 928 49 1363 28 68 995 88 0.00 0.528 mr02a50 1.134 0.126 0.163 0.018 0.50 0.085 0.005 769 60 972 100 1325 109 73 781 118 0.02 0.391	
mr06a40 3.041 0.263 0.172 0.012 0.41 0.130 0.001 1418 66 1021 67 2098 12 49 1141 122 0.00 0.222	
mrU6a16 3.134 0.29 0.201 0.12 0.40 0.15 0.00 1441 59 1179 66 1875 19 63 1307 110 0.00 0.150 mrO2a62 3.684 0.307 0.208 0.014 0.41 0.103 0.02 1568 67 1219 75 1680 31 73 1376 128 0.00 0.239	
mr04a76 5.491 0.445 0.299 0.018 0.38 0.141 0.002 1899 70 1684 90 2244 20 75 1822 134 0.02 0.379	
mruzasz 5.349 u.19 u.307 u.010 u.47 u.127 u.001 1908 30 1727 50 2054 15 84 1885 61 0.00 0.462 mr04a60 5.371 0.179 u.316 u.009 u.43 u.124 u.011 1880 28 1768 44 2012 13 88 1859 56 0.01 0.873	
mr02a09 3.704 0.214 0.321 0.015 0.41 0.095 0.003 1572 46 1793 74 1531 56 117 1600 88 0.00 0.400	
millionary 0.527 0.511 0.559 0.012 0.56 0.00 0.28 0.054 0.001 2000 45 1600 00 2252 15 0.2 1595 62 0.01 0.402 millionary 0.422 0.422 0.01 0.56 0.00 0.28 0.054 0.001 358 15 353 10 383 36 92 354 18 0.78 0.014 353	10

			Measure	d Isotop	oic Ratio	os								Calculated Ages (M	a)				Detrital (Ma)	Metamo	orphic (Ma)	CA-TIN	4S (Ma)	
Sample/ Analysis	²⁰⁷ Pb/ ²³⁵ U	±lσ	²⁰⁶ Pb/ ²³⁸ U	±lσ	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±lσ	²⁰⁷ Pb/ ²³⁵ U	±lσ	²⁰⁶ Pb/ ² ³⁸ U	±lσ	²⁰⁷ Pb/ ²⁰⁶ Pb	±lσ	U-Pb/Pb-Pb concordancy (%)	Concordia age	±2σ	Probability of concordance	Th/U	For Prob Dens plots age ±1σ	For Prob age	Dens plots ±1σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	notes
mr02a14	0.449	0.036	0.057	0.002	0.25	0.058	0.001	376	25	360	14	523	46	69	363	27	0.52	0.024		36	0 14			
mr02a19 mr02a15	0.422 0.491	0.033 0.031	0.058 0.060	0.003	0.30 0.39	0.053 0.056	0.001 0.001	357 405	23 21	366 375	16 18	312 463	41 34	117 81	364 385	30 32	0.72 0.17	0.021 0.019		36 37	6 16 5 18			
mr04a43	0.459	0.015	0.061	0.001	0.36	0.054	0.001	384	10	384	9	372	28	103	384	15	0.99	0.008		38	4 9			
mr02a44	0.507	0.025	0.062	0.003	0.49	0.055	0.001	416	23	392	18	507	38	93 77	399	33	0.33	0.037		39	2 18			
mr02a23 mr04a50	0.519	0.032	0.063	0.002	0.25	0.058	0.001	424 396	21	393 397	12	511 390	44 25	77 102	398 397	23	0.15	0.013		39	3 12 7 10			
mr04a46	0.505	0.027	0.064	0.002	0.45	0.056	0.001	415	18	402	19	454	31	89	409	31	0.50	0.029		40	2 19			
mr06a08 mr06a29	0.472 0.486	0.032 0.021	0.065 0.065	0.003	0.35 0.27	0.052 0.056	0.001 0.001	393 402	22 15	404 408	19 9	277 470	47 34	146 87	400 406	33 18	0.64 0.71	0.016 0.034		40 40	4 19 8 9			
mr04a64	0.496	0.022	0.067	0.003	0.42	0.055	0.001	409	15	415	15	425	23	98	412	26	0.68	0.030		41	5 15			
mr02a07 mr02a37	0.485 0.498	0.019	0.067	0.001	0.28	0.054 0.053	0.001	401 410	13	419 420	9 14	385 343	29 22	109	414 416	16 25	0.19 0.55	0.008		41	9 9 0 14			
mr06a28	0.518	0.015	0.068	0.001	0.33	0.055	0.001	424	10	425	8	396	23	107	425	14	0.88	0.184		42	5 8			
mr06a34	0.491	0.031	0.009	0.002	0.35	0.055	0.001	400	19	429	15	428	32	102	423	23	0.28	0.039		42	7 12 7 15			
mr02a17 mr02a67	0.581	0.028	0.071	0.002	0.30	0.057	0.001	465 461	18	444 445	12	489 718	41	91	449 447	22	0.26	0.408		44 44	4 12 5 12			
mr02a08	0.538	0.034	0.073	0.002	0.27	0.057	0.001	437	22	451	15	492	43	92	448	27	0.54	0.027		45	1 15			
mr02a79 mr06a25	0.679	0.115	0.073	0.002	0.09	0.113	0.004	526 449	69 20	454 458	13	1846 405	57 38	25	455 455	26 27	0.31	0.037	458 1	45 5	4 13			
mr06a39	0.607	0.025	0.074	0.002	0.40	0.058	0.001	482	16	463	15	513	31	90	471	26	0.26	0.439	463 1	5				
mr04a87 mr06a17	0.532 0.582	0.056 0.025	0.075 0.076	0.004	0.28 0.33	0.058 0.053	0.001	433 466	37 16	468 471	27 13	524 339	47 41	89 139	457 469	49 23	0.37 0.76	0.624 0.289	468 2 471 1	7 3				
mr02a31	0.618	0.048	0.077	0.002	0.21	0.061	0.001	488	30	476	15	641	49	74	478	29	0.69	0.208	476 1	5				
mr02a34	0.564	0.047	0.077	0.004	0.31	0.055	0.001	454	23	477	11	657	54 49	73	469	43	0.47	0.643	477 2	± 1				
mr02a06	0.580	0.026	0.077	0.002	0.32	0.057	0.001	464	17	480	13	477	36	101	475	24	0.39	0.445	480 1	3		465.9	0.7	7
mr06a07	0.620	0.069	0.078	0.005	0.21	0.055	0.001	490	43	483	21	444	46	109	494	41	0.87	0.591	481 1	1				
mr02a18 mr05a68	0.661 0.668	0.044	0.078	0.003	0.31 0.36	0.065 0.059	0.001	515 519	27 22	484 495	19 19	769 578	44 26	63 86	491 504	35 33	0.26	0.372	484 1 495 1	€ €				
mr02a10	0.691	0.051	0.080	0.004	0.33	0.062	0.001	534	31	497	23	661	26	75	508	42	0.26	0.081	497 2	3				
mr04a52 mr05a82	0.607 0.669	0.026 0.034	0.080 0.081	0.003 0.004	0.42 0.44	0.055 0.061	0.001 0.001	482 520	16 21	499 501	17 22	428 622	25 30	117 81	490 511	28 36	0.34 0.40	1.101 0.097	499 1 501 2	7 2				
mr02a49	0.644	0.050	0.081	0.004	0.36	0.057	0.002	505	31	503	27	494	65	102	504	47	0.96	0.028	503 2	7				
mr02a35	0.693	0.024	0.081	0.002	0.30	0.059	0.001	535	38	504 504	27	584 586	25 46	86	512	50	0.27	0.027	504 1	7				
mr05a87 mr02a45	0.725	0.051	0.082	0.004	0.35	0.061	0.001	554 559	30 89	509 510	24 84	647 720	44 60	79 71	523	44 146	0.16	0.245	509 2 510 8	1				
mr05a89	0.662	0.031	0.082	0.003	0.36	0.058	0.001	516	19	511	17	526	26	97	513	30	0.80	1.366	510 8	7				
mr04a62 mr04a44	0.658 0.625	0.045	0.083	0.004	0.34 0.37	0.060 0.056	0.001	513 493	28 14	512 513	23 13	614 464	34 24	83 111	513 504	41 23	0.97	0.724	512 2 513 1	3				
mr02a58	0.626	0.030	0.083	0.002	0.30	0.056	0.001	494	19	514	14	452	46	114	508	26	0.30	0.090	514 1	4				
mr05a79 mr05a91	0.633	0.039	0.083	0.003	0.25	0.057	0.002	498 518	25 25	515 516	22	494 514	59 30	104 100	511	28 39	0.50	0.608	515 1	2				
mr02a85	0.664	0.047	0.083	0.003	0.27	0.057	0.002	517	29	516	19	497	61	104	516	35	0.97	0.220	516 1	9				
mr05a81	0.585	0.027	0.085	0.005	0.22	0.057	0.001	468	47	519	28	508	68	100	508	52	0.23	1.054	519 2	8				
mr02a32 mr02a80	0.689	0.029	0.085	0.002	0.34	0.056	0.001	532 570	17	524 527	14 20	462	32	113	527 536	25 38	0.65	1.074	524 1- 527 2	1				
mr04a71	0.635	0.044	0.086	0.004	0.36	0.057	0.001	499	27	531	26	508	30	105	516	43	0.29	1.120	531 2	5				
mr02a78 mr02a13	0.708 0.718	0.023 0.069	0.086 0.086	0.002	0.41 0.32	0.058 0.061	0.001	544 550	13 41	531 532	13 31	537 627	22 30	99 85	537 537	22 57	0.36	2.266 0.929	531 1 532 3	3				
mr04a68	0.679	0.041	0.086	0.004	0.37	0.060	0.001	526	25	532	23	600	19	89	529	39	0.85	0.784	532 2	3				
mr02a42	0.671	0.045	0.086	0.003	0.30	0.057	0.001	500	40	535	21	494 577	54 49	93	526	47	0.87	1.040	534 2 535 2	5				
mr06a36 mr06a30	0.689	0.041	0.087	0.004	0.37	0.057	0.001	532 535	24	535 538	22	503 650	22 37	106	534 537	39 23	0.90	0.695	535 2	2				
mr05a70	0.652	0.059	0.087	0.004	0.26	0.058	0.001	510	36	539	24	536	30	101	531	44	0.44	0.806	539 2	4				
mr02a24 mr05a69	0.716 0.650	0.047 0.086	0.087 0.087	0.003	0.27 0.26	0.058 0.057	0.002	548 509	28 53	539 540	18 36	522 505	65 57	103 107	541 532	34 65	0.74 0.57	0.806 0.786	539 1 540 3	8 5				
mr04a61	0.760	0.036	0.087	0.003	0.42	0.064	0.001	574	21	541	21	736	17	74	557	35	0.13	0.040	541 2	1				
mr04a54 mr04a77	0.897	0.026	0.088	0.003	0.42	0.059	0.000	542	15	545 544	10	601	26	96	540	21	0.70	0.674	545 1	1				
mr05a92 mr05a78	0.762 0.701	0.029	0.088	0.002	0.32 0.28	0.059 0.057	0.001	575 539	17 23	546 551	13 16	572 503	36 40	95 110	555 548	24 29	0.10 0.64	1.006 0.880	546 1 551 1	3 5				
mr06a24	0.738	0.045	0.089	0.003	0.29	0.057	0.002	561	26	551	18	509	64	108	554	34	0.72	0.631	551 1	8				
mr05a71 mr05a90	0.672 0.739	0.054 0.031	0.089 0.090	0.004 0.003	0.25 0.35	0.060 0.060	0.001 0.001	522 562	33 18	552 553	21 15	591 591	38 34	93 94	545 556	39 27	0.37 0.65	0.882	552 2 553 1	5				
mr02a76	0.763	0.037	0.090	0.003	0.37	0.066	0.002	576	21	556	19	798	48	70	564	33	0.39	0.654	556 1	9				
mr04a58 mr04a80	0.722	0.025	0.090	0.002	0.33	0.057	0.001	585	21	559	12	866	35	65	562	22	0.89	0.515	558 1	2				
mr04a90 mr06a06	0.827	0.116	0.091	0.005	0.19	0.080	0.003	612 538	65 27	559 559	28 18	1196 590	65 43	47	564 553	54 33	0.43	0.839	559 2	8				
mr02a36	0.683	0.054	0.091	0.003	0.28	0.056	0.001	529	33	562	24	471	55	119	552	43	0.33	1.760	562 2	4				
mr02a33 mr04a89	0.732 0.724	0.042 0.072	0.091 0.091	0.003	0.24 0.27	0.059 0.061	0.001 0.002	558 553	25 43	564 564	15 29	559 623	47 57	101 91	563 561	28 54	0.80	0.319 0.618	564 1. 564 2	5 9				
mr06a05	0.956	0.127	0.092	0.006	0.23	0.081	0.002	681	66	566	33	1226	42	46	578	65	0.10	0.371	566 3	3				
mr02a25 mr04a78	0.726 0.674	0.029	0.093	0.002	0.26	0.057	0.001	554 523	17 61	572 572	11 29	509 813	38 71	112 70	567	20 56	0.33 0.43	0.781	572 I 572 2	1 Ə				
mr02a86	0.740	0.041	0.094	0.003	0.27	0.058	0.001	562 624	24	577 594	17 44	526	45	110	573	30 94	0.55	1.024	577 1	7				
mr04a41	0.848	0.200	0.095	0.007	0.17	0.074	0.002	572	110	588	44 15	557	21	56 106	589	25	0.74	0.640	588 1	5				
mr05a67 mr05a88	0.800	0.033	0.097 0.097	0.004	0.46	0.060	0.001	597 598	19 28	595 598	22 16	616 762	29 47	97 78	596 598	34 29	0.96	1.085 0.761	595 2 598 1	2				
mr04a81	0.996	0.142	0.100	0.009	0.31	0.086	0.002	702	72	616	51	1347	35	46	636	95	0.26	0.229	616 5	1				
mr06a37 mr05a77	0.815 0.755	0.107 0.106	0.101 0.102	0.008 0.007	0.31 0.25	0.066 0.059	0.001 0.001	605 571	60 61	623 624	48 41	808 570	28 38	77 109	616 610	85 75	0.79 0.41	0.268 0.396	623 4 624 4	5 I				
mr04a51	0.973	0.101	0.110	0.006	0.28	0.069	0.002	690	52	671	37	897	50	75	676	68	0.72	0.650	671 3	7				
mr02a26 mr02a54	1.225	0.149	0.115	0.014	0.58	0.083	0.003	812	79 49	703 853	82 79	1214	88	99 70	6/9 814	133 98	0.62	0.450	1214 8	8				
mr06a18 mr02a55	1.581	0.119	0.145 0.167	0.006	0.29	0.081	0.001	963 968	47 33	874 993	36 30	1226 877	27 53	71	900 982	66 50	0.08	0.139	1226 2 877 5	7 3				
mr04a67	1.983	0.134	0.205	0.009	0.34	0.077	0.001	1110	46	1201	50	1119	19	107	1146	77	0.10	0.366	1119 1	9				
mr05a80	2.574	0.093	0.222	0.006	0.35	0.084	0.001	1293	26	1291	29	1295	21	100	1292	46	0.94	0.371	1295 2	1				

			Measure	ed Isotop	oic Ratio	os								Calculated Ages (M	a)				Detrital	(Ma)	Metamorph	ic (Ma)	CA-TIM	З (Ma)	
Sample/ Analysis	²⁰⁷ Pb/ ²³⁵ U	±lσ	²⁰⁶ Pb/ ²³⁸ U	±lσ	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±lσ	²⁰⁷ Pb/ ²³⁵ U	±lσ	²⁰⁶ Pb/ ² ³⁸ U	±lσ	²⁰⁷ Pb/ ²⁰⁶ Pb	±lσ	U-Pb/Pb-Pb concordancy (%)	Concordia age	±2σ	Probability of concordance	Th/U	For Prob D age	ens plots ±1σ	For Prob De	ens plots ±1σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	note
mr02a87	2.693	0.197	0.228	0.013	0.40	0.082	0.002	1326	54	1322	71	1243	40	106	1325	101	0.95	0.201	1243	40					
mr02a16 mr04a42	2.986 3.279	0.105 0.215	0.235 0.250	0.006 0.012	0.34 0.37	0.089 0.100	0.001	1404 1476	27 51	1360 1439	30 63	1396 1629	27 17	97 88	1385 1463	46 93	0.18	0.315 0.272	1396 1629	27 17					
mr04a88	6.377	0.347	0.365	0.015	0.38	0.128	0.001	2029	48	2007	71	2073	14	97	2025	92	0.75	1.028	2073	14					
mr04a82 mr02a52	6.915 8 364	0.166	0.379	0.009	0.49	0.130	0.001	2101	21	2073	42	2105	13 76	98	2100	43 170	0.45	0.950	2105	13					
mr02a32 mr02a41	12.920	0.336	0.507	0.011	0.43	0.151	0.002	2674	25	2644	49	2656	15	102	2673	49	0.50	0.846	2656	15					
mr04a49 Nachaba Ea	13.550	0.895	0.534	0.020	0.28	0.192	0.002	2718	62	2757	84	2759	15	100	2730	112	0.66	0.898	2759	15					
sel0a263	0.469	0.034	0.054	0.003	0.41	0.058	0.001	390	23	336	19	548	37	61	353	35	0.02	0.012							
se10a264	0.496	0.044	0.054	0.005	0.56	0.057	0.001	409	30	339	33	500	40	68	379	56	0.02	0.011							
se10a240 se10a239	0.543	0.030	0.055	0.004	0.37	0.061	0.001	409	14	353	10	633	32	48	371	19	0.00	0.010							
se10a235	0.485	0.030	0.057	0.004	0.54	0.055	0.001	402	20	356	23	406	28	88	383	38	0.03	0.017							
se14a45	0.486	0.023	0.057	0.003	0.45	0.054	0.001	402	16	360	15	381	22	94	378	27	0.00	0.009							
sel0a176	0.642	0.024	0.059	0.003	0.68	0.064	0.001	503	15	372	18	750	21	50	470	29	0.00	0.050							
sel3al1	0.495	0.019	0.061	0.002	0.39	0.055	0.001	408	13	379	11	403	24	94	389	19	0.03	0.011							
se14a35 se10a172	0.532	0.029	0.062	0.002	0.35	0.058	0.001	433 505	19 28	385 386	14 16	540 938	35 39	71	398 401	27 32	0.02	0.021							
se10a256	0.547	0.033	0.062	0.003	0.43	0.059	0.001	443	22	388	19	584	32	66	408	35	0.01	0.020							
se10a216 se10a168	0.566 0.643	0.039 0.040	0.063 0.064	0.003	0.38 0.42	0.060 0.064	0.001	455 504	25 25	394 399	20 20	594 742	40 52	66 54	412 428	37 38	0.02	0.047 0.010							
se14a19	0.752	0.034	0.064	0.003	0.48	0.072	0.002	570	20	403	17	986	46	41	447	33	0.00	0.302							
se13a19 se10a199	0.596	0.027	0.069	0.002	0.39	0.059	0.001	475 506	28	430 439	15	565 703	29 45	76 62	446 450	26 32	0.01	0.470							
se10a253	0.467	0.069	0.052	0.006	0.42	0.060	0.001	389	48	327	40	605	35	54	346	73	0.20	0.013			327	40			
se10a258 se10a219	0.387	0.039	0.052	0.003	0.27	0.058	0.002	332 402	29 53	328 331	37	511 740	75 51	64 45	329	32 70	0.89	0.015			328 331	37			
se14a50	0.377	0.031	0.053	0.002	0.24	0.053	0.001	324	23	331	13	338	48	98	330	24	0.77	0.005			331	13			
se14a15 se14a34	0.405	0.021	0.053	0.002	0.40	0.055	0.001	345	22	334	14	402	37	95	339	24	0.41	0.113			334	14			
se10a218	0.494	0.088	0.053	0.008	0.40	0.064	0.001	407	60 46	335 340	47	727	44	46	354	87 76	0.23	0.017			335	47			
se10a255	0.408	0.000	0.054	0.007	0.40	0.058	0.001	351	34	340	25	425	40	80	343	46	0.29	0.010			340	42			
se10a177 se10a203	0.477	0.076	0.054	0.004	0.22	0.066	0.002	396 339	52 34	341 342	23 25	807 257	48 50	42	346 341	45 45	0.30	0.012			341 342	23			
se14a46	0.458	0.029	0.055	0.003	0.42	0.055	0.001	383	21	343	18	428	38	80	358	32	0.06	0.014			343	18			
se10a175 se14a77	0.492 0.437	0.070 0.041	0.055 0.055	0.005 0.004	0.34 0.34	0.059 0.055	0.001 0.001	406 368	48 29	344 344	32 22	553 403	51 39	62 85	357 350	61 40	0.21 0.42	0.019 0.012			344 344	32 22			
se10a178	0.378	0.064	0.055	0.004	0.19	0.056	0.001	326	47	345	22	459	45	75	343	42	0.68	0.011			345	22			
se10a213 se10a198	0.412 0.403	0.037 0.035	0.055 0.055	0.002	0.21 0.25	0.058 0.055	0.001 0.001	351 344	26 25	346 348	13 15	515 419	46 38	67 83	347 347	25 28	0.87 0.88	0.027 0.016			346 348	13			
se10a237	0.468	0.042	0.056	0.005	0.52	0.054	0.001	390	29	349	32	375	38	93	373	53	0.17	0.016			349	32			
se10a207 se14a07	0.443	0.068	0.056	0.007	0.39	0.054	0.001	362	48 28	349	21	392	28	93 89	353	38	0.65	0.013			349	41 21			
se14a17 se14a48	0.401	0.045	0.056	0.003	0.26	0.058	0.001	342 358	33 23	349 351	20	513 304	43 52	68 115	348 353	37 30	0.83	0.015			349 351	20			
se10a223	0.421	0.028	0.056	0.002	0.30	0.052	0.001	357	20	352	14	295	40	119	353	26	0.83	0.012			352	14			
se14a75 se14a69	0.450 0.399	0.068 0.060	0.056 0.056	0.007 0.004	0.42 0.26	0.054 0.055	0.001 0.001	378 341	47 43	353 353	43 26	352 405	40 45	100 87	363 351	76 49	0.61 0.78	0.011 0.016			353 353	43 26			
se14a25	0.408	0.047	0.056	0.003	0.20	0.058	0.001	348	34	353	16	537	47	66	352	31	0.87	0.017			353	16			
se10a265 se14a68	0.431 0.456	0.043	0.057	0.004	0.37	0.053	0.001	364 381	30 25	354 355	25 20	314 442	33 32	113 80	358 363	45 36	0.76	0.012			354 355	25 20			
se14a67	0.450	0.036	0.057	0.003	0.33	0.056	0.001	377	26	355	19	453	36	78	361	35	0.39	0.012			355	19			
se14a44 se14a16	0.469	0.040	0.057	0.005	0.36	0.055	0.001	366	38	356	21	405	27	88 84	359	52	0.22	0.018			356	21			
se10a257	0.470	0.033	0.057	0.003	0.40	0.056	0.001	391	23	357	20	444	37 40	80	369	36	0.15	0.010			357	20			
se13a20	0.484	0.054	0.057	0.005	0.49	0.054	0.001	401	37	358	38	372	50	96	380	66	0.26	0.013			358	38			
se10a206 se10a183	0.399 0.428	0.040	0.057 0.057	0.003	0.25 0.28	0.054 0.056	0.001	341 362	29 34	358 358	17 21	355 434	43 45	101 82	355 359	32 40	0.56	0.011 0.029			358 358	17 21			
se10a226	0.467	0.030	0.057	0.002	0.29	0.058	0.001	389	21	359	13	518	43	69	365	25	0.16	0.009			359	13			
se10a208 se10a248	0.456	0.052	0.057	0.005	0.36	0.056	0.001	382 362	41	359	29 26	463 485	45	78 74	360	53 48	0.55	0.029			359	29 26			
se10a214	0.438	0.049	0.057	0.002	0.19	0.066	0.001	369	34	360	14	793	40	45	361	28	0.80	0.015			360	14			
se10a234	0.475	0.065	0.058	0.005	0.27	0.057	0.001	368	46	362	28	462	44	78	363	53	0.25	0.012			362	28			
se14a18 se14a51	0.426 0.476	0.054 0.063	0.058	0.003	0.19	0.067 0.056	0.002	360 395	38 43	362 364	17 34	837 446	60 26	43 82	362 373	32 62	0.98	0.022			362 364	17 34			
se14a59	0.442	0.040	0.058	0.004	0.34	0.053	0.001	372	28	364	22	311	38	117	366	40	0.79	0.014			364	22			
se10a236 se14a30	0.430 0.467	0.033 0.031	0.058 0.058	0.003 0.003	0.29 0.34	0.055 0.055	0.001 0.001	363 389	23 21	365 366	16 16	429 411	47 35	85 89	364 372	29 29	0.96 0.29	0.012 0.009			365 366	16 16			
se14a70	0.456	0.038	0.058	0.003	0.34	0.054	0.001	381	26	366	20	382	28	96	371	37	0.59	0.010			366	20			
se10a184 se10a227	0.442	0.054 0.044	0.058	0.004	0.30	0.055	0.001	3/1	38 31	366 366	26 18	413 624	44 39	89 59	367	49 33	0.89	0.012			366	26 18			
se10a165	0.434	0.075	0.058	0.003	0.14	0.061	0.002	366	53 22	366 367	18	630 541	57	58	366	35	1.00	0.015			366	18			
se14a74	0.477	0.035	0.059	0.002	0.28	0.058	0.001	383	26	367	16	479	46	77	372	30	0.55	0.000			367	14			
se13a08 se14a20	0.474	0.022	0.059	0.002	0.34	0.055	0.001	394 389	15 24	370 371	11	398 407	26 26	93 91	377 378	21	0.12	0.007			370 371	11			
se10a196	0.452	0.041	0.059	0.003	0.31	0.055	0.001	378	29	371	21	417	32	89	373	38	0.81	0.016			371	21			
se14a47 se14a57	0.461 0.460	0.034 0.079	0.059 0.059	0.002 0.006	0.27 0.29	0.055 0.056	0.001 0.001	385 384	24 55	372 372	15 36	429 448	41 34	87 83	375 374	27 67	0.60 0.83	0.011 0.005			372 372	15 36			
se14a26	0.434	0.039	0.059	0.002	0.24	0.058	0.001	366	27	372	15	547	33	68	371	29	0.85	0.020			372	15			
se10a228 se14a21	0.448 0.481	0.207 0.034	0.059 0.060	0.016 0.004	0.29 0.45	0.056 0.054	0.001 0.001	376 399	145 23	372 373	97 23	441 388	41 25	84 96	373 385	181 39	0.98 0.28	0.011 0.008			372 373	97 23			
sel4a40	0.466	0.027	0.060	0.002	0.34	0.054	0.001	388	19	373	15	374	26	100	378	27	0.44	0.008			373	15			
se14a27 se10a204	0.446	0.044	0.060	0.003	0.27	0.056	0.001	375 427	51	374 375	19 47	448 547	36 42	83 69	374 396	36 83	0.97	0.009			3/4 375	19 47			
se14a56	0.457	0.040	0.060	0.003	0.29	0.054	0.001	382	28	375 375	18	373 504	33	101	377	34	0.81	0.005			375	18			
se10a217	0.459	0.099	0.060	0.002	0.20	0.067	0.002	382	24 69	375	30	832	46	63 45	374	58	0.85	0.021			375	30			
se10a205 se10a185	0.433	0.031	0.060	0.002	0.21	0.056	0.001	366 368	22 35	376 376	11 15	451 579	44 49	83	374 375	21 29	0.65	0.007			376 376	11			
								2.50						00	0,0		0.02				270				

			Measure	d Isotop	oic Ratio	0S								Calculated Ages (M	a)				Detrital (Ma)	Metamorph	ic (Ma)	CA-TIMS (M	ia)
Sample/ Analysis	²⁰⁷ Pb/ ²³⁵ U	±lσ	²⁰⁶ Pb/ ²³⁸ U	±lσ	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±lσ	²⁰⁷ Pb/ ²³⁵ U	±lσ	²⁰⁶ Pb/ ² ³⁸ U	±lσ	²⁰⁷ Pb/ ²⁰⁶ Pb	±lσ	U-Pb/Pb-Pb concordancy (%)	Concordia age	±2σ	Probability of concordance	Th/U	For Prob Dens plots age ±1σ	For Prob De	ens plots ±1σ	²⁰⁶ Pb/ ²³⁸ U ±2	σ notes
se10a182	0.458	0.071	0.060	0.003	0.15	0.066	0.002	383	49	376	17	794	66	47	376	34	0.89	0.015		376	17		
se14a09	0.396	0.062	0.060	0.003	0.16	0.058	0.001	338	45	377	18	525	47	72	373	35	0.39	0.019		377	18		
seluares seluares	0.479	0.089	0.060	0.005	0.29	0.057	0.001	348	28	378	30 15	495	43	88	373	29	0.87	0.014		378	15		
se10a225	0.462	0.060	0.060	0.005	0.30	0.056	0.001	385	42	378	28	435	38	87	380	53	0.86	0.018		378	28		
se14a57 se10a195	0.474	0.031	0.061	0.004	0.31	0.054	0.001	405	31	380	25 18	540	43	97 70	385	40 34	0.87	0.014		379	18		
se10a215	0.466	0.087	0.061	0.008	0.36	0.054	0.001	389 408	60	380	50 10	391	49 30	97 100	383	89	0.89	0.022		380	50 10		
se10a163	0.494	0.020	0.061	0.002	0.59	0.054	0.001	408	56	383	65	583	76	66	439	108	0.00	0.013		383	65		
se10a167	0.505	0.029	0.061	0.002	0.24	0.056	0.001	415	19	383	10	448	38	85	387	19	0.11	0.009		383	10		
se14a28	0.482	0.030	0.061	0.003	0.38	0.054	0.001	379	26	383	17	416	38	98	382	32	0.88	0.008		383	17		
sel3a23	0.463	0.033	0.061	0.004	0.43	0.050	0.001	386	23	383	23	214	31	179	385	39	0.89	0.006		383	23		
se14a66 se14a29	0.494	0.057	0.061	0.005	0.32	0.055	0.001	408 377	43	385	29	380	39 46	101	383	55 54	0.35	0.012		385	29		
se13a21	0.461	0.059	0.062	0.004	0.24	0.057	0.001	385	41	385	23	506	51	76	385	43	0.99	0.021		385	23		
se14a61 se13a17	0.435	0.045	0.062	0.003	0.21	0.054	0.001	401	28	388	22	424	45 30	92	384	39	0.48	0.009		388	22		
se10a192	0.475	0.046	0.062	0.004	0.30	0.056	0.001	394	31	389	22	463	37	84	391	41	0.87	0.008		389	22		
se13a18 se14a38	0.465	0.028	0.062	0.002	0.35	0.054	0.001	422	18	392	14	419	31	94	401	25	0.97	0.176		392	14		
se14a58	0.572	0.072	0.063	0.005	0.32	0.061	0.001	459	47	392	31	655	43	60	405	59	0.16	0.011		392	31		
se10a235 se10a229	0.526	0.137	0.063	0.014	0.44	0.057	0.001	429 395	29	393	88 16	480 501	53	78	393	30	0.70	0.128		393	88 16		
se14a49	0.462	0.040	0.063	0.002	0.21	0.056	0.001	386	28	394	14	433	41	91	393	26	0.76	0.012		394	14		
sel4al2 sel3al2	0.474 0.491	0.045	0.063	0.003	0.23	0.056	0.001	394 405	31 19	394 395	17	454 377	56 37	87	394 397	32	0.99	0.010		394 395	1/		
se13a27	0.487	0.040	0.063	0.003	0.28	0.056	0.001	403	28	396	18	453	36	87	398	33	0.82	0.006		396	18		
se10a247 se10a173	0.481	0.043	0.063	0.003	0.27	0.056	0.001	399 399	29 29	396 397	18	440 469	41 48	90	396 397	34 22	0.91	0.021		396 397	18		
se10a249	0.484	0.096	0.064	0.005	0.19	0.056	0.001	401	66	398	29	462	56	86	399	56	0.97	0.009		398	29		
se10a162 se14a08	0.550 0.472	0.039 0.042	0.064 0.064	0.002	0.20 0.18	0.061 0.061	0.001 0.002	445 393	25 29	399 401	11 13	645 647	49 61	62 62	403 400	21 24	0.08 0.79	0.013 0.009		399 401	11		
se10a188	0.464	0.064	0.064	0.004	0.21	0.060	0.001	387	45	402	22	617	52	65	400	43	0.74	0.207		402	22		
se14a39 se14a13	0.508 0.509	0.040 0.060	0.065 0.065	0.003	0.30 0.18	0.055 0.058	0.001 0.001	417 418	27 40	404 404	18 17	401 513	35 57	101 79	407 405	34 33	0.64 0.74	0.029 0.012		404 404	18 17		
se10a194	0.465	0.066	0.065	0.003	0.18	0.060	0.001	388	46	405	20	612	51	66	403	38	0.70	0.022		405	20		
se10a186 se14a36	0.498 0.496	0.047	0.065	0.003	0.28	0.057 0.054	0.001	411 409	32 27	406 407	21 18	475 372	44 42	85 109	407 407	38	0.89	0.009		406 407	21		
se14a60	0.509	0.048	0.066	0.003	0.24	0.056	0.001	418	32	410	18	444	49	92	411	34	0.81	0.006		410	18		
se13a29 se10a193	0.547 0.510	0.040	0.066	0.003	0.28	0.060	0.001	443 418	26 30	412 413	16 20	595 453	44 43	69 91	418 414	31 37	0.24	0.078		412 413	16 20		
se10a245	0.511	0.100	0.067	0.005	0.20	0.058	0.001	419	67	416	31	526	54	79	416	61	0.96	0.018		416	31		
se10a268 se10a166	0.508	0.110	0.067	0.003	0.09	0.071 0.056	0.002	417 444	74 18	417 418	16 9	944 465	55 37	44 90	417 422	32	0.17	0.037		417 418	16 9		
se10a187	0.515	0.073	0.067	0.003	0.17	0.060	0.002	422	49	419	19	591	62	71	419	38	0.94	0.010		419	19		
se10a234 se14a76	0.515	0.044	0.067	0.002	0.17	0.063	0.002	422 440	29	420 433	12	469	65 43	59 92	420 434	23	0.95	0.012		420	12		
se13a22	0.620	0.062	0.077	0.005	0.35	0.056	0.001	490	39	477	32	448	38	106	481	57	0.75	0.286	477 32				
sellalla	0.752	0.058	0.087	0.003	0.25	0.064	0.001	616	157	611	20 94	942	58	65	612	58 176	0.37	0.273	611 94				
se10a209	3.014	0.522	0.209	0.026	0.36	0.104	0.001	1411	132	1223	140	1692	20	72	1312	234	0.23	0.546	1692 20				
sel0al12	rmation c 0.476	alc-silic 0.030	ate gnei 0.056	ss (MLB 0.004	0.63	0.054	0.001	396	21	350	27	366	25	96	388	41	0.03	0.140					
se10a139	0.494	0.024	0.058	0.002	0.41	0.057	0.001	408	17	365	14	475	30	77	380	26	0.01	0.310					
se13c111 se10a109	0.629	0.023	0.067	0.002	0.35	0.060	0.001	496 528	14	420 478	11	589 662	29	71	440 493	20	0.00	0.140					
se13c114	1.086	0.057	0.105	0.004	0.40	0.069	0.001	747	28	641	25	894	23	72	681	45	0.00	0.100					
sel0a155 sel3a45	0.396	0.034	0.049	0.008	0.45	0.055	0.001	336	16	320	35 14	387	54 24	90 83	321	25	0.47	0.180		310	55 14		
se10a143	0.411	0.038	0.052	0.003	0.35	0.056	0.001	349	27	327	21	464	35	70	333	38	0.42	0.160		327	21		
se10a130	0.393	0.032	0.052	0.004	0.28	0.056	0.001	334	29	331	17	435	47	72	332	32	0.83	0.180		331	17		
se13a98	0.384	0.029	0.053	0.002	0.29	0.053	0.001	330	21	332	14	322	38	103	332	26	0.93	0.180		332	14		
se10a133	0.429	0.012	0.053	0.001	0.39	0.055	0.001	362	24	334	20	406	31	82	344	37	0.00	0.190		334	20		
se13a97 se10a111	0.433	0.058	0.053	0.005	0.37	0.056	0.001	365 352	41 28	334 336	32 19	437 427	49 32	76 79	344 340	58 36	0.46	0.200		334 336	32 19		
se10a142	0.426	0.036	0.054	0.004	0.39	0.054	0.001	361	26	337	22	388	27	87	346	40	0.38	0.220		337	22		
se13a46 se13a96	0.407	0.017	0.054	0.001	0.25	0.055	0.001	347 351	12 24	337 337	7	425 431	30 34	79 78	338 340	13 30	0.42	0.230		337 337	7		
se10a131	0.404	0.029	0.054	0.002	0.30	0.054	0.001	345	21	339	15	382	34	89	341	27	0.80	0.140		339	15		
se10a102 se13a41	0.413 0.427	0.046 0.016	0.054 0.054	0.004	0.36 0.50	0.054 0.053	0.001	351 361	33	340 341	26 12	371 348	33 19	92 98	343 353	47 20	0.74 0.09	0.150 0.110		340 341	26 12		
se13a91	0.430	0.049	0.054	0.005	0.40	0.055	0.001	363	35	341	30	401	36	85	349	53	0.54	0.140		341	30		
se10a152 se13a39	0.437 0.416	0.022	0.055 0.054	0.002	0.34 0.33	0.054 0.055	0.001 0.001	368 353	16 11	342 342	12	379 400	30 23	90 86	349 345	21 15	0.11 0.33	0.140 0.150		342 342	12		
se13c101	0.413	0.080	0.055	0.007	0.34	0.054	0.001	351	58	344	44	392	29	88	346	80	0.91	0.120		344	44		
se10a100 se13a40	0.401 0.427	0.092 0.016	0.055 0.055	0.005 0.002	0.22 0.37	0.059 0.056	0.002	342 361	67 12	345 346	33 10	559 436	56 21	62 79	345 351	64 17	0.96 0.20	0.170 0.150		345 346	33 10		
se10a119	0.404	0.031	0.055	0.002	0.29	0.055	0.001	345	23	346	15	425	41	81	346	28	0.94	0.190		346	15		
se13c113 se10a151	0.431 0.428	0.024 0.049	0.055 0.055	0.003 0.004	0.41 0.35	0.053 0.054	0.001 0.001	364 362	17 35	347 347	16 27	338 385	24 31	103 90	354 352	28 49	0.36 0.69	0.170 0.140		347 347	16 27		
se10a104	0.391	0.053	0.055	0.003	0.17	0.057	0.001	335	39	347	16	505	53	69	346	31	0.77	0.220		347	16		
se10a129 se10a124	0.421 0.430	0.039 0.050	0.055 0.056	0.004 0.005	0.38 0.36	0.053 0.055	0.001 0.001	357 363	28 36	348 349	23 28	338 416	23 31	103 84	351 354	42 52	0.76 0.71	0.130 0.170		348 349	23 28		
se13a42	0.409	0.020	0.056	0.002	0.31	0.053	0.001	348	15	349	10	327	24	107	349	19	0.93	0.190		349	10		
se13c112 se13a44	0.425	0.078	0.056	0.007	0.54	0.054	0.001	359 376	50 19	351	42	584 619	22	57	356	21	0.89	0.140		351	42		
se13a94	0.426	0.029	0.057	0.002	0.32	0.055	0.001	361	21	355	15	407	30	87	357	28	0.81	0.090		355	15		
se10a149	0.474	0.027	0.057	0.005	0.34	0.055	0.001	379 379	18 38	358	21 30	402	20 42	89	365	55 54	0.06	0.200		358	21 30		
se13c115 se10a144	0.443 0.473	0.043	0.057 0.057	0.004	0.33	0.055	0.001	373 393	30 18	358 359	22 15	426 440	34 30	84 82	362 371	41 28	0.63	0.130		358	22		
se13c116	0.447	0.037	0.057	0.004	0.38	0.054	0.001	375	26	359	22	358	37	100	365	39	0.54	0.140		359	22		

Table A2	. Contin	ued.																	-					
			Measure	ed Isotop	oic Ratio	s								Calculated Ages (M	a)				Detrital (Ma)	Metamorp	hic (Ma)	CA-TIM	IS (Ma)	
Sample/	²⁰⁷ Pb/	±lσ	²⁰⁶ Pb/	±lσ	Rho	²⁰⁷ Pb/	±lσ	²⁰⁷ Pb/	±lσ	206Pb/2	±lσ	²⁰⁷ Pb/	±lσ	U-Pb/Pb-Pb	Concordia	±2σ	Probability of	Th/U	For Prob Dens plots	For Prob D	ens plots	²⁰⁶ Pb/ ²³⁸	±2σ	notes
Analysis	235U		U			200Pb		²⁵⁵ U		3°U		200 Pb		concordancy (%)	age		concordance		age ±1σ	age	±lσ	U		
se10a138 se10a103	0.489 0.483	0.035 0.048	0.058 0.058	0.004 0.005	0.46 0.42	0.057 0.057	0.001 0.001	404 400	24 33	361 361	23 29	482 504	21 43	75 72	380 376	40 52	0.07 0.24	0.170 0.140		361 361	23 29			
se10a134 se10a118	0.452	0.047	0.058	0.004	0.33	0.056 0.054	0.001	379 368	33 22	361 361	24 16	466 385	26 32	77 94	365 363	44 29	0.60 0.74	0.200		361 361	24 16			
se10a110	0.456	0.076	0.058	0.007	0.35	0.055	0.001	382	53	362	40	421	27	86	368	74	0.72	0.150		362	40			
se10a132 se10a108	0.443 0.458	0.055	0.058	0.004	0.29	0.055 0.054	0.001	372 383	39 17	362 364	25 12	411 389	34 27	88 94	365 368	47	0.80	0.150 0.150		362 364	25			
se13c102 se10a98	0.454 0.444	0.025	0.058	0.002	0.35	0.054	0.001	380 373	18 23	364 364	14 18	389 338	36 31	94 108	369 367	25 33	0.39	0.160		364 364	14 18			
se13c117	0.463	0.028	0.058	0.003	0.43	0.053	0.001	387	20	366	19	328	28	112	375	32	0.30	0.120		366	19			
se13c105 se10a99	0.468 0.444	0.027 0.023	0.059 0.059	0.003	0.42 0.31	0.053 0.056	0.001 0.001	390 373	19 16	368 370	17 12	320 451	36 30	115 82	377 371	30 22	0.27 0.84	0.130 0.160		368 370	17			
se10a123 se10a141	0.464 0.482	0.073	0.060 0.060	0.006	0.34 0.41	0.056	0.001	387 399	51 14	376 377	39 13	436 397	31 29	86 95	379 386	71 22	0.83	0.120		376 377	39 13			
sel0al13	0.505	0.020	0.061	0.003	0.39	0.057	0.001	415	20	379	17	502	25	75	391	31	0.09	0.370		379	17			
se13a92 se10a128	0.461 0.480	0.053 0.037	0.061 0.061	0.005 0.004	0.34 0.39	0.054 0.055	0.001 0.001	385 398	37 25	379 381	29 22	383 404	40 28	99 94	381 388	53 39	0.88 0.51	0.150 0.130		379 381	29 22			
se10a150 se13a93	0.483	0.021	0.062	0.002	0.35	0.054	0.001	400 395	14	386 387	12	385 468	24 33	100	391 389	21	0.36	0.120		386 387	12			
se10a114	0.486	0.026	0.062	0.002	0.31	0.057	0.001	402	18	389	12	500	82	78	392	23	0.48	0.120		389	12			
se10a101 se10a140	0.527 0.557	0.026 0.032	0.065 0.067	0.002	0.31 0.35	0.056 0.057	0.001 0.001	430 450	17 21	404 418	12 16	451 483	30 25	90 87	410 428	22 29	0.15 0.14	0.110 0.150		404 418	12 16			
se10a122	0.575	0.036	0.067	0.003	0.38	0.058	0.001	461	23	421	19	513	30 40	82	434	35	0.09	0.130		421	19			
sel0al21	0.657	0.034	0.081	0.005	0.43	0.056	0.001	513	21	500	21	453	26	110	506	36	0.56	0.200		500	20			4
Tadmuck Br	ook Schi:	st (MLT	MBC)	0.012	0.49	0.078	0.001	583	96	359	74	1156	23	31	387	145	0.02	1.500						
se10a81	0.685	0.042	0.073	0.003	0.30	0.060	0.001	530	25	455	16	610	25	75	469	31	0.00	0.250						
se10a31 se09b09	0.798 0.762	0.080 0.048	0.073 0.078	0.005	0.35 0.31	0.067 0.060	0.001	596 575	45 28	456 482	31 18	841 615	37 38	54 78	480 499	59 34	0.00	1.110 0.550						
se09b12	0.955	0.052	0.094	0.004	0.35	0.064	0.001	681	27	577	21	730	22	79	605	39	0.00	0.820						
se10a56	1.013	0.032	0.094	0.004	0.35	0.064	0.001	711	41	605	32	732	28	83	634	59	0.00	0.210						
se10a56 se09b18	1.013 1.033	0.081 0.070	0.098 0.099	0.005	0.35 0.38	0.064 0.061	0.001	711 720	41 35	605 609	32 30	732 645	28 47	83 94	634 646	59 55	0.01	0.210 0.720						
se09b18	1.033	0.070	0.099	0.005	0.38	0.061	0.001	720	35	609	30	645 700	47	94	646	55	0.00	0.720						
se10a68	1.519	0.062	0.103	0.004	0.32	0.063	0.001	938	38	830	20	990	45	89	845	39	0.00	0.810						
se09b07 se10a09	1.792 2.120	0.084 0.276	0.140 0.142	0.005	0.35 0.45	0.077 0.098	0.001	1043 1155	31 90	844 856	26 94	1134 1595	35 22	74 54	902 973	48 168	0.00	0.050						
se10a32	1.904	0.139	0.152	0.011	0.48	0.073	0.001	1083	49	914	60	1002	30	91	1019	94	0.00	0.160						
se09b23	2.307	0.113	0.166	0.006	0.34	0.074	0.001	1214	39 47	992 1025	36 48	1048 1434	24 157	95 71	1038	62 83	0.01	0.820						
se10a37 se09b27	4.014 3.682	0.322	0.204 0.239	0.013	0.41 0.32	0.117	0.001	1637 1568	65 53	1198 1383	72 53	1911 1489	13 80	63 93	1360 1463	128 90	0.00	0.590 0.220						
se14a84	4.463	0.149	0.286	0.009	0.46	0.102	0.001	1724	28	1622	44	1658	24	98	1708	55	0.01	0.090						
se09b22 se09b13	6.523	0.415	0.291	0.012	0.32	0.124	0.002	2049 1977	34	1646 1673	58 59	2018 1943	24 16	82	1792	102 69	0.00	0.970						
se10a19 se10a71	8.135 0.648	0.471 0.121	0.359 0.068	0.016 0.007	0.40 0.29	0.147 0.061	0.009 0.001	2246 507	52 74	1979 424	78 44	2315 657	110 36	85 65	2178 437	105 85	0.00	0.120 0.790		424	44			
se10a62	0.577	0.081	0.069	0.004	0.19	0.055	0.001	463	52	432	22	406	48	106	435	43	0.56	0.050		432	22			
se10a49 se10a29	0.627	0.162	0.070	0.007	0.20	0.061	0.001	494 500	72	436 443	43 47	624 496	37	70 89	441 455	84 88	0.57	0.070		436	43 47			
se10a41 se09b20	0.741	0.114	0.073	0.007	0.32 0.29	0.063	0.001	563 516	67 55	451 466	43 35	701 555	47 38	64 84	470 476	82 66	0.11 0.37	0.160	451 43 466 35					
se10a28	0.708	0.075	0.075	0.006	0.38	0.063	0.002	544	44	469	36	702	57	67	492	67	0.10	0.080	469 36					
se10a27 se10a42	0.742	0.117	0.075	0.008	0.30	0.057	0.001	563	76	486	60	495	37	103	508	111	0.82	0.200	489 49	,)				
se10a67 se10a38	0.702 0.656	0.107 0.169	0.079 0.080	0.005	0.20 0.22	0.059 0.062	0.001 0.001	540 512	64 104	492 497	28 54	566 673	37 42	87 74	497 499	55 104	0.47 0.89	0.080 0.170	492 28 497 54					
se10a11	0.733	0.081	0.081	0.005	0.29	0.061	0.001	558	48	500	31	626	43	80	511	58	0.23	0.370	500 31					
sel0a18 sel0a22	0.754	0.088	0.082	0.007	0.39	0.060	0.001	571	49	506	45 26	564	28	83 93	529	48	0.22	0.120	506 43	, ;				
se10a22 se09b29	0.699 0.774	0.068 0.050	0.085 0.087	0.004	0.26 0.25	0.059 0.061	0.001 0.001	538 582	40 29	524 536	26 17	564 625	28 44	93 86	527 544	48 32	0.73 0.12	0.370 1.300	524 26 536 17	i 7				
se09b29	0.774	0.050	0.087	0.003	0.25	0.061	0.001	582	29	536	17	625	44	86	544	32	0.12	1.300	536 17					
se09b08	0.796	0.103	0.087	0.006	0.27	0.062	0.001	594 594	58	540 540	36	687 687	49	79	550	68	0.37	0.630	540 56 540 36	, ;				
se10a58 se10a58	0.896 0.896	0.122 0.122	0.088	0.009	0.37 0.37	0.060 0.060	0.001 0.001	650 650	65 65	542 542	52 52	616 616	31 31	88 88	572 572	97 97	0.11 0.11	0.760 0.760	542 52 542 52					
se09b19	0.903	0.124	0.091	0.009	0.36	0.063	0.001	654	66	564	54	694	28	81	591	98	0.20	0.190	564 54					
se10a70	0.903	0.124	0.091	0.009	0.20	0.063	0.001	607	114	574	54	684	58	81	578	104	0.20	1.040	574 54					
se10a70 se10a17	0.818 0.900	0.205 0.061	0.093 0.095	0.009	0.20 0.36	0.062 0.064	0.002	607 652	114 33	574 588	54 27	684 745	58 25	84 79	578 609	104 49	0.78	1.040 0.190	574 54 588 22					
se10a17	0.900	0.061	0.095	0.005	0.36	0.064	0.001	652	33	588	27	745	25	79 87	609	49	0.07	0.190	588 27					
se10a26 se10a26	0.911	0.104	0.096	0.010	0.44	0.062	0.000	658	55	588 588	57	675	15	87	623	96 96	0.24	0.360	588 57					
se10a39 se10a39	0.853 0.853	0.272 0.272	0.096 0.096	0.010 0.010	0.16 0.16	0.080 0.080	0.002 0.002	626 626	149 149	593 593	56 56	1187 1187	55 55	50 50	596 596	110 110	0.83	0.360 0.360	593 56 593 56	i i				
se09b21	0.947	0.109	0.101	0.006	0.25	0.065	0.001	677	57	617	33	769	45	80	627	63	0.32	0.430	617 33					
se10a50 se10a78	1.061	0.242	0.103	0.008	0.14	0.061	0.001	734	48	637	48 43	688	49 27	99	629	93 77	0.92	0.550	637 43					
se10a36 se10a10	1.021 1.013	0.175 0.114	0.104 0.114	0.008	0.23 0.23	0.062 0.062	0.001 0.001	714 710	88 57	641 699	49 34	669 682	36 30	96 102	652 701	93 63	0.42 0.84	0.150 0.410	641 49 699 34) -				
se10a66	1.385	0.452	0.124	0.025	0.30	0.073	0.001	883	192	755	141	1023	32	74	786	263	0.54	0.610	755 141					
se10a15 se09b10	1.300	0.101	0.128	0.008	0.40	0.08/	0.001	872 1052	43 55	937	44 40	851 1347	42 68	91 70	821 966	74 73	0.05	0.540	1347 68					
se10a12 se10a60	1.686 2.399	0.101 0.249	0.158 0.181	0.005	0.24 0.31	0.093 0.084	0.010 0.001	1003 1242	38 74	944 1073	25 64	1498 1293	209 25	63 83	958 1128	47 115	0.15	0.350 0.220	1498 209 1293 25) ;				
se10a21	2.247	0.175	0.196	0.009	0.29	0.077	0.001	1196	55	1155	48	1131	24	102	1171	82	0.51	0.100	1131 24	ł				
se10a51 se10a76	2.942 5.235	0.494	0.218	0.01/	0.24	0.1039	0.001	1393	12/ 74	12/1	92 116	1599	50 14	91 99	1302	168	0.39	0.510	1682 14	, L				
se10a59 se10a57	7.097 9.348	0.608 0.514	0.354 0.423	0.022 0.027	0.36 0.58	0.121 0.127	0.001 0.001	2124 2373	76 50	1955 2273	104 122	1970 2060	15 11	99 110	2071 2382	146 98	0.11 0.32	0.020 0.570	1970 15 2060 11					
se09b17	8.606	0.318	0.424	0.015	0.46	0.134	0.003	2297	34	2279	66	2152	37	106	2297	67	0.75	0.180	2152 37					

			Measure	d Isotop	oic Ratio	os								Calculated Ages (M	a)				Detrital (Ma)	Metamorphic (Ma)	CA-TIMS	6 (Ma)	
Sample/	²⁰⁷ Pb/	+1σ	²⁰⁶ Pb/	+1 <i>a</i>	Pho	²⁰⁷ Pb/	+10	²⁰⁷ Pb/	+1σ	²⁰⁶ Pb/ ²	+1σ	²⁰⁷ Pb/	+10	U-Pb/Pb-Pb	Concordia	+2.4	Probability of	Th/II	For Prob Dens plots	For Prob Dens plots	²⁰⁶ Pb/ ²³⁸	+2.4	notee
Analysis	²³⁵ U	110	²³⁸ U	110	Idio	²⁰⁶ Pb	110	²³⁵ U	110	³⁸ U	110	²⁰⁶ Pb	110	concordancy (%)	age	120	concordance	111/0	age ±1σ	age ±1σ	U	120	notes
MERRIMAG	CK BELT																						
mr17b17	nation (K 0.550	0.017	0.067	0.001	0.28	0.055	0.001	445	11	419	7	417	26	101	424	13	0.03	0.793					
mr17b53	0.644	0.025	0.071	0.002	0.41	0.059	0.001	505	16	441	14	575	39	77	464	25	0.00	0.448					
mr18b48	0.835	0.039	0.076	0.002	0.33	0.066	0.001	617	21	470	14	803	39	59	492	27	0.00	0.258					
mr18b30	0.695	0.032	0.079	0.003	0.31	0.058	0.002	536	19	492	14	532	34	93	503	25	0.03	0.719					
mr17b57	0.711	0.030	0.080	0.002	0.27	0.063	0.001	545	18	494	11	724	35	68	503	21	0.00	0.235					
mr17a40 mr17b37	0.775	0.048	0.082	0.004	0.44	0.063	0.001	583 593	28 23	506 540	26 14	714	32	71	539	46 27	0.01	0.414					
mr17b20	1.130	0.089	0.099	0.005	0.33	0.078	0.001	768	42	607	30	1158	24	52	639	57	0.00	0.217					
mr18a40 mr17b29	2.015	0.089	0.118	0.006	0.53	0.102	0.002	1074	32	717 939	34 25	1665	37	43	847 988	63 46	0.00	0.405					
mr18b29	1.954	0.053	0.175	0.004	0.40	0.074	0.001	1100	18	1042	21	1050	20	99	1076	32	0.01	0.754					
mr18a30	2.622	0.245	0.176	0.012	0.35	0.104	0.001	1307	69	1046	63	1700	18	61	1129	114	0.00	0.431					
mr17a42 mr17b28	2.038 1.439	0.059	0.177	0.004	0.40	0.077	0.001	905	20 37	1053	41	1132	22 50	93	964	36 62	0.00	1.216					
mr17a49	2.249	0.097	0.179	0.006	0.41	0.087	0.002	1197	30	1062	34	1349	39	79	1137	55	0.00	1.060					
mr17b33 mr17b19	2.682	0.192	0.195	0.010	0.34	0.099	0.003	1323	53 25	1151	51 26	1599	49 21	72	1221	89 43	0.00	0.392					
mr18b23	2.495	0.151	0.198	0.009	0.39	0.088	0.001	1271	44	1164	50	1375	22	85	1225	79	0.04	0.326					
mr18b10	2.715	0.148	0.204	0.009	0.40	0.090	0.002	1332	41	1195	48	1418	34	84	1275	75	0.00	0.351					
mr18b40 mr18a54	2.593	0.098	0.209	0.005	0.33	0.088	0.001	1299	28 17	1223	28 18	1381	20	89 99	1259	46 29	0.02	0.200					
mr18a23	5.218	1.062	0.231	0.014	0.15	0.197	0.006	1856	173	1339	76	2799	51	48	1359	150	0.02	0.606					
mr18a08	3.307	0.159	0.232	0.010	0.44	0.091	0.002	1483	38	1343	52	1440	39	93	1445	73	0.00	0.808					
mr18a53	3.109	0.120	0.233	0.004	0.34	0.088	0.001	1435	30	1349	32	1374	22	98	1394	51	0.02	0.193					
mr18a47	3.348	0.107	0.234	0.005	0.36	0.096	0.001	1492	25	1355	28	1549	17	88	1430	45	0.00	0.528					
mr18a36 mr18a57	3.121 3.104	0.068	0.235	0.005	0.45	0.088	0.001	1438 1434	17	1360 1376	24 28	1382	14 21	98 97	1421 1413	32 41	0.00	0.428					
mr18b13	3.495	0.144	0.238	0.008	0.40	0.102	0.001	1526	33	1378	41	1670	17	83	1473	62	0.00	0.185					
mr18b27	3.250	0.121	0.239	0.006	0.34	0.093	0.001	1469	29	1384	31	1493	23	93	1429	50 35	0.01	0.362					
mr18b50	3.468	0.066	0.240	0.004	0.44	0.095	0.001	1520	15	1390	21	1538	11	90	1450	29	0.00	0.171					
mr18a19	3.395	0.083	0.245	0.004	0.35	0.093	0.001	1503	19	1412	22	1491	18	95	1464	34	0.00	0.472					
mr17b22 mr17b23	3.319	0.105	0.246	0.005	0.30	0.094	0.001	1486 1529	25 17	1416 1440	24 22	1501	30	94	1448 1498	40 32	0.02	0.343					
mr17b13	3.329	0.080	0.251	0.004	0.33	0.091	0.001	1488	19	1441	20	1451	13	99	1467	32	0.04	0.278					
mr17b14	3.655	0.110	0.254	0.005	0.34	0.096	0.001	1562	24	1460	27	1541	22	95	1516	42	0.00	0.371					
mr17b09	3.790	0.132	0.264	0.005	0.27	0.097	0.001	1591	28	1513	25	1560	23	97	1544	43	0.02	0.304					
mr17a11	4.020	0.121	0.266	0.007	0.45	0.098	0.001	1638	25	1519	37	1585	19	96	1615	48	0.00	0.726					
mr18b39	3.963	0.1057	0.269	0.005	0.43	0.098	0.001	1627	20	1520	27	1578	15	97	1585	40	0.00	0.400					
mr17b42	3.917	0.106	0.273	0.005	0.37	0.099	0.001	1617	22	1557	27	1597	18	97	1596	40	0.03	0.973					
mr18b07 mr18b32	4.140 4.557	0.119	0.275	0.006	0.36	0.102	0.001	1662 1741	24 52	1565	28 77	1660	21	94	1625	43	0.00	0.453					
mr17a29	4.102	0.137	0.277	0.006	0.34	0.105	0.001	1655	27	1576	32	1710	24	92	1623	49	0.02	0.988					
mr18a12	4.217	0.107	0.280	0.006	0.41	0.101	0.001	1677	21	1593	29	1642	17	97	1656	40	0.00	0.271					
mr18a24	4.304	0.108	0.281	0.006	0.43	0.103	0.001	1694	24	1601	30	1675	17	96	1662	44	0.00	0.559					
mr17b60	4.580	0.157	0.283	0.006	0.32	0.107	0.001	1746	29	1607	31	1743	22	92	1679	50	0.00	0.496					
mr18a16 mr18a35	4.359	0.075	0.288	0.004	0.45	0.103	0.001	1705 1723	14 20	1631 1634	22 29	1684 1646	13	97	1693 1704	28	0.00	0.336					
mr17a32	4.507	0.090	0.291	0.005	0.43	0.103	0.001	1732	17	1646	25	1682	14	98	1716	32	0.00	0.929					
mr18b44 mr18a22	4.518	0.095	0.294	0.005	0.41	0.105	0.001	1734	17	1661 1670	25	1714	13	97	1717	34 24	0.00	0.369					
mr18b43	5.622	0.112	0.319	0.005	0.40	0.114	0.001	1920	17	1784	25	1864	13	96	1887	34	0.00	0.238					
mr18a56	9.993	0.302	0.371	0.009	0.42	0.177	0.002	2434	28	2035	44	2627	16	77	2345	58	0.00	0.850					
mr18a50 mr17a34	9.992	0.277	0.394 0.465	0.009	0.39	0.168	0.001	2434 2622	26 19	2139 2462	40 42	2542 2635	10	84 93	2366	52 37	0.00	0.406					
mr18b34	0.546	0.035	0.064	0.003	0.34	0.057	0.001	442	23	401	17	475	37	84	412	31	0.08	0.783	401 17				
mr18a14 mr18b11	0.565	0.042	0.065	0.003	0.34	0.055	0.001	455 387	27	409	20	412	58 35	99 87	420 406	37	0.10	0.814	409 20		432.19	0.68	
mr17b32	0.508	0.026	0.067	0.002	0.26	0.055	0.001	417	17	416	11	402	43	104	417	20	0.98	0.753	416 11		434.26	0.46	
mr18b19	0.522	0.033	0.067	0.003	0.31	0.056	0.001	426	22	417	16	452	34	92	420	29	0.68	0.738	417 16		473.4	1.1	
mr17a55 mr18a20	0.572	0.032	0.070	0.002	0.22	0.059	0.001	459	18	438	10	393	45 49	111	441 436	20	0.51	0.819	438 10				
mr18b41	0.590	0.036	0.072	0.002	0.27	0.059	0.001	471	23	447	14	582	36	77	452	27	0.32	0.454	447 14				
mr17a31 mr17b31	0.578 0.571	0.033	0.072	0.002	0.21	0.056 0.057	0.001	463 458	21 17	447 449	10 11	449 501	47 32	100	449 451	20 21	0.46	1.006 0.646	447 10 449 11				
mr17a10	0.552	0.054	0.072	0.002	0.17	0.063	0.001	446	35	449	14	719	46	62	448	27	0.95	0.798	449 14				
mr17b58	0.566	0.047	0.073	0.003	0.26	0.055	0.001	456	30	453	19	425	49	107	454	35	0.94	0.880	453 19				
mr17b40	0.574	0.024	0.073	0.002	0.35	0.055	0.001	454	32	458	19	573	53	80	458	36	0.87	1.129	458 19				
mr18a09	0.579	0.023	0.074	0.002	0.32	0.055	0.001	464	15	459	12	403	31	114	460	21	0.77	0.063	459 12				
mr18b37 mr18a55	0.599	0.026	0.074	0.002	0.28	0.056	0.001	477 491	16	461 463	11	472	45 42	98	465	20 24	0.36	0.575	461 11 463 13				
mr17a44	0.581	0.023	0.075	0.002	0.31	0.053	0.001	465	15	463	11	339	32	137	464	20	0.93	0.308	463 11				
mr17a51	0.581	0.031	0.075	0.002	0.31	0.053	0.001	465	20	464	15	323	39	144	464	27	0.98	0.580	464 15				
mr18b12	0.542	0.024	0.075	0.002	0.28	0.033	0.001	403	16	407	16	149	41	315	400	27	0.09	0.472	407 10				
mr18a33	0.617	0.027	0.076	0.002	0.29	0.058	0.001	488	17	470	12	534	40	88	474	21	0.29	0.077	470 12				
mr17a21 mr17a23	0.580	0.042	0.077 0.077	0.003 0.004	0.26	0.060	0.002	464 529	27 38	476 480	17 24	596 781	56 42	80	474 490	32 45	0.67	0.695	476 17 480 24				
mr17b43	0.632	0.027	0.078	0.002	0.29	0.057	0.001	497	17	481	12	494	32	97	485	21	0.36	0.519	481 12				
mr17a41	0.628	0.023	0.078	0.001	0.26	0.058	0.001	495	14	483	9	533	25	91	485	17	0.40	0.547	483 9				
mr18a44	0.685	0.022	0.079	0.002	0.29	0.059	0.001	530	31	490 491	17	555 647	41	88 76	493	32	0.32	0.216	490 9				
mr17a09	0.637	0.016	0.079	0.001	0.38	0.056	0.000	501	10	492	9	442	15	111	496	16	0.39	0.234	492 9				
mr18b21 mr17a07	0.630 0.645	0.020	0.080	0.002	0.33	0.058	0.001	496 506	12 10	497 502	10 7	529 474	27 22	94	497 503	18 13	0.96	0.532	497 10 502 7				
mr17a20	0.635	0.027	0.082	0.002	0.26	0.059	0.001	499	17	509	11	576	35	88	506	20	0.60	0.830	509 11				
mr17a28	0.671	0.051	0.083	0.004	0.33	0.059	0.001	522	31	514	25	552	31	93	516	44	0.81	0.170	514 25				
mr18a21	0.662	0.059	0.087	0.002	0.18	0.058	0.001	516	25 31	536 548	13	530	50	81	544	25 28	0.97	0.420	548 14				

			Measure	d Isotop	oic Ratio	os								Calculated Ages (Ma	a)				Detrital (M	a)	Metamorphic (Ma)	CA-TIM	6 (Ma)	
Sample/ Analysis	²⁰⁷ Pb/ ²³⁵ U	±lσ	²⁰⁶ Pb/ ²³⁸ U	±lσ	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±lσ	²⁰⁷ Pb/ ²³⁵ U	±lσ	²⁰⁶ Pb/ ² ³⁸ U	±lσ	²⁰⁷ Pb/ ²⁰⁶ Pb	±lσ	U-Pb/Pb-Pb concordancy (%)	Concordia age	±2σ	Probability of concordance	Th/U	For Prob Dens	plots ±1σ	For Prob Dens plots age ±1σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	not
mr17b41	1.209	0.090	0.123	0.007	0.37	0.069	0.001	805	42	749	39	904	22	83	773	67	0.23	0.098	749	39				
mr17b38 mr17a39	1.156	0.139	0.128	0.006	0.19	0.065	0.002	780 1000	65 28	776 953	33 28	774 977	73	100	776 975	63 47	0.95	0.524	776 977	33				
mr17a12	1.663	0.076	0.160	0.004	0.25	0.077	0.001	995	29	956	21	1127	29	85	966	37	0.22	0.320	1127	29				
mr17b54 mr17a38	1.657 1.751	0.093 0.041	0.165 0.168	0.005	0.28	0.074 0.073	0.001	992 1028	36 15	986 1001	29 15	1038 1009	39 16	95 99	988 1014	51 25	0.86	0.668	1038 1009	39 16				
mr18b38	1.784	0.077	0.170	0.005	0.32	0.073	0.001	1040	28	1012	26	1002	36	101	1024	44	0.38	1.435	1002	36				
mr18b24 mr18a26	1.845	0.071	0.171	0.004	0.33	0.074	0.001	1062 990	25 62	1016	24 34	1047 983	29 48	97 104	1036 1014	40 64	0.10	0.418	1047 983	29 48				
mr18b52	1.662	0.096	0.174	0.005	0.27	0.073	0.002	994	36	1033	29	1026	44	101	1019	51	0.33	0.799	1026	44				
mr17b39 mr18a43	1.827	0.053	0.180	0.004	0.40	0.073	0.001	1055	19 29	1066 1083	23 23	1014 1272	15 37	105	1059 1097	34 40	0.65	0.259	1014 1272	15 37				
mr17b30	2.104	0.104	0.188	0.006	0.32	0.079	0.001	1150	34	1113	32	1175	34	95	1129	54	0.34	0.460	1175	34				
mr17a18 mr17a22	1.900 2.140	0.176	0.189	0.010	0.30	0.072	0.002	1081	62 22	1116	57 19	977 1091	53 24	114	1100	95 33	0.61	0.390	977 1091	53 24				
mr18b28	2.316	0.067	0.201	0.004	0.32	0.079	0.001	1217	21	1179	20	1178	20	100	1197	33	0.11	0.490	1178	20				
mr17a50 mr18a13	2.030	0.099	0.203	0.005	0.28	0.073	0.001	1126	33 22	1190 1190	29 21	1012 1099	33 22	118	1162	49 35	0.09	0.804	1012 1099	33 22				
mr17a17	2.593	0.114	0.211	0.006	0.34	0.084	0.002	1299	32	1234	33	1285	37	96	1266	54	0.09	0.559	1285	37				
mr17a48 mr18b51	2.556	0.084	0.211	0.005	0.37	0.082	0.001	1288 1347	24 51	1235 1250	27 49	1237 1363	20 29	100	1266 1291	42 83	0.07	0.445	1237	20 29				
mr17b24	2.640	0.182	0.215	0.008	0.27	0.087	0.001	1312	51	1254	42	1366	20	92	1275	74	0.31	0.191	1366	20				
mr18b17 mr17b10	2.555	0.117	0.215	0.006	0.28	0.084	0.001	1288	34 30	1254	30 29	1289 1415	27 25	97	1268	50 48	0.38	0.171	1289	27				
mr17b08	2.707	0.178	0.221	0.000	0.32	0.085	0.001	1328	49	1287	49	1344	25	96	1307	81	0.03	0.380	1344	25				
mr17b51 mr18a29	2.705	0.106	0.224	0.005	0.31	0.085	0.001	1330	29 120	1303	28	1307 1431	24 48	100	1316	47	0.43	0.550	1307	24 48				
mr18a46	2.829	0.129	0.224	0.016	0.29	0.088	0.001	1363	34	1314	32	1375	30	96	1335	53	0.01	0.124	1375	30				
mr17b50 mr17b52	2.881	0.088	0.228	0.005	0.34	0.085	0.001	1377	23	1325	25	1322	24	100	1354	40	0.06	0.645	1322	24				
mr17b27	2.889	0.081	0.230	0.003	0.30	0.090	0.001	1369	21	1343	21	1347	20	100	1355	34	0.21	0.348	1347	20				
mr18a41	2.801	0.112	0.232	0.006	0.31	0.083	0.001	1356	30 30	1347	30 26	1267	25 24	106	1351	48	0.79	0.473	1267	25				
mr17b34	3.426	0.453	0.238	0.026	0.41	0.102	0.001	1510	104	1378	136	1657	68	83	1468	199	0.32	0.395	1657	68				
mr18b22	3.267	0.166	0.239	0.008	0.34	0.096	0.002	1473	40 40	1382	43 36	1548	31	89	1431	69 59	0.06	0.864	1548	31				
mr18a34	3.167	0.088	0.241	0.005	0.33	0.095	0.002	1449	22	1400	23	1526	19	92	1427	37	0.06	0.503	1526	19				
mr18b18	3.352	0.169	0.243	0.008	0.32	0.098	0.001	1493	39	1402	40	1580	20	89	1446	66 28	0.05	0.874	1580	20				
mr17b07	3.225	0.073	0.245	0.003	0.28	0.092	0.001	1458	29	1402	36	1475	19	96	1417	53	0.09	0.284	1475	19				
mr17b18 mr17b11	3.360	0.141	0.255	0.007	0.31	0.093	0.001	1495	33	1463	34	1482	20	99 105	1480	55 37	0.42	0.703	1482	20				
mr17a27	3.272	0.101	0.255	0.004	0.27	0.088	0.001	14/4	24	1404	33	1347	31	105	1409	47	0.90	0.598	1388	31				
mr18b49	3.915	0.228	0.262	0.016	0.53	0.098	0.001	1617	47	1501	83	1585	14	95	1612	95 40	0.10	0.120	1585	14				
mr17a14	3.517	0.090	0.263	0.003	0.37	0.091	0.001	1531	40	1510	37	1581	31	95	1519	62	0.65	1.017	1581	31				
mr17a13	3.631	0.069	0.266	0.004	0.39	0.093	0.001	1556	15	1522	20	1490	15	102	1547	28 37	0.09	0.456	1490	15				
mr17b49	3.656	0.005	0.269	0.005	0.38	0.094	0.001	1562	20	1533	26	1515	20	101	1553	37	0.07	0.307	1515	20				
mr17b47	3.796	0.076	0.271	0.005	0.45	0.095	0.001	1592	16	1548	25	1531	13	101	1585	32	0.05	0.068	1531	13				
mr17a30	4.164	0.302	0.276	0.011	0.28	0.112	0.002	1667	59	1572	57	1826	32	86	1614	95	0.18	0.980	1826	32				
mr17b48 mr18b08	3.922	0.105	0.281	0.006	0.39	0.097	0.001	1618 1609	22	1597 1597	29 30	1575	16 26	101	1613	41 49	0.46	0.828	1575	16 26				
mr17b12	4.038	0.109	0.282	0.006	0.39	0.098	0.001	1642	22	1601	30	1589	18	101	1631	41	0.16	0.483	1589	18				
mr18a52 mr18a31	3.906	0.094	0.282	0.004	0.32	0.093	0.001	1615	19	1603	22	1497 1518	19 21	107	1610	34 37	0.62	0.319	1497	19				
mr17a43	3.899	0.138	0.284	0.006	0.31	0.095	0.002	1613	29	1614	31	1537	33	105	1614	48	0.99	0.657	1537	33				
mr17a47 mr17a24	3.959 4.256	0.146	0.287	0.008	0.36	0.095	0.001	1626 1685	30 27	1628 1630	38 33	1526 1671	27 22	107	1627 1665	54 49	0.95	0.451	1526	27 22				
mr18b33	4.196	0.090	0.288	0.005	0.42	0.101	0.001	1673	18	1634	26	1637	16	100	1665	34	0.11	0.410	1637	16				
mr18a45 mr18a58	4.270 4.599	0.101 0.128	0.300 0.301	0.005	0.34 0.40	0.095	0.001	1688 1749	20 23	1690 1694	24 33	1533 1624	20 21	110 104	1688 1736	35 45	0.93	0.344 0.481	1533 1624	20 21				
mr17a08	5.117	0.148	0.330	0.006	0.30	0.109	0.001	1839	25	1838	28	1779	19	103	1839	42	0.98	0.329	1779	19				
mr17a37 mr18b20	18.059 18.985	0.420	0.580 0.617	0.011 0.009	0.40 0.51	0.205	0.002	2993 3041	22 14	2949 3099	44 36	2863 2846	14 9	103	2990 3037	45 27	0.28	0.353	2863 2846	14 9				
Eliot Forma	tion (KSI	ELI)																						
mr10b72 mr09b44	0.539	0.026	0.063	0.002	0.27	0.063	0.001	438 524	17	394 399	10	694 899	26 38	57	401 426	19 24	0.01	0.935						
mr09b51	0.588	0.023	0.067	0.002	0.33	0.058	0.001	470	15	420	11	526	28	80	432	20	0.00	0.446						
mr11a17 mr09b100	0.648	0.048	0.067	0.005	0.53	0.061	0.001	507 476	30 23	420	32	639 462	30 40	66 91	468 448	55 40	0.00	0.524						
mr10b88	0.760	0.082	0.069	0.006	0.40	0.073	0.001	574	47	430	36	1027	26	42	461	69	0.00	0.484						
mr09b75 mr10b106	0.580	0.024	0.069	0.002	0.32	0.056	0.001	464 658	15 17	430 432	11 16	471 1010	29 19	91 43	438 503	20	0.03	0.668						
mr10b32	0.660	0.037	0.069	0.005	0.58	0.062	0.001	515	23	432	27	676	26	64	487	44	0.00	1.057						
mr10b63	0.617	0.035	0.069	0.003	0.35	0.062	0.001	488	22	432 438	17	658 836	30 31	66 52	448	31 20	0.01	0.232						
mr10b115	0.979	0.055	0.071	0.002	0.42	0.076	0.001	693	28	440	20	1082	33	41	468	40	0.00	0.426						
mr09b40 mr09b22	0.591	0.019	0.071	0.001	0.31	0.057	0.001	471 504	12	443 445	9	481 449	25 38	92	450 463	16	0.02	0.730						
mr10b60	0.647	0.025	0.072	0.002	0.31	0.059	0.001	507	15	447	10	580	22	77	459	19	0.00	0.529						
mr10b39 mr10a11	0.632	0.020	0.072	0.002	0.35	0.058	0.001	497 504	12 22	448 448	10	523 338	28 26	86	463	18 30	0.00	0.834						
mr10b37	0.649	0.032	0.072	0.002	0.29	0.062	0.001	508	20	449	12	662	23	68	460	23	0.00	0.087						
mr10b73 mr09b45	0.646	0.029	0.072	0.002	0.24	0.063	0.001	506 537	18	450 451	9	695 652	32 20	65	457 495	18 22	0.00	0.829						
mr09b84	0.653	0.021	0.073	0.002	0.30	0.061	0.001	510	12	458	12	586	32	69 78	495	22	0.00	1.140						
mr10b62	0.667	0.026	0.075	0.002	0.33	0.060	0.001	519 1077	16	469 472	12	589 2143	31	80	482	22	0.00	0.407						
mr10b65	0.666	0.028	0.076	0.002	0.10	0.062	0.001	518	17	472	11	690	34	68	400	24	0.01	0.576						
mr10b49 mr10b08	0.682	0.034	0.076	0.002	0.33	0.062	0.001	528 609	20 24	473 495	15 11	682 840	34 53	69 50	487 506	27 22	0.01	0.756						
mr09b10	0.758	0.038	0.083	0.004	0.51	0.059	0.001	573	22	516	26	580	31	89	552	41	0.02	0.016						
mr10b89 mr10b81	1.560 0,960	0.078	0.085	0.004	0.44 0.44	0.110	0.002	954 683	31 27	525 551	22 25	1798 898	35 30	29	535 600	44 46	0.00	1.071 0.617						
						2.007	1	505	27			220	50	01	000	10	0.00							

Table A	2. Contin	ued.																	[<u> </u>			
			Measure	ed Isotop	pic Ratio	s								Calculated Ages (M	ia)				Detrital (Ma)	Metamorphic (Ma)	CA-TIM	IS (Ma)	Щ
Sample/ Analysis	²⁰⁷ Pb/ ²³⁵ U	±lσ	²⁰⁶ Pb/ ²³⁸ U	±lσ	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±lσ	²⁰⁷ Pb/ ²³⁵ U	±lσ	²⁰⁶ Pb/ ² ³⁸ U	±lσ	²⁰⁷ Pb/ ²⁰⁶ Pb	±lσ	U-Pb/Pb-Pb concordancy (%)	Concordia age	±2σ	Probability of concordance	Th/U	For Prob Dens plots age ±1σ	For Prob Dens plots age ±1σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	notes
mr10b117	1.090	0.171	0.091	0.014	0.48	0.080	0.001	748	83	563	81	1204	22	47	631	146	0.03	0.100					
mr10b101 mr10b99	1.172	0.044	0.094	0.003	0.40	0.061	0.001	682 787	23 52	626	36	623 1093	27	93 57	615	37 69	0.00	0.655					
mr10b131 mr11a08	1.550	0.176	0.118	0.012	0.46	0.090	0.001	950 1032	70 38	717 802	71	1420 1497	22	50 54	808 864	127	0.00	0.160					
mr10b55	2.180	0.100	0.147	0.008	0.55	0.087	0.001	1175	32	885	42	1365	25	65	1082	66	0.00	0.134					
mr10b96 mr11a07	1.853 1.983	0.111	0.159 0.160	0.006	0.31	0.075 0.087	0.001	1064 1110	39 33	949 957	33 24	1073 1369	22 27	88 70	987 993	59 45	0.01	0.795 0.877					
mr10b38	1.701	0.060	0.160	0.003	0.30	0.073	0.001	1009	23	958	19	1009	28	95	976	33	0.04	0.407					
mr10b68 mr10b80	2.152 1.870	0.072	0.161 0.166	0.004	0.36	0.087 0.077	0.001	1166 1070	23 20	965 990	21 18	1352 1120	30 22	71 88	1035	38 31	0.00	0.532					
mr10b85	2.766	0.223	0.168	0.008	0.30	0.119	0.002	1346	60	1003	45	1941	30	52	1061	86	0.00	0.574					
mr10b69 mr09b64	2.675	0.068	0.169	0.004	0.30	0.076	0.001	1087	24 36	1007	20 42	1085	23 52	93 74	1034	35 68	0.00	0.219					
mr10b54	2.594	0.194	0.190	0.011	0.40	0.092	0.001	1299	55	1119	62	1460	18	77	1214	101	0.01	0.279					
mr09b28 mr09b74	2.251	0.048	0.195	0.005	0.33	0.078	0.001	1288	26	1202	26	1094	26	96	11/4	43	0.00	0.585					
mr09b34 mr10b40	3.222	0.126	0.213	0.008	0.50	0.101	0.001	1462 1407	30 23	1244	44 29	1642	22	76 86	1416	61 44	0.00	0.479					
mr10b82	4.190	0.281	0.218	0.014	0.48	0.127	0.001	1672	55	1205	74	2062	40	62	1526	115	0.00	0.108					
mr10b70 mr09b63	3.094	0.135	0.220	0.010	0.50	0.092	0.001	1431 1425	34 25	1281 1285	51 36	1471 1496	14	87 86	1407 1394	67 49	0.00	0.324					
mr09b58	3.039	0.085	0.226	0.006	0.44	0.087	0.001	1417	21	1316	30	1360	25	97	1392	42	0.00	0.735					
mr09b54 mr10b30	3.017 3.341	0.098	0.230 0.231	0.004	0.30 0.37	0.092 0.099	0.001	1412 1491	25 28	1335 1340	23 31	1457 1608	19 19	92 83	1368 1423	39 50	0.01	0.367 0.546					
mr10b27	3.177	0.151	0.232	0.008	0.38	0.092	0.001	1452	37	1345	44	1463	18	92	1411	68	0.02	0.688					
mr10a09 mr09b72	3.392 3.257	0.197 0.138	0.232 0.236	0.009	0.33	0.089 0.089	0.001	1503 1471	46 33	1347 1364	47 35	1405 1405	16 35	96 97	1420 1417	78 56	0.00	0.381 0.445					
mr10b111	4.727	0.318	0.243	0.017	0.53	0.111	0.001	1772	56	1401	90	1811	17	77	1716	117	0.00	0.243					
mr10a20	3.847	0.132	0.243	0.009	0.49	0.095	0.001	1603	50 44	1401	48 47	1521	25	92 94	1498	60 78	0.00	0.549					
mr10b12 mr10b84	3.547	0.198	0.244	0.009	0.33	0.099	0.001	1538 1534	44 21	1405 1421	47	1609 1494	20	87	1470	76 41	0.01	0.224					
mr10b97	3.843	0.178	0.248	0.009	0.40	0.093	0.001	1602	37	1428	48	1495	14	95	1540	71	0.00	0.324					
mr10b21 mr10b74	3.585 3.528	0.113	0.249 0.256	0.006	0.38 0.41	0.095	0.001	1546 1533	25 17	1435 1471	30 24	1528 1496	13 11	94 98	1504 1517	46 33	0.00	0.590					
mr09b83	3.755	0.153	0.257	0.007	0.34	0.099	0.002	1583	33	1474	36	1602	31	92	1533	57	0.01	0.747					
mr09b19 mr09b98	3.638 4.005	0.105	0.257	0.005	0.34 0.48	0.097	0.001	1558 1635	23 33	1475 1481	26 52	1571 1652	24 18	94 90	1521	40 67	0.00	0.192					
mr10b58	3.910	0.158	0.263	0.006	0.30	0.108	0.002	1616	33	1507	33	1759	28	86	1557	54	0.01	1.016					
mr10b29	4.049	0.078	0.265	0.005	0.44	0.108	0.001	1581	22	1516	31	1760	67	97 87	1568	43	0.00	0.274					
mr10b103 mr10b112	4.281	0.239	0.271	0.008	0.26	0.109	0.001	1690 1792	46	1543	40 42	1784	25 14	86 88	1595	70 62	0.01	0.606					
mr11a20	4.034	0.150	0.273	0.008	0.38	0.104	0.001	1641	30	1555	38	1692	13	92	1612	56	0.03	0.654					
mr09b82 mr10a13	4.325 6.484	0.151 0.829	0.283 0.287	0.006	0.31 0.28	0.102 0.153	0.001	1698 2044	29 112	1608 1625	31 103	1664 2382	25 20	97 68	1656 1739	49 188	0.01	1.033 0.142					
mr10b34	4.990	0.334	0.292	0.017	0.43	0.116	0.002	1818	57	1653	84	1895	25	87	1781	112	0.04	1.386					
mr09b73 mr10a14	4.533 5.614	0.101 0.303	0.296	0.005	0.42	0.103	0.001	1737 1918	18 46	1669 1706	27 73	1678 1709	16 14	100	1723	36 93	0.01	0.691 0.294					
mr09b31	6.426	0.168	0.348	0.008	0.42	0.123	0.001	2036	23	1926	37	1995	17	97	2018	46	0.00	0.259					
mr10b17	13.379	0.330	0.404	0.009	0.45	0.179	0.001	2039	24	2610	37	2043	14	95	2688	40	0.01	0.124					
mr09b48 mr09b33	11.233 14.537	0.367	0.515 0.522	0.018	0.54 0.38	0.151 0.191	0.002	2543 2785	30 17	2678 2706	77 31	2353 2752	21 11	114 98	2532 2775	61 34	0.04	0.367 0.137					
mr09b25	15.517	0.358	0.533	0.012	0.47	0.196	0.002	2848	22	2754	49	2793	15	99	2848	44	0.03	0.457					
mr11a10 mr10a12	0.332 0.591	0.081 0.112	0.047 0.056	0.006	0.28 0.47	0.064 0.061	0.001 0.001	291 472	62 71	293 349	38 60	737 629	27 27	40 55	293 382	72 114	0.97 0.08	0.207 0.273	293 38 349 60)			
mr10b122	0.434	0.024	0.061	0.002	0.30	0.052	0.001	366	17	384	12	307	25	125	379	22	0.29	0.365	384 12	2			
mr10b83	0.484	0.032	0.065	0.002	0.29	0.058	0.001	401	22	403	14 19	556 461	22	73 87	412	35	0.72	0.373	403 19	,)			
mr10c11 mr10c14	0.498	0.032	0.065	0.002	0.24	0.058	0.003	410 407	22 36	405 405	12 17	547 749	110 35	74 54	406 405	23 33	0.82	0.332	405 12	2 7			
mr10b31	0.499	0.022	0.065	0.002	0.29	0.053	0.001	411	15	408	10	314	35	130	409	19	0.86	0.690	408 10)			
mr10b135 mr10b129	0.510 0.496	0.038 0.064	0.066 0.065	0.004	0.39 0.25	0.054 0.065	0.001 0.002	418 409	26 43	409 409	23 26	355 787	29 60	115	413 409	41 49	0.73 0.99	0.390 0.770	409 23 409 26	5			
mr10b108	0.535	0.037	0.066	0.003	0.28	0.054	0.001	435	24	411	15	374	37	110	416	29	0.34	0.661	411 15	;			
mr106121 mr10c07	0.489	0.045	0.066	0.003	0.29	0.054	0.001	404 434	31 39	412	21	372 493	30	84	410 420	39 44	0.80	0.353	412 21 416 23	3			
mr10b118 mr09b07	0.516	0.048	0.067	0.003	0.24	0.060	0.001	423	32	416	18	590 493	27	71	417	33	0.84	0.238	416 18	\$			
mr10a23	0.548	0.063	0.068	0.002	0.22	0.057	0.001	444	42	422	20	477	34	88	425	39	0.61	0.598	422 20)			
mr09b69 mr10b119	0.542	0.041	0.068	0.003	0.29	0.057	0.001	440 431	27 43	423 423	18 23	484 723	35 37	88 59	427 424	33 44	0.55	0.737	423 18	; 3			
mr09b94	0.508	0.084	0.068	0.005	0.21	0.059	0.002	417	56	423	28	580	56	73	422	54	0.92	0.756	423 28	3			
mr09b14 mr10a22	0.577 0.589	0.029 0.062	0.068 0.068	0.002	0.26 0.19	0.059 0.060	0.001 0.001	463 470	19 40	424 425	11 16	554 610	52 38	77 70	431 428	21 32	0.05	0.349 0.534	424 11 425 16	5			
mr10b126	0.564	0.034	0.069	0.003	0.39	0.056	0.001	454	22	428	19	459	27	93	438	34	0.27	0.297	428 19)			
mr09b11 mr10b120	0.513	0.019	0.069	0.002	0.30	0.052	0.001	421 414	34	428 430	17	302 671	34 41	142 64	426	32	0.57	0.392	428 9	7			
mr10b18	0.540	0.046	0.069	0.003	0.23	0.056	0.001	438	30	432	16	452	42	95	433	31	0.83	0.911	432 16	ý a			
mr10b20	0.605	0.034	0.069	0.010	0.24	0.056	0.001	480	45	433	58	469	43	92	433	88	0.30	0.648	433 58	3			
mr10b11 mr10b10	0.524	0.029	0.070	0.001	0.17	0.057	0.001	428 466	19 20	433 437	8 14	488 542	33 22	89 81	433	15 26	0.79	0.645	433 8 437 14	5 1			
mr10b125	0.600	0.032	0.070	0.002	0.38	0.059	0.001	477	30	437	25	551	37	81 79	444	45	0.17	0.280	437 25	;			
mr09b49 mr11a21	0.576 0.517	0.016 0.038	0.071 0.071	0.001 0.002	0.33 0.21	0.055 0.058	0.001 0.001	462 423	10 26	441 442	8 14	418 546	22 36	105 81	447 439	14 26	0.05 0.47	0.465 0.248	441 8 442 14	; £			
mr10c12	0.547	0.045	0.071	0.003	0.26	0.058	0.001	443	29	442	18	547	29	81	443	34	0.99	0.424	442 18	3			
mr10b24 mr10b79	0.556 0.570	0.024 0.168	0.071 0.071	0.002	0.28 0.15	0.056 0.062	0.001 0.001	449 458	15 109	444 444	10 38	445 668	26 35	100 66	445 445	19 74	0.74 0.90	0.117 0.317	444 10 444 38) 3			
mr11a22	0.580	0.038	0.071	0.003	0.28	0.059	0.001	464	24	445	16	552	33	81	449	30	0.44	0.296	445 16	5 7			
mr10b136 mr09b61	0.553	0.181	0.071	0.014	0.31	0.056	0.001	44/ 453	35	445 446	87 17	44/ 572	41 54	100	445 447	33	0.99	0.128	445 87	,			
mr09b35 mr09b50	0.557	0.029	0.072	0.002	0.22	0.056	0.001	449 484	19 26	446 448	10 15	454 683	39 47	98 66	446 454	19 29	0.85	0.405	446 10) 5			
mr09b21	0.595	0.024	0.072	0.002	0.30	0.059	0.001	474	15	449	10	565	31	79	455	19	0.11	0.695	449 10)			

		1	Measure	ed Isotop	pic Ratio	IS								Calculated Ages (M	a)				Detrital	(Ma)	Metamorphic (Ma)	CA-TIM	S (Ma)	
Sample/	²⁰⁷ Pb/	±lσ	²⁰⁶ Pb/	±lσ	Rho	²⁰⁷ Pb/	±lσ	²⁰⁷ Pb/	±lσ	²⁰⁶ Pb/ ²	±lσ	²⁰⁷ Pb/	±lσ	U-Pb/Pb-Pb	Concordia	±2σ	Probability of	Th/U	For Prob D	ens plots	For Prob Dens plots	²⁰⁶ Pb/ ²³⁸	±2σ	notes
Analysis	²³⁵ U		²³⁸ U		1010	²⁰⁶ Pb		²³⁵ U		³⁸ U		²⁰⁶ Pb		concordancy (%)	age	120	concordance		age	±lσ	age ±1σ	U	±20	
mr10b42	0.645	0.205	0.072	0.011	0.24	0.063	0.001	505	127	450	67	693	49	65	457	129	0.67	0.499	450	67				
mr10b51 mr11a19	0.560 0.541	0.086 0.116	0.072 0.072	0.003 0.007	0.16 0.24	0.056 0.057	0.001	452 439	56 76	450 451	21 44	432 478	41 49	104 94	450 448	41 84	0.97	0.377 0.651	450 451	21 44				
mr10b110	0.742	0.198	0.073	0.010	0.26	0.070	0.001	563	116	452	62	921	37	49	464	120	0.36	0.352	452	62				
mr09b68 mr10b33	0.631	0.049	0.073	0.004	0.37	0.060	0.001	497 466	31	453 453	26 7	595 465	47 21	76 97	468 455	46 13	0.18	0.608	453 453	26 7				
mr09b13	0.613	0.018	0.073	0.001	0.20	0.056	0.001	400 486	21	455	10	405 648	21 39	97 70	455	20	0.25	0.691	455	10				
mr09b55	0.562	0.044	0.073	0.003	0.22	0.061	0.001	453	29	455	15	631 520	50	72	454	29	0.96	0.810	455	15				
mr10b14 mr10a19	0.547	0.024	0.073	0.001	0.17	0.058	0.001	445	37	456	18	520 490	52 41	93	454	34	0.43	0.784	456	18				
mr10b127	0.651	0.094	0.074	0.006	0.29	0.063	0.001	509	58	461	37	698	33	66	470	69	0.42	0.448	461	37				
mr09b09 mr10b53	0.574	0.024	0.074	0.001	0.23	0.058	0.001	460 445	16 25	463 464	9 13	520 391	34 33	89 119	462 461	17 24	0.90	0.293	463 464	9				
mr09b93	0.604	0.055	0.075	0.003	0.24	0.065	0.001	480	35	464	20	762	43	61	467	37	0.67	0.166	464	20				
mr09b79 mr10b45	0.561 0.610	0.016	0.075	0.001	0.30	0.048 0.057	0.001	452 484	11 16	468 471	8 8	76 479	34 30	613 98	463 473	15 16	0.16	0.676	468 471	8				
mr09b59	0.609	0.018	0.076	0.001	0.33	0.054	0.001	483	11	473	9	366	31	129	476	16	0.37	0.180	473	9				
mr09b99 mr09b76	0.565 0.642	0.082	0.077 0.078	0.005	0.21	0.053 0.057	0.001	455 504	53 20	481 484	28 12	334 504	64 27	144 96	477 488	53 23	0.63	0.643	481 484	28 12				
mr09b65	0.613	0.029	0.079	0.002	0.23	0.057	0.001	486	18	490	10	506	35	97	489	19	0.82	0.308	490	10				
mr11a18 mr10b107	0.898	0.261	0.080	0.012	0.26	0.100	0.002	651 618	139 67	495 512	72 51	1615 739	30 26	31	509 538	140 95	0.29	0.361	495 512	72				
mrllal4	0.746	0.134	0.085	0.008	0.25	0.067	0.001	566	78	523	45	851	40	61	530	86	0.60	0.569	523	45				
mr10b22	0.712	0.040	0.094	0.002	0.21	0.063	0.001	546 600	24	579	13	695 501	36	83	572	25	0.18	0.703	579	13				
mr10b07	0.858	0.029	0.095	0.002	0.36	0.060	0.001	629	29	585 586	23	708	54 28	83	593	25 41	0.15	0.748	586	23				
mr09b41	0.922	0.054	0.109	0.004	0.35	0.057	0.002	664	28	667	26	502	58	133	666	44	0.90	0.896	667	26				
mr10b100 mr10a16	1.326	0.235 0.186	0.116	0.012	0.29	0.084	0.001	857 832	103 83	709 755	69 52	1297 858	28 31	55 88	737 770	131 98	0.18 0.39	0.322	709 755	69 52				
mr09b62	1.206	0.152	0.132	0.006	0.18	0.082	0.002	803	70	799	33	1257	46	64	800	64	0.96	0.332	799	33				
mr09b43 mr09b60	1.176 1.237	0.149 0.105	0.134 0.137	0.007 0.009	0.20 0.37	0.075 0.067	0.002 0.001	790 818	69 48	811 828	39 49	1071 851	42 43	76 97	807 823	73 80	0.76	0.816 0.367	1071 851	42 43				
mr09b08	1.397	0.072	0.142	0.006	0.42	0.069	0.001	888	31	854	34	903	32	95	874	55	0.35	0.457	903	32				
mr10b109 mr09b42	1.383 1.388	0.522 0.074	0.142	0.023	0.21	0.083	0.001	882 884	222 32	857 872	128 23	1271 960	31 27	67 91	862 875	240 41	0.92	0.156	1271 960	31 27				
mr09b32	1.398	0.150	0.150	0.006	0.19	0.077	0.002	888	64	901	33	1134	39	79	899	63	0.85	0.336	1134	39				
mr09b52	1.565	0.062	0.153	0.004	0.33	0.071	0.001	957	24	919	22	955	27	96 70	934	38	0.17	0.820	955	27				
mr10c08	1.421	0.149	0.154	0.001	0.16	0.079	0.001	893	63	939	29	1408	49	67	932	56	0.48	0.233	1408	49				
mr10c19	1.766	0.170	0.163	0.006	0.18	0.086	0.002	1033	62	972	32	1334	41	73	981	61	0.36	0.827	1334	41				
mr09670 mr10b71	1.756	0.058	0.165	0.004	0.33	0.073	0.001	1029	32	983 986	20 33	1013	32	97 96	1003	54 54	0.06	1.302	1013	23				
mr09b39	1.688	0.067	0.170	0.005	0.38	0.068	0.001	1004	25	1011	28	876	36	115	1007	44	0.81	0.695	876	36				
mr09b97	1.756	0.201	0.170	0.004	0.29	0.074	0.001	1028	74	1013	46	1237	41	83	1015	85	0.94	0.790	1237	41				
mr10a21	1.788	0.144	0.172	0.007	0.25	0.069	0.001	1041	53	1024	38	904	39	113	1029	68 240	0.76	0.692	904	39				
mr09b29	2.001	0.094	0.175	0.036	0.30	0.088	0.001	1116	235 31	1028	31	1584	28 37	96	1058	52	0.74	0.551	1584	28 37				
mr10b98	2.130	0.132	0.180	0.006	0.27	0.078	0.001	1158	43	1067	33	1143	25	93	1093	59	0.05	0.326	1143	25				
mr10b52	2.137	0.079	0.130	0.004	0.31	0.075	0.001	1121	20	1126	17	1129	22	100	1139	29	0.12	0.474	1178	22				
mr09b95	2.177	0.209	0.194	0.009	0.23	0.089	0.001	1174	67	1142	47	1415	27	81	1150	85	0.66	0.280	1415	27				
mr10b19	2.332	0.075	0.203	0.020	0.20	0.098	0.002	1222	27	1202	20	1299	26	95	1227	35	0.46	0.002	1299	26				
mr11a23	2.568	0.168	0.213	0.008	0.29	0.088	0.002	1292	48	1245	43	1388	39	90 87	1264	74 77	0.40	0.395	1388	39				
mr10a10	2.920	0.353	0.225	0.012	0.22	0.092	0.001	1387	91	1308	64	1466	30	89	1328	116	0.44	0.587	1466	30				
mr10b09 mr10c13	2.868 3.057	0.110	0.227	0.005	0.29	0.088	0.001	1373 1422	29 49	1317 1349	26 55	1385 1470	24 20	95 92	1340 1389	44 86	0.09	0.305	1385 1470	24 20				
mr10b13	3.469	0.116	0.254	0.006	0.35	0.095	0.001	1520	26	1458	31	1523	20	96	1495	47	0.06	0.578	1523	20				
mr10b48 mr10b102	3.435 3.901	0.171 0.297	0.256	0.009	0.34 0.31	0.097 0.101	0.001	1512 1614	39 61	1468 1469	44 62	1567 1642	17 24	94 89	1493 1534	68 103	0.36	0.305	1567 1642	17 24				
mr11a09	3.764	0.213	0.259	0.012	0.41	0.101	0.001	1585	45	1483	62	1647	13	90	1557	87	0.09	0.881	1647	13				
mr10b130 mr11a11	3.412	0.185	0.260	0.007	0.26	0.103	0.001	1507 1565	42 27	1491 1503	37 38	1672 1555	20	89 97	1497 1550	63 51	0.74	0.766	1672	20				
mr09b96	3.531	0.090	0.264	0.006	0.42	0.095	0.001	1534	20	1510	28	1538	16	97 98	1528	38	0.37	0.108	1538	16				
mr10b116 mr11a13	3.793 4.151	0.297	0.273	0.009	0.22	0.102	0.002	1591 1664	63 66	1557 1562	47 87	1668 1709	34 22	93	1567	83 125	0.62	0.560	1668	34 22				
mr10c18	4.103	0.338	0.274	0.017	0.39	0.105	0.001	1655	67	1573	86	1693	22	91	1628	125	0.24	0.463	1693	22				
mr10b137	4.430	0.698	0.282	0.038	0.43	0.108	0.001	1718	130	1600	191	1773	21	90	1692	255	0.51	0.629	1773	21				
mr09b81	4.182	0.235	0.285	0.006	0.35	0.100	0.001	1671	**/ 22	1626	30	1656	17	99 98	162/	41	0.01	0.595	1625	17				
mr09b12	4.123	0.099	0.288	0.004	0.30	0.100	0.001	1659	20	1631	21	1629	17	100	1646	33	0.25	0.348	1629	17				
mr10b23	4.774 4.309	0.445	0.290	0.015	0.28	0.121	0.003	1695	78 21	1041 1649	28	1970	44 16	83 101	1/00	40	0.14	0.959	1970	44 16				
mr09b30	5.013	0.207	0.324	0.009	0.32	0.117	0.002	1822	35	1811	42 45	1908	26	95	1817	62	0.81	0.027	1908	26				
mr09b20	17.648	0.458	0.568	0.011	0.47	0.211	0.001	2971	18 25	2740	45 57	2034 2914	12	103	2972	50	0.57	0.475	2054 2914	12				
Berwick For	mation (l	KSBWI)	0.070	0.007	0.23	0.050	0.007	450		107	10	500	25		· · · -	10	0.00	0.075						
mr05a72 mr04b85	0.572	0.022	0.068 0.070	0.002	0.31 0.48	0.058	0.001	459 473	14 12	427 435	10 13	522 414	35 25	82 105	435 456	18 22	0.03	0.979						
mr04b89	0.599	0.018	0.070	0.002	0.40	0.056	0.001	476	11	438	10	463	21	95	453	18	0.00	0.552						
mr04b31 mr04b86	0.621 0.651	0.032 0.027	0.071 0.075	0.002	0.23 0.36	0.060 0.058	0.002 0.001	491 509	20 17	442 468	10 14	609 514	80 32	73 91	448 481	19 25	0.02	0.669 0.425						
mr05a52	0.544	0.021	0.078	0.002	0.26	0.054	0.001	441	14	483	9	386	29	125	472	17	0.00	0.881						
mr04b80 mr04b61	0.841 0.908	0.031 0.064	0.086	0.002	0.36	0.063 0.070	0.001	620 656	17 34	529 571	13 25	702 937	36 31	75	555 593	25 47	0.00	0.492						
mr04b21	1.142	0.090	0.107	0.006	0.38	0.069	0.001	773	43	653	38	907	22	72	694	68	0.01	0.327						
mr05a88 mr05a66	1.271 1.398	0.088 0.091	0.120	0.007	0.42 0.66	0.071 0.079	0.001	833 888	39 39	731 738	40 60	968 1163	25 30	75	779 889	68 77	0.02	0.208						
mr05a24	1.722	0.084	0.146	0.006	0.40	0.076	0.001	1017	31	880	32	1090	36	81	942	54	0.00	1.668						
mr04b41 mr04b20	1.941	0.106	0.162	0.009	0.49	0.076	0.001	1095	37	970 993	48	1098	21	88	1061	72	0.00	0.175						
mr04b64	1.940	0.066	0.168	0.005	0.42	0.075	0.001	1095	23	999	27	1073	28	99	1021	42	0.00	0.970						
mr04b74	1.856	0.060	0.168	0.003	0.31	0.076	0.001	1066	21	1002	18	1090	27	92	1025	32	0.01	1.100						
ınru4093	2.048	0.057	0.1/4	0.004	0.43	0.078	0.001	1132	19	1032	22	1153	18	90	1094	55	0.00	U.480						

Table A	A2. Continued. Measured Isotopic Ratios																			-			-
	Measured Isotopic Ratios													Calculated Ages (M	a)				Detrital (Ma)	Metamorphic (Ma)	CA-TIM	S (Ma)	
Sample/ Analysis	²⁰⁷ Pb/ ²³⁵ U	±lσ	²⁰⁶ Pb/ ²³⁸ U	±lσ	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±lσ	²⁰⁷ Pb/ ²³⁵ U	±lσ	²⁰⁶ Pb/ ² ³⁸ U	±lσ	²⁰⁷ Pb/ ²⁰⁶ Pb	±lσ	U-Pb/Pb-Pb concordancy (%)	Concordia age	±2σ	Probability of concordance	Th/U	For Prob Dens plots age ±1σ	For Prob Dens plots age ±1σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	notes
mr05a125	1.352	0.161	0.178	0.007	0.18	0.072	0.002	868	70	1054	41	998	59	106	1005	73	0.01	0.415					
mr04b92 mr05a114	2.127	0.084	0.178	0.004	0.28	0.078	0.001	1158 1230	27 28	1057 1058	21 25	1136	28 37	93 84	1087	38 45	0.00	0.584					
mr04b50	2.397	0.176	0.189	0.007	0.24	0.087	0.006	1242	53	1114	36	1367	133	81	1142	66	0.03	0.402					
mr05a137 mr04b30	2.571 2.293	0.207	0.192	0.014	0.45 0.38	0.095 0.078	0.001	1293 1210	59 19	1131 1138	75 21	1520 1151	14 20	74 99	1238 1178	114 33	0.02	0.441 0.417					
mr05a25	2.459	0.078	0.195	0.005	0.41	0.085	0.001	1260	23	1150	27	1322	20	87	1216	42	0.00	0.863					
mr05a26 mr05a10	2.727 2.831	0.106	0.213 0.215	0.005	0.28 0.42	0.087 0.089	0.001 0.001	1336 1364	29 32	1244 1257	25 41	1365 1402	29 15	91 90	1277 1328	43 61	0.01	0.396					
mr04b25	4.616	0.680	0.216	0.007	0.11	0.136	0.016	1752	123	1260	36	2176	206	58	1268	72	0.00	0.279					
mr05a20 mr04b48	2.782 2.987	0.060	0.217 0.220	0.004	0.47 0.47	0.085 0.087	0.001	1351 1404	16 22	1266 1282	23 32	1327 1365	17 25	95 94	1334 1379	32 44	0.00	0.446 0.781					
mr05a22	2.835	0.084	0.223	0.005	0.41	0.086	0.001	1365	22	1297	29	1338	14	97	1344	42	0.02	0.582					
mr05a50 mr05a120	2.936	0.101 0.151	0.229	0.005	0.29	0.088	0.001	1391 1556	26 33	1330 1358	24 31	1390 1636	22 46	96 83	1355 1433	40 54	0.04	0.579					
mr05a82	2.991	0.064	0.235	0.005	0.45	0.089	0.001	1405	16	1359	24	1397	12	97	1396	32	0.03	0.437					
mr09a21 mr05a86	3.1/3	0.105	0.239	0.005	0.31	0.089	0.001	1451 1458	25 17	1379	25	1399 1479	15	99	1412 1438	41 30	0.02	0.394					
mr04b15	3.268	0.081	0.244	0.004	0.36	0.092	0.001	1473	19	1407	23	1474	15	95	1447	35	0.01	0.525					
mr05a90 mr05a77	3.339	0.087	0.248	0.005	0.47	0.098	0.001	1546	20	1420	29	1489	13	90	1525	38	0.00	0.864					
mr04b81	3.356	0.102	0.249	0.006	0.37	0.094	0.001	1494	24	1432	29	1503	15	95	1472	43	0.04	0.669					
mr05a11 mr09a40	3.627 3.829	0.051	0.256	0.003	0.44	0.093	0.001	1555	26	1468 1487	35	1497 1507	12	98 99	1536	22 50	0.00	0.565					
mr04b32	9.834	1.295	0.261	0.009	0.13	0.198	0.025	2419	121	1493	45	2812	206	53	1498	91	0.00	0.376					
mr05a12 mr05a21	4.152 3.886	0.129	0.261	0.007	0.41	0.102	0.001	1611	25	1497	25	1659	19	90	1511	49	0.00	0.490					
mr09a12	3.988	0.159	0.267	0.007	0.31	0.098	0.001	1632	32	1525	33	1590	20	96	1577	54	0.01	0.410					
mr05a27	4.049	0.098	0.208	0.005	0.45	0.101	0.002	1644	20	1554	24	1644	15	93	1610	36	0.00	0.069					
mr04b78	4.078	0.091	0.273	0.006	0.50	0.101	0.001	1650	18	1557	31	1638	12	95	1643	37	0.00	0.327					
mr05a83	4.141	0.123	0.276	0.005	0.38	0.102	0.001	1662	20	1573	26	1676	13	93	1632	38	0.00	0.617					
mr05a58	4.051	0.092	0.278	0.005	0.40	0.100	0.001	1645	18	1582	25	1629	14	97	1627	35	0.01	0.648					
mr04b38	4.224	0.085	0.279	0.005	0.48	0.101	0.001	1694	22	1580	32	1651	12	96 97	1664	43	0.00	0.527					
mr04b46	4.898	0.237	0.286	0.009	0.32	0.128	0.002	1802	41	1622	45	2069	28	78	1713	72	0.00	1.076					
mr09a30 mr09a33	4.618 3.762	0.163	0.287	0.007	0.36	0.107	0.001	1/53	33	1626 1679	35	1/48 1474	31	93	1/05	54 54	0.00	0.510					
mr04b91	5.237	0.117	0.316	0.007	0.49	0.111	0.001	1859	19	1772	33	1819	11	97	1853	38	0.00	0.108					
mr04b15 mr05a16	5.587 9.547	0.109	0.327	0.005	0.45	0.114	0.001	2392	34	1822	58	2649	14	98 73	2332	55 70	0.00	0.530					
mr05a32	11.294	0.365	0.444	0.013	0.45	0.177	0.002	2548	30	2368	58	2624	21	90	2538	61	0.00	1.021					
mr09a35	0.549	0.287	0.063	0.006	0.44	0.061	0.002	444	62	396	37	648	46	61	405	71	0.45	0.328	396 33	7			
mr05a47	0.513	0.066	0.064	0.006	0.36	0.055	0.001	421	44	398 402	35	412	23	97	406	64	0.63	0.566	398 35	5			
mr05a133	0.489	0.024	0.065	0.002	0.26	0.055	0.001	404	63	402	37	417	45	97	402	71	0.76	0.551	402 10	7			
mr09a34	0.473	0.020	0.065	0.002	0.31	0.052	0.001	393	13	406	10	288	54	141	402	18	0.35	0.273	406 10)	486 35	0.47	,
mr05a118	0.519	0.058	0.066	0.003	0.23	0.059	0.001	425	39	414	21	568	30	73	416	40	0.79	0.807	414 2		400.55	0.47	
mr09a38 mr09a11	0.391	0.099	0.067	0.005	0.15	0.058	0.002	335 411	72 64	417 419	31	544 373	67 39	77	407 418	59 62	0.25	0.548	417 31	1			
mr09a19	0.536	0.043	0.067	0.003	0.27	0.056	0.001	436	29	420	17	450	28	93	423	33	0.59	0.327	420 12	7			
mr09a10 mr04b12	0.528	0.039	0.067 0.068	0.003	0.27 0.34	0.054 0.057	0.001	430 458	26 19	420 425	17 14	383 485	30 27	110	422 434	31 26	0.70	0.523	420 11	7			
mr04b59	0.523	0.027	0.069	0.002	0.30	0.056	0.001	427	18	432	13	452	42	95	430	23	0.82	1.233	432 1.	3			
mr04b73 mr04b10	0.484 0.552	0.032	0.070 0.070	0.002	0.26	0.053	0.001	401 446	22 18	438 438	15 10	327 548	41 25	134	428 439	27 18	0.10	0.623	438 15	;			
mr04b14	0.604	0.033	0.070	0.002	0.33	0.060	0.001	479	21	439	15	606	33	72	449	28	0.06	0.833	439 15	5			
mr05a146 mr05a130	0.530 0.540	0.033	0.070 0.071	0.002	0.27	0.055	0.001	432 438	22 23	439 439	14 17	418 470	42 26	105	437 439	26 31	0.74	0.369	439 14 439 17	F 7			
mr05a46	0.510	0.019	0.071	0.001	0.27	0.054	0.001	419	13	440	9	358	24	123	435	16	0.11	0.465	440)			
mr05a139 mr05a37	0.567 0.597	0.033	0.071 0.071	0.003	0.34 0.24	0.058	0.001	456 476	21 24	441 442	17 13	531 424	27 39	83 104	446 447	30 25	0.49 0.17	0.537	441 11 442 11	7			
mr05a63	0.565	0.017	0.071	0.001	0.29	0.056	0.001	455	11	443	8	464	28	95	446	14	0.32	0.868	443 8	3			
mr05a113 mr04b94	0.562	0.042	0.072	0.003	0.27	0.057 0.056	0.001	453 460	27 18	446 453	17 14	494 458	29 30	90 99	448 455	32 25	0.82	0.586	446 11	7			
mr04b40	0.603	0.030	0.073	0.002	0.32	0.058	0.001	479	19	454	14	517	33	88	461	25	0.21	0.646	454 14	L.			
mr05a87 mr09a15	0.583	0.018	0.074	0.001	0.33	0.056	0.001	466 480	11 73	458 463	9 37	436 709	21 44	105	460 465	16 70	0.45	0.620	458 9) 7			
mr05a57	0.595	0.022	0.075	0.001	0.26	0.056	0.001	474	14	465	9	461	27	101	467	16	0.54	0.672	465)			
mr04b75 mr05a67	0.608 0.607	0.025	0.076 0.076	0.002	0.25	0.057 0.056	0.001	483 482	16 31	471 471	9 15	486 452	26 46	97 104	473 472	18 29	0.46	0.507	471 9	5			
mr04b35	0.641	0.023	0.076	0.002	0.34	0.057	0.001	503	14	474	11	494	22	96	483	21	0.05	0.474	474 1				
mr05a106 mr05a119	0.641 0.623	0.031 0.078	0.076 0.076	0.003	0.36 0.21	0.057 0.065	0.000 0.001	503 492	19 49	474 474	16 24	483 783	16 45	98 61	484 476	28 46	0.16 0.72	0.241 0.486	474 10 474 24	5 L			
mr04b28	0.649	0.027	0.076	0.002	0.32	0.061	0.001	508	17	475	12	648	37	73	484	22	0.06	0.755	475 11	2			
mr05a108 mr05a124	0.559	0.047 0.106	0.077	0.003	0.26	0.056	0.004	451 435	31 70	478 478	20 40	444 417	177 42	108	471 469	37 75	0.41	0.811 0.275	478 20 478 40)			
mr05a70	0.582	0.045	0.078	0.004	0.29	0.054	0.001	466	29	481	21	356	47	135	477	38	0.60	0.789	481 2				
mr05a110 mr04b79	0.652	0.048	0.082	0.003	0.23	0.059	0.001	510 479	29 22	511 517	17	575 341	41 35	89	510 506	31 27	0.98	0.778	511 13	7			
mr05a116	0.783	0.056	0.086	0.006	0.49	0.057	0.001	587	32	531	35	495	37	107	564	58	0.10	0.475	531 35	5			
mr05a91 mr04b62	0.673	0.079	0.088	0.005	0.22	0.058	0.001	523 567	48	545 556	27	517	42	105	540	51	0.66	0.757	545 22	7			
mr04b34	0.748	0.032	0.090	0.003	0.23	0.057	0.001	557	24	581	14	478	30	133	576	26	0.73	0.727	581 14	, F			
mr05a62	0.879	0.029	0.103	0.002	0.30	0.061	0.001	641	16	629	12	626	22	101	633	22	0.50	0.127	629 12	2			
mr05a69	0.861	0.035	0.103	0.003	0.30	0.060	0.001	648	22	660	15 15	588 801	43 35	107 82	631 657	26 28	0.99	0.435	660 1	5			
mr05a78	0.940	0.050	0.114	0.004	0.33	0.064	0.001	673	26	693	24	742	45	93	685	40	0.48	0.605	693 24	L.			
mr05a127	1.025	0.200	0.114	0.002	0.36	0.068	0.001	775	14 94	756	14 89	873	25 23	100	705	23 151	0.17	0.184	756 89)			
mr05a105	1.289	0.163	0.139	0.008	0.23	0.067	0.001	841 009	72	840	46 35	838	40	100	840	84	0.99	0.472	838 40)			
mr04b82	1.445	0.055	0.14/	0.006	0.35	0.065	0.001	912	27	890	22	923 779	24 28	96	901	52 37	0.45	0.681	779 24	3			
mr04b33	1.610	0.105	0.154	0.005	0.25	0.074	0.001	974	41	926	28	1030	19	90	938	52	0.27	1.095	1030 19)			

			Measure	d Isotop	oic Ratio	os								Calculated Ages (M	a)				Detrital	(Ma)	Metamorphic (Ma)	CA-TIMS (Ma	ı)
Sample/ Analysis	²⁰⁷ Pb/ ²³⁵ U	±lσ	²⁰⁶ Pb/ ²³⁸ U	±lσ	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±lσ	²⁰⁷ Pb/ ²³⁵ U	±lσ	²⁰⁶ Pb/ ² ³⁸ U	±lσ	²⁰⁷ Pb/ ²⁰⁶ Pb	±lσ	U-Pb/Pb-Pb concordancy (%)	Concordia age	±2σ	Probability of concordance	Th/U	For Prob De	ens plots ±1σ	For Prob Dens plots age ±1σ	$U^{206} Pb/^{238} \pm 2\sigma$	notes
mr05a147	1.692	0.431	0.155	0.023	0.29	0.082	0.001	1005	163	927	126	1237	25	75	950	228	0.66	0.209	1237	25			
mr04b09	1.688	0.073	0.163	0.004	0.27	0.076	0.001	1004	28	973	21	1102	26 30	88	983	37	0.30	0.787	1102	26			
mr05a23	1.594	0.174	0.164	0.008	0.22	0.071	0.001	968	68	978	44	965	37	101	976	81	0.88	1.396	965	37			
mr05a81 mr05a80	1.661 1.643	0.056	0.165	0.004	0.32	0.073	0.001	994 987	21 23	986 988	20 20	1010 964	25 27	98 102	990 987	33 34	0.74	0.318	1010 964	25 27			
mr09a18	1.537	0.131	0.167	0.005	0.16	0.079	0.002	945	52	997	26	1164	41	86	989	49	0.33	0.491	1164	41			
mr04b39 mr05a39	1.779 1.664	0.065	0.168	0.004	0.33	0.072	0.001	1038 995	24 25	1002 1006	23 28	987 981	23 32	101	1018	38 43	0.18	0.342	987 981	23			
mr05a31	1.832	0.104	0.174	0.009	0.46	0.076	0.002	1057	37	1036	50	1101	42	94	1052	71	0.65	0.571	1101	42			
mr05a79 mr05a89	1.699	0.079	0.177	0.005	0.28	0.073	0.001	1008 1071	30 16	1049 1061	26 16	1009 1071	29 22	104 99	1032	44 27	0.22	0.605	1009	29 22			
mr09a29	1.849	0.247	0.180	0.011	0.24	0.075	0.003	1063	88	1065	62	1079	79	99	1065	112	0.98	12.698	1079	79			
mr05a51 mr04b68	2.002	0.079	0.180	0.005	0.36	0.076	0.001	1116	27	1068	28 23	1099	25 34	97 91	1093	45 42	0.12	0.566	1099	25 34			
mr04b57	1.923	0.064	0.182	0.004	0.33	0.075	0.001	1089	22	1077	22	1070	25	101	1083	36	0.63	0.386	1070	25			
mr05a135 mr04b53	1.854 2.050	0.090	0.183	0.005	0.28	0.079	0.001	1065	32 26	1081 1093	27 27	1161 1050	27 23	93 104	1075	47 44	0.65	0.344	1161 1050	27 23			
mr05a144	2.107	0.105	0.186	0.006	0.34	0.082	0.001	1151	34	1102	35	1247	21	88	1126	57	0.22	0.417	1247	21			
mr04b23 mr05a42	2.117	0.080	0.188	0.005	0.33	0.081	0.001	1154 1158	26 18	1110 1139	25 21	1229	32 16	90 99	1130	42 32	0.14	0.295	1229	32			
mr05a41	2.284	0.149	0.199	0.009	0.34	0.084	0.001	1207	46	1167	48	1286	23	91	1188	78	0.46	0.178	1286	23			
mr04b24 mr05a40	2.294	0.064	0.199	0.003	0.30	0.081	0.001	1210	20	1170	18 20	1231	25 25	95	1187	31	0.07	0.380	1231	25			
mr05a30	2.425	0.124	0.200	0.006	0.29	0.087	0.001	1250	37	1189	32	1355	17	88	1212	55	0.12	0.284	1355	17			
mr09a22 mr09a24	2.679	0.534	0.203	0.029	0.36	0.089	0.001	1323	147 57	1189	157	1397 1204	18 36	85	1256	258 86	0.44	0.080	1397	18			
mr05a128	2.329	0.177	0.211	0.009	0.29	0.088	0.001	1221	54	1236	42	1380	35	90	1231	73	0.81	1.003	1380	35			
mr04b18 mr04b72	2.552	0.088	0.215	0.004	0.29	0.083	0.001	1287	25 34	1254	23 37	1275	19 26	98 96	1268	39 58	0.25	0.303	1275	19			
mr04b67	2.785	0.1121	0.229	0.007	0.32	0.085	0.001	1352	30	1330	31	1312	23	101	1341	50	0.55	0.487	1312	23			
mr09a08 mr09a31	2.745	0.204	0.235	0.007	0.20	0.105	0.003	1341 1394	55 43	1362	36 36	1714	53 26	79 95	1356	66 62	0.73	0.313	1714	53 26			
mr05a56	2.971	0.088	0.237	0.005	0.35	0.093	0.001	1400	23	1372	25	1497	27	92	1389	39	0.30	0.652	1497	27			
mr05a107 mr05a126	3.247	0.294	0.239	0.019	0.44	0.088	0.001	1469 1521	70 88	1384 1400	99 93	1387 1760	14 16	100	1448 1460	136	0.36	0.378	1387	14			
mr05a92	3.204	0.114	0.243	0.009	0.50	0.095	0.001	1458	28	1401	45	1531	24	92	1452	55	0.14	0.927	1531	24			
mr09a13 mr05a138	3.161	0.145	0.244	0.006	0.26	0.091	0.001	1448 1449	35 49	1408 1409	30 50	1448 1548	19 23	97 91	1424	52 81	0.33	0.029	1448 1548	19			
mr05a141	3.304	0.123	0.245	0.007	0.38	0.095	0.001	1482	29	1412	35	1525	20	93	1456	53	0.06	0.632	1525	20			
mr05a49 mr04b49	3.058	0.093	0.246	0.004	0.25	0.090	0.002	1422	23	1418 1444	19 29	1420	41	100	1420 1454	33 37	0.87	0.612	1420	41			
mr04b60	3.396	0.121	0.253	0.007	0.38	0.092	0.001	1503	28	1453	36	1475	17	99	1487	52	0.16	0.362	1475	17			
mr05a43 mr05a109	3.443	0.171	0.253	0.006	0.23	0.095	0.005	1514 1490	39 50	1455 1467	29 51	1535 1480	107	95	1473 1479	52 82	0.18	0.297	1535	107			
mr05a33	3.352	0.114	0.257	0.006	0.36	0.093	0.001	1493	27	1473	32	1494	17	99	1486	48	0.55	1.014	1494	17			
mr04b11 mr04b58	3.447 3.530	0.091	0.258	0.006	0.41	0.090	0.000	1515 1534	21 22	1482 1499	29 26	1431 1462	10 15	104	1507 1520	39 39	0.23	0.076	1431 1462	10			
mr05a76	3.550	0.068	0.264	0.005	0.51	0.093	0.001	1538	15	1512	26	1478	12	102	1520	30	0.23	0.347	1478	12			
mr05a117 mr05a53	3.816	0.166	0.266	0.010	0.42	0.096	0.001	1596	35	1521	50 24	1540 1490	15 16	99 103	1578	68 34	0.11	0.307	1540 1490	15			
mr05a145	3.569	0.158	0.269	0.007	0.31	0.099	0.001	1543	35	1536	38	1609	18	95	1540	59	0.87	0.239	1609	18			
mr04b83 mr05a61	3.907	0.141	0.272	0.006	0.30	0.102	0.001	1615	29 17	1550	30 25	1667 1452	21 14	93 108	1583	49 33	0.06	0.952	1667 1452	21			
mr05a140	3.947	0.131	0.278	0.007	0.37	0.102	0.001	1623	27	1579	34	1669	17	95	1609	50	0.20	0.300	1669	17			
mr05a36 mr09a09	3.832 4.555	0.120	0.279	0.005	0.29	0.101	0.001	1599 1741	25 66	1585 1616	25 71	1650 1716	18 22	96 94	1592 1680	40 114	0.63	0.820	1650 1716	18			
mr05a129	4.115	0.175	0.286	0.009	0.36	0.104	0.001	1657	35	1623	44	1695	18	96	1646	64	0.45	1.187	1695	18			
mr04b08 mr05a115	4.160 4.458	0.120	0.287	0.006	0.34	0.094	0.001	1666 1723	24 41	1628 1637	28 58	1517 1666	21 16	107	1652 1701	42 80	0.20	0.352	1517	21			
mr05a123	4.237	0.160	0.289	0.010	0.46	0.099	0.001	1681	31	1637	50	1609	17	102	1675	61	0.32	0.595	1609	17			
mr09a32 mr05a38	4.255 4.321	0.183	0.289 0.290	0.008	0.30 0.29	0.103 0.109	0.001	1685 1697	35 31	1639 1644	38 31	1670 1785	23 25	98 92	1663 1671	60 50	0.29	0.301 0.997	1670 1785	23 25			
mr05a68	4.115	0.068	0.291	0.004	0.42	0.099	0.001	1657	14	1646	20	1614	12	102	1655	26	0.56	0.402	1614	12			
mr05a59 mr04b84	4.154 4.432	0.097 0.194	0.293 0.295	0.005	0.38 0.29	0.098 0.107	0.001	1665 1718	19 36	1657 1665	26 38	1595 1756	15 23	104 95	1663 1692	36 60	0.76	0.999	1595 1756	15 23			
mr05a104	4.506	0.242	0.295	0.011	0.35	0.104	0.001	1732	45	1666	55	1704	18	98	1708	81	0.25	0.491	1704	18			
mr05a134 mr05a48	4.178 4.754	0.371 0.226	0.299	0.017 0.007	0.32 0.24	0.101 0.108	0.001	1670 1777	73 40	1685 1714	83 35	1643 1769	16 101	103 97	1676 1738	125 59	0.86	0.198 0.875	1643 1769	16 101			
mr09a25	4.702	0.158	0.305	0.006	0.31	0.103	0.001	1768	28	1716	31	1688	16	102	1745	48	0.15	0.665	1688	16			
mr05a73 mr05a136	4.582 4.709	0.185 0.382	0.308	0.010 0.018	0.40 0.37	0.106 0.109	0.001	1746 1769	34 68	1732 1733	49 91	1732 1777	16 17	100 98	1743 1759	64 127	0.77	0.735 0.410	1732 1777	16 17			
mr05a103	4.170	0.265	0.309	0.011	0.29	0.100	0.002	1668	52	1734	55	1629	36	106	1697	85	0.30	2.027	1629	36			
mr05a71 mr09a14	4.668 4.593	0.073	0.312 0.314	0.004	0.43 0.29	0.105 0.107	0.001	1761 1748	13 41	1749 1758	21 43	1709 1754	10 30	102	1759 1753	26 67	0.50	0.129 0.610	1709 1754	10 30			
mr05a15	5.324	0.121	0.328	0.006	0.39	0.112	0.001	1873	19	1828	28	1826	16	100	1862	37	0.10	0.293	1826	16			
mr04b22 mr04b51	9.897 13.868	0.163 0.409	0.462 0.522	0.006 0.014	0.41 0.46	0.145 0.186	0.001	2425 2741	15 28	2449 2706	28 60	2285 2708	11 18	107 100	2427 2740	30 56	0.36	0.995	2285 2708	11			
mr05a60	13.999	0.431	0.527	0.015	0.46	0.188	0.002	2750	29	2727	63	2729	16	100	2750	58	0.69	0.615	2729	16			
mr05a93 Oakdale For	14.782 mation (1	0.348 KSOKI)	0.540	0.012	0.46	0.196	0.002	2801	22	2784	49	2791	16	100	2801	45	0.69	1.198	2791	16			
mr16b63	0.555	0.022	0.065	0.002	0.31	0.058	0.001	449	14	408	10	522	38	78	417	18	0.01	0.828					
mr16b80 mr16a30	0.542	0.017	0.067	0.002	0.42	0.054	0.001	440 323	11 23	416 410	11	382 79	28	109	427	18	0.04	0.464					
mr16b76	0.580	0.025	0.068	0.002	0.37	0.056	0.001	464	16	425	13	449	35	95	438	23	0.02	0.131					
mr16b93 mr12c12	0.693	0.023	0.068 0.070	0.002	0.43	0.062	0.001	535 380	14 25	426 434	12	664 456	34 50	64 05	459 425	22 24	0.00	0.475 0.417					
mr16b94	0.647	0.031	0.070	0.002	0.28	0.064	0.001	507	19	436	11	736	37	59	447	21	0.00	0.201					
mr16a22 mr16b71	0.687	0.036	0.071	0.003	0.43	0.063	0.001	531 483	21	440 450	19	713 502	32 29	62	471	34 17	0.00	0.124					
mr12c11	0.630	0.033	0.072	0.002	0.29	0.061	0.001	496	20	452	13	630	38	76	457	24	0.02	0.347					
mr16b101 mr16b99	0.739	0.048	0.073	0.003	0.34	0.071	0.002	562 497	28 14	455 455	19 12	966 396	46 32	47	477 471	37 21	0.00	0.883					
mr12c34	0.630	0.022	0.073	0.001	0.30	0.059	0.001	496	13	456	9	560	28	82	4/1 465	17	0.00	0.103					
mr16b102	0.725	0.055	0.073	0.005	0.47	0.058	0.001	305	32	457	31	547 202	54	84	497	56	0.00	0.333					
100120	0.4/0	0.038	u.U/4	0.003	0.23	0.052	0.001	292	20	401	1/	292	40	158	444	51	0.02	0.297					

Table A	2. Contin	ued.																					
	-		Measure		-						Calculated Ages (M	ia)				Detrital (Ma)	Metamorphic (Ma)	CA-TIMS	S (Ma)				
Sample/ Analysis	²⁰⁷ Pb/ 23511	±lσ	²⁰⁶ Pb/ 238 _{TT}	±lσ	Rho	²⁰⁷ Pb/	±lσ	²⁰⁷ Pb/ ²³⁵ 11	±lσ	²⁰⁶ Pb/ ² ³⁸ t t	±lσ	²⁰⁷ Pb/ ²⁰⁶ Db	±lσ	U-Pb/Pb-Pb concordancy (%)	Concordia	±2σ	Probability of	Th/U	For Prob Dens plots	For Prob Dens plots	²⁰⁶ Pb/ ²³⁸	±2σ	notes
mrl6al0	0.676	0.022	0.074	0.002	0.41	0.059	0.001	524	13	463	12	571	30	21 21 21 21 21 21 21 21 21 21 21 21 21 2	age	21	0.00	0 105	age ±1σ	age ±10	0		
mr16b42	0.675	0.022	0.074	0.002	0.41	0.059	0.001	523	22	463	16	864	53	54	480	30	0.01	0.195					
mr16b34 mr16a32	0.725 0.505	0.051 0.018	0.075 0.075	0.003	0.30 0.30	0.065 0.047	0.002	554 415	30 12	465 467	19 10	774 71	57 34	60 655	481 448	36 17	0.00	0.977					
mr16a07	0.747	0.047	0.075	0.002	0.26	0.078	0.001	566	27	467	15	1146	35	41	479	28	0.00	0.764					
mr16a23 mr16b31	0.486 0.667	0.026	0.078	0.003	0.35	0.049	0.001	402 519	18	482 485	17	136 522	37 29	354 93	442 499	28 20	0.00	0.369					
mr16b07	0.759	0.038	0.081	0.003	0.36	0.065	0.002	574	22	499	17	776	54	64	521	32	0.00	0.350					
mr16b29 mr16b92	0.738	0.025	0.084	0.002	0.58	0.061	0.001	613	14	521	22	705	27	75	536	34	0.01	0.127					
mr16a13 mr16b65	0.884	0.029	0.089	0.003	0.55	0.065	0.001	643 645	16	548 591	19	766 669	25 29	71	612	30 29	0.00	0.116					
mr16b62	1.028	0.050	0.099	0.003	0.31	0.076	0.001	718	25	609	18	1085	23	56	632	33	0.00	0.291					
mr16b84 mr16b27	1.137 1.051	0.040 0.048	0.102	0.004	0.53	0.070 0.070	0.001	771 730	19 24	627 643	22 18	938 927	29 42	67 69	715	36 33	0.00	0.172					
mr16b21	1.072	0.054	0.108	0.004	0.41	0.066	0.001	740	26	663	26	813	46	82	698	45	0.01	0.532					
mr12c17 mr16c18	0.838	0.070	0.117 0.149	0.005	0.37	0.073	0.001	830 618	31 34	713 896	28 39	1018 416	24 80	215	753	49 56	0.00	0.047					
mr16b14	1.855	0.060	0.155	0.004	0.41	0.076	0.001	1065	21	931	23	1108	29	84	999	38	0.00	0.169					
mr16a37 mr16b82	1.821	0.071	0.163	0.006	0.48	0.072	0.001	1053	26 17	976 984	34 17	991 1146	21	98 86	1032	49 29	0.01	0.443					
mr16b13	1.898	0.048	0.172	0.003	0.36	0.073	0.001	1080	17	1023	17	1020	21	100	1051	29	0.00	0.100					
mr16b19	2.331	0.109	0.188	0.007	0.41	0.081	0.001	1222	33	1112	39	1227	33	91	1125	61	0.01	0.515					
mr16b51 mr16a14	2.477 2.761	0.076	0.192	0.005	0.39 0.42	0.086 0.097	0.001	1265 1345	22 55	1134 1149	25 65	1332 1569	18 19	85 73	1206 1262	40 104	0.00	0.174 0.371					
mr16b39	2.348	0.064	0.196	0.004	0.36	0.081	0.001	1227	20	1152	21	1232	21	94	1192	34	0.00	0.501					
mr12c31 mr16b32	4.342 2.899	0.488 0.217	0.203	0.016 0.013	0.34 0.40	0.150 0.092	0.002	1701 1382	93 57	1190 1226	84 67	2350 1475	26 15	51 83	1285 1317	160 105	0.00	0.236					
mr16b41	2.788	0.095	0.210	0.005	0.38	0.092	0.001	1352	25	1228	29	1458	16	84	1298	46	0.00	0.491					
mr12c20 mr16b47	2.762	0.081	0.215	0.004	0.35	0.088	0.001	1345 1369	22 19	1257 1294	24 26	1385 1320	20 20	91 98	1304 1349	38 37	0.00	0.235					
mr16b70	3.145	0.133	0.223	0.007	0.38	0.099	0.001	1444	33	1296	37	1605	24	81	1378	59	0.00	0.395					
mr16b60	5.406	0.181	0.224	0.008	0.39	0.161	0.001	1896	36	1303	45	2465	15	55	1416	75	0.00	0.342					
mr16b73 mr16b89	3.319	0.087	0.237	0.005	0.43	0.094	0.001	1486 1457	20	1373 1400	28	1511 1484	23	91 94	1455 1440	40	0.00	0.594					
mr12c23	3.782	0.159	0.253	0.005	0.40	0.103	0.002	1589	34	1453	43	1673	34	87	1542	64	0.00	0.971					
mr16b49 mr16b96	3.790 3.711	0.148 0.195	0.254	0.008	0.43	0.100 0.104	0.002	1591 1574	31 42	1457 1462	43 44	1625 1695	33 18	90 86	1555	61 72	0.00	1.004 0.681					
mr16b83	4.023	0.099	0.270	0.006	0.47	0.100	0.001	1639	20	1542	32	1617	15	95	1626	40	0.00	0.290					
mr16b75 mr16b85	4.152 4.156	0.163 0.103	0.272 0.277	0.007 0.007	0.34 0.49	0.105 0.099	0.002	1665 1665	32 20	1550 1574	36 34	1709 1607	28 15	91 98	1614 1656	57 40	0.00	0.212 0.164					
mr16c24	3.391	0.205	0.295	0.007	0.19	0.101	0.002	1502	47	1666	34	1649	38	101	1608	58	0.00	0.212					
mr16c09	3.713	0.120	0.314	0.000	0.29	0.099	0.001	1574	45	1759	49	1611	39	109	1646	72	0.00	1.018					
mr16a28 mr16b119	14.712 0.473	0.302 0.020	0.509 0.062	0.010 0.003	0.46 0.49	0.195 0.047	0.002	2797 393	20 14	2654 389	41 16	2785 61	14 43	95 637	2794 392	39 25	0.00	0.482	389 16				
mr16b23	0.515	0.031	0.065	0.003	0.35	0.055	0.001	422	21	409	17	392	49	104	413	30	0.54	0.312	409 17		425.53	0.64	
mr12c44 mr16b55	0.543 0.516	0.048 0.023	0.066 0.067	0.002	0.20 0.31	0.065 0.051	0.002	441 422	31 15	413 417	14 11	765 255	50 42	54 163	416 418	27 20	0.39 0.73	0.429 0.831	413 14 417 11				
mr12c32	0.524	0.047	0.068	0.004	0.29	0.053	0.001	428	31	424	21	349 546	44	121	425	40	0.90	0.326	424 21				
mr16a33	0.522	0.033	0.068	0.002	0.24	0.058	0.001	426	22	427	12	536	27	80	427	23	0.97	1.322	427 12				
mr12c38 mr16b112	0.482	0.037	0.069	0.002	0.22	0.054	0.001	399 376	25 37	430 432	14 19	366 439	56 50	118 98	425 423	26 35	0.22	0.735	430 14 432 19		478.68	0.78	
mr16b79	0.550	0.021	0.069	0.002	0.38	0.055	0.001	445	14	432	12	432	36	100	437	21	0.35	0.233	432 12				
mr16c12 mr16a24	0.494	0.049	0.070 0.070	0.003	0.20	0.059	0.001	408 436	33	436 436	17	576 392	47 24	76	432 436	32 16	0.41	0.496	436 17 436 8		433.70	0.41	
mr16b24	0.553	0.024	0.070	0.002	0.30	0.054	0.001	447	16	438	11	390	36	112	441	21	0.60	0.094	438 11				
mr16b125	0.522	0.008	0.070	0.003	0.28	0.005	0.002	427	27	439	19	370	36	118	430	34	0.67	0.241	439 29				
mr16b100 mr16b53	0.577	0.031	0.071	0.002	0.28	0.059	0.001	463 455	20 18	440 440	13	560 467	39 39	79 94	445 444	24 23	0.26	0.222	440 13 440 13				
mr12c37	0.546	0.019	0.071	0.002	0.31	0.054	0.001	442	13	440	9	381	34	115	440	17	0.85	0.715	440 9				
mr16a18 mr12c27	0.614 0.565	0.036 0.032	0.072 0.071	0.003	0.34 0.28	0.060 0.060	0.001 0.001	486 455	23 21	445 445	17 13	587 619	28 45	76 72	456 447	31 25	0.08	0.732	445 17 445 13				
mr16b72	0.582	0.019	0.072	0.001	0.31	0.057	0.001	466	12	446	8	488	25	91	451	16	0.10	0.415	446 8				
mr16b86	0.522	0.041	0.072	0.003	0.25	0.054	0.001	42/	17	448 449	10	356 472	34	95	444 449	30 19	0.44	0.181	448 16				
mr16c17 mr16b121	0.537	0.151	0.072	0.009	0.23	0.058	0.001	436	100	450	55	533	53 33	84	448	104	0.89	0.581	450 55				
mr16a40	0.593	0.041	0.073	0.002	0.25	0.065	0.001	403	20	452	11	787	32	58	456	20	0.32	0.481	452 15				
mr12c14 mr16b116	0.614 0.607	0.026	0.073	0.002	0.31	0.057 0.057	0.001	486 482	16 20	454 454	11 17	491 474	39 34	92 96	462 464	21 31	0.06	0.303	454 11 454 17				
mr12c19	0.587	0.050	0.073	0.004	0.29	0.062	0.002	469	32	454	21	667	61	68	458	40	0.66	1.336	454 21				
mr12c30 mr16b95	0.563 0.553	0.030 0.020	0.073 0.073	0.002	0.27 0.33	0.054 0.052	0.001	454 447	19 13	455 457	13 11	384 305	35 36	119	455 453	23 19	0.95 0.49	0.174 0.204	455 13 457 11				
mr12c40	0.703	0.080	0.074	0.003	0.16	0.068	0.003	541	48	461	16	877	79	53	465	32	0.11	0.279	461 16				
mr12c43 mr12c39	0.583	0.052	0.074	0.003	0.24 0.31	0.051	0.001	467	34 13	461 461	19	622 455	31	101	462 462	36 18	0.86	0.48/	461 19 461 10				
mr16b111	0.541	0.033	0.075	0.002	0.20	0.059	0.001	439	22	465	11	578	34	80	461	21	0.26	0.123	465 11				
mr16a29	0.584	0.030	0.075	0.002	0.30	0.05/	0.001	407 468	40	405 465	14 25	482 626	32	97 74	406 466	25 47	0.92	0.220	405 14				
mr16b64 mr16b103	0.597	0.063	0.075 0.075	0.003	0.19	0.068	0.002	476 474	40 18	467 468	18 14	881 393	46 40	53	468 470	35 25	0.83	0.159	467 18 468 14				
mr16b12	0.594	0.053	0.075	0.002	0.23	0.055	0.001	474	34	468	18	474	50	99	4/0	35	0.73	0.601	468 18				
mr12c42 mr16a12	0.590 0.544	0.037 0.029	0.075 0.076	0.002	0.22	0.065	0.002	471 441	24 19	468 470	12 17	779 457	51 31	60 103	469 457	24 29	0.91	0.130 0.280	468 12 470 17				
mr16a30	0.540	0.052	0.076	0.002	0.14	0.061	0.002	438	34	471	12	657	52	72	469	24	0.34	0.261	471 12				
mr16b17 mr16b38	0.619 0.577	0.027 0.029	0.076 0.076	0.002 0.002	0.24 0.23	0.055 0.058	0.001 0.001	489 463	17 18	473 473	9 10	415 543	41 41	114 87	475 471	18 20	0.35 0.58	0.153 0.415	473 9 473 10				
mr16a17	0.617	0.112	0.077	0.003	0.12	0.056	0.001	488	71	480	20	469	42	102	481	39	0.91	0.316	480 20				
mr16b81	0.601	0.056	0.079	0.002	0.14	0.066	0.002	4/8 520	55 15	488 495	12	805 536	52 28	61 92	487 503	24 22	0.78	0.307	488 12 495 12				
mr16a19 mr16b114	0.621	0.024	0.081	0.002	0.33	0.053	0.001	491 505	15 60	501 501	12	344 777	26 34	146	498	21	0.50	0.107	501 12 501 33				
								2.30	50					04	562		0.75						

			Measure	ed Isotop	oic Ratio	IS								Calculated Ages (M	a)				Detrital	(Ma)	Metamorphic (Ma)	CA-TIM	S (Ma)	
Sample/ Analysis	²⁰⁷ Pb/ ²³⁵ U	±lσ	²⁰⁶ Pb/ ²³⁸ U	±lσ	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±lσ	²⁰⁷ Pb/ ²³⁵ U	±lσ	²⁰⁶ Pb/ ² ³⁸ U	±lσ	²⁰⁷ Pb/ ²⁰⁶ Pb	±lσ	U-Pb/Pb-Pb concordancy (%)	Concordia age	±2σ	Probability of concordance	Th/U	For Prob De	ens plots ±1σ	For Prob Dens plots age ±1σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	notes
mr12c18	0.678	0.037	0.082	0.003	0.30	0.055	0.001	526	22	510	16	429	44	119	515	30	0.51	0.516	510	16				1
mr16a20	0.656	0.027	0.082	0.002	0.35	0.058	0.001	512	17	511	15	532	38	96	511	26	0.95	0.761	511	15				
mr16c08 mr16b40	0.539 0.738	0.079	0.084 0.084	0.005	0.21	0.055	0.001	438 561	52 21	517 523	31 19	418 616	55 55	124 85	499 538	58 34	0.14 0.09	0.525 0.788	517 523	31 19				
mr16b91	0.771	0.055	0.086	0.004	0.34	0.064	0.001	581	31	531	25	757	29	70	546	45	0.13	0.149	531	25				
mr16b28	0.715	0.034	0.088	0.003	0.36	0.054	0.001	548 555	20 28	544 551	18 18	575 686	57 44	145	546 552	31 34	0.86	0.482	544 551	18				
mr16b18 mr16b59	0.727	0.040	0.090	0.002	0.19	0.059	0.001	555 599	23 20	553 557	11 17	584 631	34 25	95	553 572	21	0.93	0.769	553 557	11				
mr16b10	0.836	0.057	0.094	0.003	0.25	0.066	0.001	617	31	581	19	791	47	88 73	587	36	0.05	0.197	581	17				
mr16b66 mr16b123	0.848 0.954	0.036	0.096 0.097	0.002 0.017	0.27 0.28	0.065	0.001	624 680	20 152	594 594	13 98	779 1459	31 26	76 41	601 611	25 186	0.15	0.851	594 594	13 98				
mr16c23	0.786	0.049	0.100	0.004	0.33	0.056	0.001	589	28	613	24	463	35	132	603	42	0.42	0.029	613	24				
mr16b74 mr12c29	0.816 0.857	0.046 0.054	0.100 0.102	0.003	0.22 0.23	0.063 0.058	0.001 0.001	606 629	26 30	614 624	15 17	703 513	41 44	87 122	613 625	28 32	0.75 0.89	1.100 0.815	614 624	15 17				
mr16b54	0.897	0.040	0.106	0.003	0.28	0.062	0.001	650	21	647	15	661	33	98	648	27	0.88	0.253	647	15				
mr16b113 mr16b52	0.898 0.901	0.036	0.106	0.003	0.37	0.063	0.001	651 652	19 15	649 653	18 14	698 542	21 33	93	650 653	31 24	0.92	0.242	649 653	18 14				
mr16b20	0.959	0.047	0.112	0.004	0.39	0.058	0.001	683 764	24	682	24	530	56	129	683	41	0.97	0.576	682	24				
mr12c08	1.122	0.094	0.122	0.005	0.24	0.065	0.001	879	28	869	27	790	38	110	874	45	0.08	0.376	790	38				
mr16c20 mr16b90	1.396	0.116	0.150	0.007	0.29	0.075	0.002	887	49 20	899	40	1078	43	83	895	70	0.83	0.592	1078	43 37				
mr16b11	1.655	0.076	0.166	0.004	0.29	0.072	0.001	992	29	988	24	997	28	99	989	42	0.90	0.738	997	28				
mr12c33 mr16b08	1.722 2.026	0.079	0.171 0.175	0.004 0.007	0.27 0.37	0.074	0.001	1017 1124	29 38	1019 1038	23 39	1031 1255	32 27	99 83	1018 1081	41 65	0.94	0.903 0.254	1031 1255	32 27				
mr12c13	1.921	0.069	0.179	0.004	0.33	0.076	0.001	1089	24	1062	23	1083	21	98	1074	38	0.33	0.471	1083	21				
mr16b37 mr16b30	2.156 2.142	0.092 0.095	0.190 0.192	0.006 0.005	0.36 0.27	0.082 0.077	0.001 0.001	1167 1162	30 31	1122 1132	32 24	1234 1129	25 27	91 100	1146 1142	51 43	0.19 0.38	0.641 0.497	1234 1129	25 27				
mr16b124	2.237	0.194	0.197	0.010	0.29	0.082	0.001	1193	61	1158	54	1257	28	92	1172	92	0.62	0.646	1257	28				
mr16b122 mr16b109	2.221 2.256	0.133 0.195	0.198 0.200	0.007 0.010	0.29 0.30	0.085 0.090	0.001 0.001	1188 1199	42 61	1162 1174	36 56	1311 1425	24 29	89 82	1172 1185	62 95	0.59 0.72	0.228 0.192	1311 1425	24 29				
mr16a34	2.197	0.171	0.203	0.006	0.18	0.081	0.002	1180	54 31	1189	30 27	1222	44 27	97	1187	55	0.87	0.372	1222	44				
mr16b58	2.2/3	0.182	0.205	0.005	0.29	0.085	0.001	1204	51	1204	37	12/4	27	95	1204	40 68	0.99	0.036	12/4	27				
mr12c21 mr16c21	2.306	0.137	0.210	0.006	0.26	0.079	0.001	1214 1300	42 37	1229 1234	34 45	1177 1375	30 21	104	1224 1277	59 68	0.75	0.337	1177 1375	30 21				
mr16c13	2.720	0.139	0.230	0.009	0.35	0.086	0.001	1334	38	1336	44	1344	27	99	1335	66	0.15	0.981	1344	21				
mr16c25 mr16a09	3.088 3.211	0.177	0.252	0.009	0.30 0.41	0.097 0.089	0.002	1430 1460	44 15	1451 1460	45 21	1560 1394	35 14	93 105	1439 1460	72 29	0.69 1.00	0.588	1560 1394	35 14				
mr16c19	3.043	0.225	0.259	0.011	0.28	0.095	0.002	1418	56	1483	55	1532	43	97	1451	87	0.33	0.767	1532	43				
mr16c14 mr16c10	3.619 4.054	0.325 0.262	0.275 0.283	0.011 0.012	0.23 0.34	0.112 0.106	0.002	1554 1645	71 53	1564 1605	57 62	1835 1723	33 25	85 93	1560 1629	98 93	0.90	0.507 0.731	1835 1723	33 25				
mr12c24	3.964	0.169	0.286	0.008	0.32	0.102	0.002	1627	35	1623	39	1655	28	98	1625	59	0.93	0.728	1655	28				
mr16b110 mr16c07	4.116 4.049	0.194 0.147	0.291	0.008	0.31	0.110	0.002	1657	38 30	1649 1649	42 45	1/94 1619	31 26	92	1654 1645	65 57	0.86	0.719	1/94 1619	31 26				
mr16c22	4.261	0.254	0.299	0.011	0.30	0.110	0.001	1686	49	1687	52 28	1791	24	94	1686	81 34	0.99	0.553	1791	24				
mr16a21	4.600	0.137	0.311	0.006	0.34	0.104	0.001	1749	25	1744	31	1734	15	100	1747	45	0.87	0.338	1734	15				
mr16b50 mr12c07	4.809 4.454	0.233	0.311 0.315	0.012	0.41 0.31	0.112	0.002	1787 1722	41 27	1745 1766	61 32	1826 1592	39 22	96 111	1778 1739	79 47	0.47 0.21	1.233	1826 1592	39 22				
mr16b43	4.735	0.130	0.316	0.008	0.48	0.100	0.001	1773	23	1770	41	1625	18	109	1773	46	0.93	0.349	1625	18				
mr16c11 mr16a08	4.740 4.932	0.173 0.197	0.317	0.010	0.42	0.105 0.109	0.001	1774 1808	31 34	1773 1791	47 48	1710 1778	19 14	104	1774 1804	59 64	0.98	0.694 0.296	1710 1778	19 14				
mr12c41	5.033	0.235	0.334	0.011	0.35	0.108	0.002	1825	40	1857	53	1772	40	105	1834	72	0.55	1.235	1772	40				
mr12c28	6.756	0.223	0.333	0.011	0.45	0.110	0.002	2080	39	2090	53	2022	30	103	2083	72	0.85	0.996	2022	30				
mr16b09 Worcester F	14.489 ormation	0.427	0.514	0.015	0.50	0.190	0.002	2782	28	2674	64	2745	18	97	2786	56	0.05	0.385	2745	18				
mr04a08	0.626	0.014	0.070	0.001	0.41	0.058	0.001	494	9	434	8	519	20	84	456	14	0.00	0.680						
mr03a33 mr03a69	0.633 0.607	0.029 0.021	0.071 0.073	0.002 0.002	0.38 0.37	0.059 0.057	0.001 0.000	498 482	18 13	443 451	15 11	558 500	31 18	79 90	461 462	27 20	0.00 0.03	0.720 0.220						
mr03a50	0.624	0.020	0.073	0.002	0.37	0.057	0.001	492	13	455	11	490	23	93	468	19	0.00	0.520						
mr04a18 mr03a51	0.607 0.630	0.017 0.021	0.074 0.075	0.001 0.001	0.36 0.26	0.056 0.059	0.000 0.001	482 496	11 13	458 466	9 8	469 552	17 24	98 84	466 472	16 15	0.04 0.03	0.110 0.520						
mr03a99	0.632	0.017	0.076	0.001	0.34	0.057	0.000	497	10	473	8	476	18	99	481	15	0.03	0.300						
mr03a59	0.542	0.023	0.078	0.002	0.26	0.055	0.001	440 523	15	483 488	10 9	405 503	25 20	119 97	4/2	18 17	0.00	0.420						
mr04a23 mr04a28	0.687	0.027	0.079	0.002	0.25	0.060	0.001	531 546	16 17	493 400	9 14	605 544	24 27	81	499	18 25	0.02	0.820						
mr04a32	0.710	0.020	0.081	0.002	0.33	0.060	0.000	545	12	503	9	597	18	92 84	515	17	0.00	0.130						
mr02a150 mr02a29	0.770 0.570	0.053 0.027	0.082 0.082	0.003	0.28 0.21	0.064 0.057	0.001	580 458	30 17	505 506	19 9	756 478	41 24	67 106	519 497	35 18	0.02	0.620						
mr03a90	0.736	0.016	0.086	0.002	0.42	0.058	0.000	560	10	531	9	545	14	97	545	16	0.00	0.530						
mr02a60 mr03a76	0.634 0.803	0.023 0.030	0.086 0.091	0.002 0.003	0.28 0.38	0.056 0.059	0.001 0.001	499 599	14 17	533 561	10 15	457 583	21 20	117 96	523 576	19 26	0.02 0.04	0.540 0.780						
mr04a30	0.683	0.026	0.091	0.002	0.28	0.056	0.001	529	15	563	11	469	33	120	553	20	0.03	1.270						
mr03a61	0.972	0.0/2	0.093	0.005	0.42	0.078	0.001	628	57 15	571 594	54 11	1142 620	25 25	50 96	613	21	0.00	0.530						
mr03a84	0.930	0.044	0.099	0.002	0.23	0.065	0.001	668	23	609	12	768 770	32	79	617	24	0.01	0.630						
mr02a13	0.643	0.070	0.102	0.002	0.13	0.055	0.001	504	43	627	17	547	41	115	612	33	0.00	0.110						
mr03a103 mr02a139	1.337 1.478	0.084 0.096	0.117 0.119	0.006 0.007	0.40 0.44	0.077 0.082	0.001	862 921	36 39	714 726	34 39	1131 1257	28 34	63 58	768 805	60 70	0.00	0.730 0.200						
mr03a80	1.234	0.041	0.125	0.003	0.42	0.065	0.001	816	18	759	20	774	23	98	790	32	0.01	0.440						
mr02a124 mr03a88	2.012 1.523	0.138 0.035	0.146 0.151	0.010 0.002	0.48 0.34	0.097 0.071	0.001 0.001	1120 940	46 14	880 906	54 13	1560 957	15 15	56 95	1006 921	90 23	0.00	0.660 0.650						
mr03a57	1.718	0.062	0.161	0.004	0.31	0.073	0.001	1015	23	963	20	1021	26	94	983	35	0.04	1.740						
mr02a88 mr04a12	1.524 1.860	0.057 0.061	0.169 0.169	0.004 0.004	0.29 0.33	0.068 0.075	0.001 0.001	940 1067	23 22	1005 1005	20 20	858 1073	22 28	117 94	977 1031	34 35	0.01 0.01	1.210 0.410						
mr02a73	1.589	0.059	0.172	0.004	0.29	0.070	0.001	966	23	1023	21	931	24	110	998	35	0.03	0.620						
mr02a89	2.259	0.154	0.1/3	0.007	0.21	0.070	0.001	902 1200	56 32	102/	58 29	915 1373	31	112 78	989	51	0.03	0.930						
mr02a48 mr03a68	2.083	0.053	0.183	0.004	0.44	0.080	0.001	1143 1148	17	1081 1098	22	1201	15 18	90 00	1123	33	0.00	0.330						
mr02a47	1.728	0.083	0.187	0.006	0.31	0.073	0.001	1019	31	1107	30	1004	27	110	1062	48	0.04	0.800						

Table A2	2. Continued. Measured Isotopic Ratios																						
	Measured Isotopic Ratios													Calculated Ages (M	a)				Detrital (Ma)	Metamorphic (Ma	a) CA-TIN	IS (Ma)	
Sample/	²⁰⁷ Pb/	±lσ	²⁰⁶ Pb/	±lσ	Rho	²⁰⁷ Pb/	±lσ	²⁰⁷ Pb/	±lσ	²⁰⁶ Pb/ ²	±lσ	²⁰⁷ Pb/	±lσ	U-Pb/Pb-Pb	Concordia	±2σ	Probability of	Th/U	For Prob Dens plots	For Prob Dens plo	ts ²⁰⁶ pb/ ²³⁸	±2σ	notes
Analysis	235U		23°U			²⁰⁶ Pb		235U		³⁸ U		²⁰⁶ Pb		concordancy (%)	age		concordance		age ±1σ	age ±1σ	U		
mr03a64 mr02a37	2.261 2.194	0.041 0.066	0.191 0.191	0.003	0.42 0.40	0.079 0.080	0.001 0.001	1200 1179	13 21	1128 1128	16 25	1171 1198	14 15	96 94	1176 1159	24 38	0.00 0.04	0.690 0.670					
mr02a80	2.352	0.065	0.220	0.004	0.30	0.083	0.001	1228	20	1282	19	1258	24	102	1255	31	0.02	0.360					
mr03a41	3.346	0.124	0.223	0.007	0.36	0.102	0.001	1492	53	1300	59	1679	40	80	1430	94	0.00	0.120					
mr04a10 mr02a21	3.143 2.518	0.059 0.086	0.231	0.004	0.45 0.23	0.091 0.083	0.001	1443 1277	15 25	1341 1369	21 19	1440 1269	14 20	93 108	1420 1335	28 33	0.00	0.340					
mr02a141	3.510	0.120	0.246	0.006	0.33	0.096	0.001	1530	27	1416	29	1553	21	91	1474	47	0.00	0.430					
mr02a54 mr03a81	2.682 3.897	0.091 0.074	0.253 0.268	0.006	0.35 0.40	0.080 0.096	0.001	1323 1613	25 15	1456 1532	31 21	1192 1549	25 15	122 99	1364 1591	44 29	0.00	0.520					
mr03a104	4.680	0.167	0.276	0.007	0.38	0.120	0.001	1764	30	1569	37	1960	15	80	1689	57	0.00	0.820					
mr04a17 mr03a55	4.517	0.109	0.284	0.005	0.40	0.104	0.001	1730	16	1615	29	1702	13	95	16/5	31	0.00	0.550					
mr02a34 mr03a98	4.568	0.113	0.299	0.006	0.38	0.110	0.001	1743 1942	21	1687 1799	28	1797 1966	10	94	1728	39 32	0.04	0.870					
mr02a12	5.422	0.141	0.365	0.006	0.31	0.111	0.001	1888	22	2006	28	1818	17	110	1924	39	0.00	0.560					
mr02a119 mr02a114	0.494 0.502	0.026	0.064 0.066	0.002	0.28 0.26	0.058 0.059	0.001 0.001	408 413	17 15	399 410	11 9	527 553	22 26	76 74	401 410	21 17	0.64	0.900	399 1 410	l 9			
mr02a146	0.543	0.020	0.068	0.002	0.31	0.056	0.001	440	13	424	9	447	23	95	428	17	0.25	0.140	424)			
mr02a123 mr02a142	0.579	0.026	0.070 0.070	0.002	0.36	0.057	0.000	464 439	17 14	434 435	14 9	480 532	19 25	90 82	444 436	25 17	0.09	0.190	434 14	1)			
mr02a117	0.491	0.025	0.070	0.003	0.40	0.055	0.001	406	17	436	17	412	39 24	106	420	28	0.10	0.990	436 1	7	486.29	5.04	
mr02a63	0.504	0.017	0.070	0.001	0.23	0.055	0.001	434	17	439	10	423	24	105	439	12	0.18	0.500	444 1)			
mr02a122 mr02a84	0.580 0.535	0.042 0.017	0.072	0.004	0.40 0.29	0.055	0.001	465 435	27 12	448 450	25 8	421 417	25 18	106 108	455 446	43 15	0.55	0.170	448 2 450	5			
mr03a75	0.590	0.023	0.073	0.001	0.24	0.058	0.001	471	15	453	8	515	29	88	456	16	0.24	1.370	453	3			
mr02a38 mr02a99	0.548	0.022	0.073	0.002	0.27 0.40	0.058	0.001	444 479	14 18	454 455	9 16	538 496	22	84 92	451 465	17 28	0.49	0.840	454 455 1	5	483.52	1.25	
mr03a30	0.584	0.034	0.073	0.002	0.30	0.058	0.001	467	22	456	15	527	21	87	459	28	0.64	0.370	456 1	5			
mr02a24 mr02a107	0.558	0.018	0.073	0.001	0.31	0.057	0.000	430	14	457	13	494	25	92	454	23	0.10	0.380	457 1	3			
mr03a85 mr03a91	0.595 0.585	0.019	0.074 0.074	0.001	0.27 0.25	0.057	0.001	474 468	12 9	459 460	8 6	486 447	31 18	94 103	462 462	14 11	0.21 0.42	0.600	459 460	3			
mr03a31	0.539	0.059	0.074	0.004	0.24	0.059	0.001	438	39	460	23	558	42	82	455	43	0.59	0.810	460 2	3			
mr02a67 mr03a86	0.560 0.571	0.037 0.024	0.074 0.074	0.003 0.001	0.26 0.24	0.056 0.055	0.001 0.001	451 459	24 15	461 461	15 9	437 412	25 33	105	459 461	29 17	0.71 0.89	0.770 0.710	461 1 461	5 9			
mr02a62	0.546	0.039	0.074	0.003	0.24	0.056	0.001	442	26	462	15	468	31	99	458	29	0.46	0.590	462 1	5			
mr02a113	0.623	0.019	0.075	0.001	0.30	0.050	0.000	491	25	465	17	586	35	79	409	32	0.19	0.430	466 1	7			
mr04a21 mr03a70	0.597 0.609	0.022	0.075	0.002	0.28 0.28	0.055	0.001	475 483	14 15	466 467	9 10	431 504	27 19	108 93	469 471	17 18	0.54	0.850	466 467 1))			
mr03a48	0.592	0.021	0.075	0.002	0.32	0.055	0.001	472	13	468	10	406	25	115	469	19	0.76	0.620	468 1)			
mr03a26 mr04a19	0.649 0.582	0.034 0.024	0.075 0.075	0.003	0.40 0.24	0.058 0.056	0.001 0.001	508 466	21 15	469 469	19 9	536 453	27 27	88 103	485 468	33 17	0.08 0.87	0.770	469 1 469 1))			
mr02a58	0.567	0.019	0.076	0.001	0.27	0.057	0.000	456	13	470	8	492	19	96 97	467	16	0.27	0.140	470	3			
mr02a109	0.622	0.019	0.076	0.001	0.23	0.057	0.001	477	12	472	11	494	21	96	473	20	0.83	0.620	472 475 1	l			
mr02a90 mr03a79	0.569 0.604	0.029	0.076 0.076	0.001	0.18 0.36	0.056	0.001	457 480	19 14	475 475	8 12	461 424	28 20	103 112	473 476	16 21	0.35	0.850	475 475 1	3			
mr02a120	0.558	0.028	0.077	0.002	0.26	0.055	0.000	450	18	476	12	432	19	110	470	22	0.16	0.120	476 1	2			
mr02a28 mr03a24	0.579	0.023	0.077	0.001	0.24 0.29	0.058	0.001	464 480	15 37	476 476	9 26	539 529	26 24	88 90	474 477	16 47	0.41 0.91	0.520	476 2	5			
mr02a64	0.553	0.030	0.077	0.002	0.22	0.058	0.001	447	20	477	11	517	28	92	471	21	0.14	0.590	477 1				
mr02a168	0.596	0.040	0.077	0.003	0.23	0.058	0.001	407	23	477	14	525	26	91	475	26	0.91	0.410	477 1.	4			
mr02a140 mr02a112	0.770 0.605	0.123	0.077 0.077	0.004	0.17 0.30	0.076 0.058	0.001	580 481	70 19	479 480	25 14	1083 534	39 21	44 90	484 480	49 25	0.17	0.550	479 2: 480 1:	5			
mr03a56	0.656	0.025	0.078	0.002	0.37	0.058	0.001	512	16	483	13	514	24	94	493	24	0.07	0.260	483 1	3			
mr02a77 mr02a79	0.599	0.024	0.078	0.002	0.27	0.057	0.001	4//	35	485 487	21	496 580	26 32	98 84	483 487	18 39	0.60	0.570	485 10) L			
mr02a74	0.674	0.039	0.079	0.003	0.32	0.061	0.001	523	24	491	17	652	37	75	500	32	0.19	0.490	491 1	7			
mr02a100	0.599	0.024	0.080	0.002	0.33	0.055	0.001	477	15	495	13	425	22	117	488	22	0.26	0.560	495 1	3			
mr03a46 mr04a27	0.642 0.635	0.025 0.028	0.080 0.081	0.001 0.002	0.20 0.24	0.058 0.058	0.001	504 499	15 17	498 500	8 10	534 518	28 24	93 97	499 500	14 19	0.72	0.990	498 500 10	3			
mr03a21	0.670	0.048	0.081	0.003	0.27	0.060	0.001	521	29	504	18	596	41	84	507	34	0.56	1.100	504 1	3			
mr02a41	0.623	0.021	0.082	0.001	0.23	0.055	0.001	495	17	506	11	505	29	117	504	20	0.33	0.120	506 1	l			
mr02a19 mr02a104	0.579 0.619	0.034	0.082	0.002	0.23 0.26	0.056	0.001	464 490	22 14	508 509	13 9	465 453	28 22	109 112	498 504	24 17	0.05	0.770	508 1. 509	3			
mr03a78	0.658	0.122	0.083	0.007	0.25	0.062	0.001	514	75	511	45	670	30	76	512	84	0.97	0.100	511 4	5			
mr02a98 mr02a50	0.647	0.018	0.083	0.001	0.29	0.059	0.001	507	11	513	8 10	553 549	21 21	93 93	512	15	0.57	0.150	513 1	s)			
mr02a59 mr03a107	0.702	0.038	0.085	0.003	0.35	0.059	0.001	540 538	22	524 528	19	578 440	24 29	91 120	530 530	33	0.49	0.290	524 1	9			
mr02a144	0.702	0.054	0.086	0.002	0.23	0.058	0.001	540	32	529	18	539	37	98	531	34	0.74	1.000	529 1	3			
mr02a83 mr02a23	0.641 0.676	0.027 0.020	0.086 0.086	0.002	0.27 0.29	0.057 0.058	0.001 0.001	503 524	17 12	530 531	12 9	500 535	23 22	106 99	522 529	21 16	0.12	0.480 0.710	530 1 531	2			
mr02a20	0.652	0.037	0.087	0.002	0.18	0.065	0.001	510	23	536	11	790	29	68	532	21	0.26	0.480	536 1	L			
mr04a20 mr02a33	0.766	0.061	0.088	0.003	0.23	0.056	0.003	5/8	35 25	545 546	19	457 482	28	119	550	36 23	0.37	0.920	545 1 546 1	2			
mr03a71 mr02a81	0.692	0.033 0.034	0.088	0.002	0.23	0.054	0.001	534 542	20 20	546 548	11	380 510	43 22	144	544 546	22 27	0.54	0.590	546 1 548 1	1			
mr02a70	0.699	0.023	0.089	0.002	0.29	0.059	0.001	538	14	549	10	551	24	107	546	18	0.46	0.590	549 1	-)			
mr03a58 mr03a44	0.771 0.886	0.042 0.095	0.090 0.091	0.003 0.006	0.26 0.33	0.062 0.069	0.001 0.001	580 644	24 51	557 561	15 38	658 896	37 24	85 63	562 582	28 70	0.35 0.12	1.050 0.130	557 1 561 3	5 3			
mr03a95	0.762	0.041	0.092	0.003	0.27	0.060	0.001	575	24	567	16	614	36	92	569	29	0.75	0.860	567 1	5			
mr02a31 mr02a10	0.812 0.798	0.061 0.026	0.092 0.092	0.004 0.002	0.25 0.39	0.063 0.063	0.001 0.001	604 596	34 15	569 570	21 14	717 702	33 19	79 81	576 581	39 24	0.33 0.11	0.570 0.510	569 2 570 1-	1			
mr03a96	0.819	0.041	0.095	0.002	0.25	0.062	0.001	607 702	23	588	14 24	658	41	89	592	27	0.41	0.870	588 1	1			
mr03a25	0.822	0.047	0.096	0.004	0.19	0.065	0.001	609	26	591	24 15	762	35	45 78	595	40 28	0.06	0.610	592 1	5			
mr03a60 mr02a43	0.812 0.886	0.033 0.043	0.097 0.099	0.003 0.004	0.39 0.42	0.056	0.001	604 644	19 23	597 607	18 23	470 862	25 31	127 70	600 625	30 39	0.73	0.310 1.610	597 1: 607 2	3			
mr03a77	0.873	0.057	0.099	0.003	0.26	0.062	0.001	637	31	607	20	662	35	92	614	37	0.35	1.510	607 2)			
mr03a105	0.877	0.046	0.099	0.003	0.24	0.062	0.001	640	25	610	15	677	34	90	616	28	0.26	1.950	610 1	, ,			

		1	Measure	d Isotop	oic Ratio	s								Calculated Ages (M	a)				Detrital (Ma)	Metamorphic (Ma)	CA-TIMS	(Ma)	
Sample/ Analysis	²⁰⁷ Pb/ ²³⁵ U	±lσ	²⁰⁶ Pb/ ²³⁸ U	±lσ	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±lσ	²⁰⁷ Pb/ ²³⁵ U	±lσ	²⁰⁶ Pb/ ² ³⁸ U	±lσ	²⁰⁷ Pb/ ²⁰⁶ Pb	±lσ	U-Pb/Pb-Pb concordancy (%)	Concordia age	±2σ	Probability of concordance	Th/U	For Prob Dens plo age ±1σ	s For Prob Dens plots age ±1σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	notes
mr02a42	0.745	0.053	0.101	0.003	0.22	0.058	0.001	565	31	618	19	540	34	115	606	35	0.10	0.360	618	19			
mr02a44	0.766	0.070	0.101	0.003	0.18	0.059	0.001	578	40	619	20	579	35	107	613	37	0.31	0.580	619	20			
mr03a4/ mr02a09	0.854	0.205	0.101	0.013	0.34	0.074	0.001	627	20	620 627	78 15	651	27	59	650	144 27	0.27	0.520	620	78 15			
mr02a71	0.808	0.047	0.104	0.003	0.25	0.059	0.001	601	27	637	17	567	34	112	628	32	0.20	0.410	637	17			
mr04a13 mr03a54	0.899	0.035	0.104	0.002	0.23	0.061	0.001	651 651	18	639 649	11	648 630	33	99	641 649	20	0.52	0.740	639 649	11			
mr03a27	0.925	0.069	0.113	0.002	0.21	0.066	0.001	665	36	689	21	799	29	86	684	39	0.53	0.220	689	21			
mr02a40	0.991	0.047	0.115	0.003	0.28	0.065	0.001	699	24	704	18	769	28	92	703	32	0.84	0.350	704	18			
mr03a20 mr04a31	1.143	0.085	0.118	0.003	0.24	0.065	0.001	774	20	732	16	776	19	94	745	29	0.38	0.970	732	16			
mr02a60	1.325	0.083	0.124	0.004	0.31	0.070	0.001	767	29	744	23	844	26	91	750	40	0.33	0.500	744	23			
mr03a8/ mr03a49	1.221	0.053	0.127	0.004	0.32	0.067	0.001	810	24 31	795	20 23	836 780	30 37	92	/85 802	36 41	0.14	0.790	795	20 23			
mr04a29	1.223	0.046	0.132	0.003	0.29	0.063	0.001	811	21	797	16	704	31	113	801	29	0.52	0.540	797	16			
mr02a118 mr04a07	1.464	0.061	0.156	0.004	0.28	0.071	0.001	915 990	25	936 947	20	954 1006	25	98 94	928 963	36 51	0.47	0.390	954 1006	25			
mr02a87	1.679	0.059	0.162	0.004	0.35	0.076	0.001	1001	23	967	22	1086	24	89	983	37	0.18	0.590	1086	24			
mr03a22	1.666	0.184	0.163	0.012	0.34	0.073	0.002	996	70	975	67	1020	57	96	984	112	0.79	0.470	1020	57			
mr02a52	1.631	0.200	0.165	0.013	0.33	0.070	0.001	982	18	986	17	974	17	101	984	29	0.85	0.290	974	17			
mr02a17	1.779	0.104	0.167	0.008	0.43	0.085	0.001	1038	38	996	46	1314	28	76	1023	70	0.36	0.650	1314	28			
mr03a94 mr02a111	1.774	0.078	0.172	0.004	0.25	0.073	0.001	1036	28 31	1024	20	1024 986	19	100	1027	47	0.53	0.210	986	19			
mr02a30	1.738	0.085	0.174	0.004	0.25	0.084	0.001	1023	31	1033	23	1297	30	80	1030	41	0.77	0.920	1297	30			
mr02a69 mr02a11	1.780	0.090	0.175	0.007	0.39	0.073	0.001	1038	33 24	1039	37	1009 1097	22	103	1038	58 33	0.99	0.510	1009	22 22			
mr02a07	1.998	0.058	0.190	0.004	0.33	0.077	0.001	1115	20	1121	20	1111	21	101	1118	32	0.80	0.340	1111	21			
mr03a89	2.142	0.056	0.190	0.003	0.32	0.079	0.001	1162	18	1124	17	1172	17	96	1141	29	0.07	0.370	1172	17			
mr02a91 mr02a82	2.133	0.076	0.201	0.005	0.23	0.079	0.001	1148	25	1202	24	11102	23	102	1175	39	0.03	0.400	1118	23			
mr04a14	2.208	0.097	0.207	0.004	0.22	0.078	0.001	1184	31	1212	21	1141	20	106	1204	38	0.39	0.180	1141	20			
mr02a110 mr03a32	2.226	0.166	0.208	0.010	0.31	0.080	0.001	1254	52	1219	51	1290	19	95	1204	85 85	0.62	0.520	1189	19			
mr02a39	2.569	0.093	0.212	0.005	0.31	0.092	0.001	1292	26	1237	25	1468	17	84	1262	42	0.07	0.620	1468	17			
mr02a92 mr02a145	2.167 2.504	0.110	0.212	0.005	0.24 0.31	0.077 0.087	0.001	1171 1273	35 28	1240 1259	27 27	1117 1367	24 25	111 92	1214 1266	47 44	0.07	0.180	1117 1367	24 25			
mr02a18	2.309	0.088	0.216	0.005	0.27	0.081	0.001	1215	27	1263	24	1219	19	104	1242	40	0.12	0.610	1219	19			
mr03a97	2.665	0.126	0.219	0.008	0.39	0.082	0.001	1319	35	1276	43	1245	26	102	1304	64 35	0.32	0.410	1245	26			
mr02a102	2.386	0.083	0.220	0.004	0.30	0.081	0.001	1238	25	1287	24	1232	17	105	1263	39	0.09	0.580	1232	17			
mr02a93	2.530	0.153	0.225	0.009	0.34	0.082	0.001	1281	44 27	1309	48 36	1235	15	106	1293	75	0.60	0.090	1235	15			
mr02a103	2.648	0.097	0.231	0.007	0.40	0.081	0.001	1314	25	1341	26	1222	28	110	1308	41	0.20	0.390	1222	28			
mr02a143	3.384	0.147	0.247	0.009	0.43	0.093	0.001	1501	34	1425	47	1481	11	96	1482	65	0.09	0.350	1481	11			
mr02a55 mr02a78	3.422	0.115	0.256	0.000	0.47	0.087	0.001	1510	26	1441	36	1503	14	98	1407	50	0.24	0.510	1503	14			
mr02a101	3.153	0.127	0.262	0.005	0.25	0.091	0.001	1446	31	1500	27	1455	19	103	1476	45	0.13	0.690	1455	19			
mr02a32 mr02a51	3.243	0.170	0.262	0.007	0.25	0.093	0.001	1467	41 23	1502	36 33	1489 1563	18	101	148/	59 44	0.46	0.330	1489	18			
mr03a65	4.137	0.236	0.286	0.009	0.29	0.108	0.002	1662	47	1623	47	1765	33	92	1642	76	0.49	1.530	1765	33			
mr02a94 mr02a08	4.296 4.864	0.194 0.154	0.317 0.319	0.008 0.007	0.28	0.102 0.113	0.001	1693 1796	37 27	1775 1783	39 34	1670 1847	21 18	106 97	1729 1792	60 48	0.07 0.72	0.960 1.010	1670 1847	21 18			
mr03a67	5.273	0.177	0.328	0.008	0.37	0.112	0.001	1865	29	1828	39	1832	18	100	1854	54	0.35	0.770	1832	18			
mr02a68 mr04a11	5.744 6.892	0.132 0.143	0.343 0.376	0.007 0.007	0.44 0.42	0.117 0.123	0.001	1938 2098	20 18	1901 2059	33 31	1908 2007	13 14	100	1934 2093	39 36	0.22 0.17	1.030 0.480	1908 2007	13 14			
mr03a34	8.083	0.269	0.418	0.010	0.36	0.136	0.001	2240	30	2251	45	2180	17	103	2243	57	0.81	0.380	2180	17			
Paxton Forr	nation (K	SPXIII)	0.067	0.001	0.20	0.050	0.001	465	12	417	0		20	75	427	16	0.00	0.459					
au26a39	0.675	0.025	0.076	0.001	0.31	0.059	0.001	524	15	471	10	564	32	84	483	19	0.00	0.169					
au26a21	0.644	0.019	0.076	0.001	0.30	0.058	0.001	505	12	473	8	538	24	88	480	15	0.01	0.140					
se09a17 se09a18	0.797 2.219	0.035	0.088	0.002	0.31	0.061 0.091	0.001	595 1187	20 35	544 1016	15 36	651 1453	28	84 70	557 1093	27 62	0.01	0.585					
se09a60	1.896	0.054	0.172	0.005	0.48	0.080	0.001	1080	19	1023	26	1189	18	86	1066	37	0.02	0.271					
au26a51 se08b40	2.017	0.061	0.176	0.004	0.36	0.077	0.001	1121	20	1045 1053	21	1109	24 17	94	1083	35 28	0.00	0.421					
se07b07	2.279	0.079	0.194	0.005	0.38	0.084	0.001	1206	24	1145	28	1304	12	88	1180	44	0.04	0.265					
au26a24 se09a49	2.723	0.094	0.195	0.005	0.39	0.094	0.001	1335	26 23	1151 1152	29 27	1517 1367	16 21	76 84	1247	47 42	0.00	0.272					
se09a45	2.463	0.091	0.197	0.005	0.38	0.088	0.001	1261	27	1162	30	1393	18	83	1216	47	0.00	0.349					
au26a34	2.895	0.127	0.214	0.007	0.39	0.092	0.001	1381	33	1249	39	1461	25	86	1326	61	0.00	0.630					
se07b23	3.027	0.003	0.224	0.004	0.41	0.089	0.001	1415	23	1350	31	1415	26	92	1398	44	0.03	0.674					
se09a20	3.159	0.046	0.235	0.003	0.45	0.091	0.000	1447	11	1361	16	1442	9	94	1428	22	0.00	0.390					
au26a48 se07b08	3.513	0.190	0.240	0.010	0.58	0.092	0.001	1530	20	1384	26	1408	10	94 86	1481 1498	38	0.00	0.112					
au26a31	3.448	0.079	0.251	0.004	0.38	0.092	0.001	1515	18	1443	23	1474	14	98	1491	33	0.00	0.698					
se09a64 au26a53	3.728	0.114	0.252	0.012	0.79	0.102	0.001	1577	24 18	1449 1455	63 26	1653 1485	13	88	1615	39	0.00	0.138					
se09a50	4.016	0.108	0.270	0.006	0.44	0.104	0.001	1638	22	1542	33	1697	16	91	1619	43	0.00	0.744					
au26a49 au26a42	4.173	0.116	0.274	0.007	0.43	0.101	0.001	1669 1626	23	1561 1567	33 22	1648 1601	17	95	1646	44 20	0.00	0.542					
se09a57	4.898	0.120	0.288	0.004	0.42	0.120	0.001	1802	21	1629	30	1964	12	98 83	1760	41	0.00	0.189					
se09a10	4.336	0.097	0.289	0.005	0.37	0.103	0.001	1700	18	1636	24	1671	17	98	1679	34	0.01	0.704					
seu8D29 au26a32	4.355 5.012	0.062	0.294 0.314	0.003	0.41 0.35	0.105	0.000	1704 1821	12 23	1663 1760	17 30	1708 1748	9 18	97 101	1695 1800	23 43	0.01	0.479 0.470					
se08b28	9.334	0.301	0.375	0.011	0.47	0.179	0.001	2371	30	2052	53	2646	10	78	2339	60	0.00	0.673					
au26a62 se09a08	11.667 12.934	0.252 0.258	0.437 0.481	0.008 0.009	0.44 0.46	0.183 0.183	0.001	2578 2675	20 19	2337 2531	37 38	2676 2678	11	87	2557 2670	41 38	0.00	0.579 1.163					
au26a08	0.512	0.028	0.065	0.002	0.27	0.057	0.001	420	19	405	12	479	34	84	408	22	0.44	0.472	405	12			
au26a47 se09a13	0.508	0.061	0.066	0.003	0.19	0.057	0.001	417	41	412 414	18 0	479 415	56 26	86	412	35	0.89	0.763	412 414	9	429.16	0.82	
au26a57	0.541	0.025	0.066	0.002	0.32	0.054	0.001	439	17	415	12	380	42	109	421	22	0.15	0.905	415	12			
se08b31	0.520	0.014	0.068	0.001	0.34	0.055	0.000	425	9	425	7	427	19	100	425	13	0.98	0.522	425	7	441.73	1.60	
se07b15	0.531	0.021	0.068	0.002	0.29	0.056	0.001	433	14	427	9	445	20	96	428	17	0.69	0.622	427	9			

			Measure	d Isotop	oic Ratio	s								Calculated Ages (M	a)				Detrital (Ma)		Metamorphic (Ma)	CA-TIM	S (Ma)	
Sample/ Analysis	²⁰⁷ Pb/ 23511	±lσ	²⁰⁶ Pb/ ²³⁸ L1	±lσ	Rho	²⁰⁷ Pb/ ²⁰⁶ ph	±lσ	²⁰⁷ Pb/ 23511	±lσ	²⁰⁶ Pb/ ² ³⁸ L1	±lσ	²⁰⁷ Pb/ ²⁰⁶ pb	±lσ	U-Pb/Pb-Pb	Concordia	±2σ	Probability of	Th/U	For Prob Dens pl	ots	For Prob Dens plots	²⁰⁶ Pb/ ²³⁸	±2σ	notes
se07b13	0.548	0.013	0.069	0.002	0.46	PD 0.055	0.001	444	0	428	0	430	25	100	age (137	15	0.11	0.948	age ±1	5 0	age ±1σ	0		
se09a34	0.548	0.013	0.069	0.002	0.46	0.055	0.001	444	12	428	8	430 470	25	91	437	15	0.11	0.948	428	8				
au26a61 se08b34	0.526	0.024	0.069	0.002	0.26	0.056	0.001	429 434	16 8	428 435	10 7	464 444	22	92 98	428	18	0.93	0.630	428	10 7				
au26a52	0.558	0.029	0.072	0.002	0.33	0.055	0.001	450	19	445	15	415	21	107	447	27	0.82	0.524	445	15				
au26a64 au26a60	0.596	0.030	0.072	0.002	0.27	0.061	0.001	475 466	19 24	448 450	12	622 454	40 46	72	453 456	22 37	0.16	0.932	448 450	12				
se08b14	0.557	0.037	0.072	0.002	0.24	0.056	0.001	450	24	450	14	462	43	98	450	26	0.98	0.416	450	14				
se07b12 se09a14	0.610	0.083	0.073	0.003	0.16	0.061	0.001	484 460	52 14	454 455	19	656 414	35 28	69 110	456 456	37	0.58	0.546	454 455	19				
se09a63	0.598	0.022	0.074	0.001	0.34	0.055	0.001	476	13	457	10	510	23	90	463	18	0.12	0.589	457	10				
au26a33 au26a12	0.581	0.049	0.073	0.003	0.23	0.058	0.001	465 475	32	457 458	17	518 465	37 26	88	458	33	0.81	0.139	457 458	17				
au26a17	0.602	0.046	0.074	0.003	0.28	0.061	0.001	478	29	458	19	624	30	73	462	35	0.49	0.131	458	19				
se09a52 au26a19	0.596	0.020	0.074	0.002	0.35	0.057	0.001	474 485	13 14	459 460	10	489 526	22	94 87	464	18	0.25	0.365	459 460	10				
se09a46	0.544	0.022	0.075	0.002	0.25	0.056	0.001	441	16	463	10	434	31	107	459	18	0.16	0.082	463	10				
se08b30 se08b17	0.547	0.031	0.075	0.002	0.24	0.056	0.001	443 453	20	463 463	12	442 446	41 20	105	459 460	23 20	0.33	0.747	463 463	12				
au26a63	0.617	0.032	0.075	0.002	0.24	0.060	0.001	488	20	468	11	615	39	76	471	21	0.33	0.522	468	11				
se09a21	0.584	0.015	0.075	0.001	0.38	0.056	0.000	467	10	469 479	9	440 544	17	106	468	15	0.86	0.008	469	9				
se09a22	0.660	0.103	0.077	0.002	0.28	0.066	0.001	515	63	479	41	809	26	59	486	77	0.58	0.175	479	41				
se07b19	0.638	0.021	0.077	0.001	0.29	0.059	0.001	501 502	13	481	9	578 535	32	83	485	16	0.14	0.834	481	9				
au26a09	0.669	0.025	0.079	0.002	0.27	0.058	0.001	520	21	490	13	691	38	71	485	24	0.19	0.820	490	13				
se09a67	0.646	0.030	0.079	0.003	0.36	0.058	0.001	506	19	492	16	544	34	90	497	28	0.49	0.583	492	16				
se08b12 se08b11	0.647	0.016	0.080	0.001	0.31	0.057	0.001	474	90	528	35	714	53	98 74	523	14 67	0.47	0.541	528	8 35				
se09a28	0.725	0.051	0.088	0.003	0.25	0.061	0.001	553	30	541	18	647	28	84	543	34	0.69	0.081	541	18				
se09a09 au26a11	0.815	0.027	0.095	0.002	0.26	0.062	0.001	605	26	586 635	20	677 697	25 24	87 91	643	18 36	0.23	0.021	635	20				
se08b21	1.145	0.054	0.126	0.006	0.52	0.064	0.001	775	26	764	35	752	18	102	773	50	0.71	0.064	764	35				
au26a30	1.536	0.054	0.149	0.005	0.46	0.082	0.001	945 944	21 21	895 899	27 16	1246 989	27	72 91	929 913	40 29	0.05	0.225	989	27				
se07b24	1.561	0.065	0.156	0.004	0.28	0.073	0.001	955	26	932	20	1011	25	92	939	36	0.42	0.389	1011	25				
se07b25 au26a41	1.565 1.552	0.079 0.065	0.156 0.158	0.004 0.004	0.28	0.075 0.069	0.001	957 951	31 26	933 945	24 22	1066 902	39 32	88 105	941 948	43 38	0.49	0.773 0.440	1066 902	39 32				
se09a07	1.642	0.057	0.159	0.003	0.27	0.073	0.001	987	22	953	16	1008	29	95	963	30	0.16	1.120	1008	29				
se07b28 au26a43	1.695 1.813	0.044 0.069	0.164 0.167	0.004 0.004	0.46 0.32	0.072 0.074	0.001	1007 1050	16 25	979 996	22 22	972 1051	17 31	101 95	999 1017	31 39	0.17	0.572 0.337	972 1051	17 31				
se08b33	1.762	0.078	0.167	0.005	0.35	0.076	0.001	1032	29	996	29	1085	28	92	1013	48	0.28	0.335	1085	28				
se09a30 se09a61	1.6//	0.056	0.167	0.003	0.30	0.074	0.001	1000	21 22	996 1023	23	1051	26 28	95	1024	31	0.87	0.399	1051 1049	26 28				
au26a54	1.834	0.058	0.173	0.004	0.35	0.074	0.001	1058	21	1029	21	1033	21	100	1043	34	0.23	0.607	1033	21				
se09a43 se07b22	1.767	0.045	0.175	0.003	0.35	0.074	0.001	1055	19	1041	15	1045	23	94	1037	28 27	0.88	0.585	1045	23				
au26a58	1.960	0.105	0.176	0.006	0.30	0.076	0.001	1102	36	1046	31	1087	34	96	1067	55	0.16	0.384	1087	34				
au26a14	1.983	0.134	0.180	0.005	0.29	0.080	0.000	1110	46	1069	38	1199	35	89	1082	66	0.42	0.732	1199	35				
se09a54 se08b41	2.072	0.071	0.188	0.006	0.45	0.080	0.001	1140 1175	23 20	1112	31 22	1200	12	93 100	1132	44	0.36	0.353	1200	12				
se08b23	2.409	0.073	0.207	0.005	0.43	0.087	0.001	1245	22	1215	29	1361	23	89	1237	41	0.27	0.797	1361	23				
se09a27 se09a58	2.360 2.671	0.052 0.097	0.210 0.214	0.003 0.007	0.35 0.47	0.081 0.089	0.001 0.001	1231 1321	16 27	1231 1252	18 38	1222 1406	19 14	101 89	1231 1306	27 52	0.99	0.699 0.204	1222 1406	19 14				
se07b10	2.588	0.095	0.217	0.007	0.43	0.084	0.001	1297	27	1267	36	1282	28	99	1290	51	0.39	0.853	1282	28				
se09a53 au26a67	2.627	0.043	0.220	0.003	0.47	0.085	0.001	1308 1330	12 21	1281	18 23	1305 1304	13 16	98	1303	23 36	0.09	0.317 0.718	1305 1304	13 16				
au26a20	2.681	0.096	0.225	0.005	0.30	0.084	0.001	1323	26	1309	26	1300	22	101	1316	42	0.65	0.532	1300	22				
au26a27 au26a59	3.058	0.066	0.230	0.003	0.31	0.087	0.001	1376	20	1337	23	1368	15	98	1355	28 35	0.05	0.394 0.848	1368 1453	15				
se08b22	2.943	0.046	0.241	0.003	0.41	0.088	0.001	1393	12	1393	16	1382	14	101	1393	22	1.00	0.460	1382	14				
au26a50	3.187	0.103	0.245	0.003	0.34	0.094	0.001	1454	25 14	1414 1417	28 17	1361	13	94 104	1437	43 26	0.19	0.295	1361	13				
se08a07	3.290	0.082	0.248	0.006	0.48	0.090	0.001	1479	19	1429	31	1424	18	100	1473	39	0.07	0.117	1424	18				
au26a28 se09a48	2.982 3.244	0.150	0.249	0.008	0.22	0.091	0.001	1405	12	1431	28	1441	12	99	1422	24	0.50	0.334	1441 1472	12				
se09a29	3.158	0.062	0.251	0.003	0.32	0.090	0.001	1447	15	1443	16	1420	15	102	1445	25	0.83	0.401	1420	15				
se08039 se09a44	3.372	0.088	0.251	0.004	0.50	0.092	0.001	1455	21	1445 1447	20 34	14/5	11	98	1450	41	0.71	0.792	1475	11				
se08b08	3.295	0.077	0.257	0.004	0.37	0.091	0.001	1480	18	1472	23	1450	14	102	1477	33	0.74	0.356	1450	14				
se09a47 se09a62	3.400	0.075	0.262	0.005	0.31	0.093	0.001	1504	17	1407	28	1497	12	101	1504	34	0.49	0.282	1497	14				
se08b37	3.481	0.184	0.262	0.006	0.20	0.103	0.001	1523	42	1501	28	1671	21	90	1507	51	0.63	0.727	1671	21				
se08a08 se08b10	3.503	0.097	0.263	0.005	0.34	0.094	0.001	1541	15	1505	20	1507	13	97	1527	28	0.18	0.962	1507	13				
se08b38	3.468	0.073	0.264	0.005	0.46	0.093	0.001	1520	17	1509	26	1492	15	101	1518	32	0.63	0.325	1492	15				
au26a23	3.925	0.227	0.266	0.004	0.54	0.094	0.001	1619	47	1523	85	1558	24	98	1618	93	0.47	0.281	1558	24				
au26a18	3.952	0.195	0.267	0.012	0.46	0.099	0.001	1624	40	1525	62	1605	16	95	1608	79 52	0.07	0.331	1605	16				
au26a38	3.451	0.123	0.271	0.008	0.42	0.098	0.001	1516	44	1559	41	1582	42	99	1532	67	0.83	0.965	1541	42				
se09a59	3.831	0.093	0.274	0.005	0.35	0.100	0.001	1599	19	1560	23	1632	17	96	1584	35	0.11	0.932	1632	17				
se08a10 se09a31	3.732	0.082	0.274	0.004	0.33	0.096	0.001	1551	36	1561	34	1550	42	101	1555	56	0.85	0.299	1556	42				
se08b18	3.753	0.146	0.277	0.008	0.35	0.097	0.001	1583	31	1578	38	1575	19	100	1581	56	0.90	0.625	1575	19				
se07b20	4.029	0.081	0.279	0.005	0.46	0.101	0.001	1596	17	1585	20	1648	16	101 97	1626	54 29	0.64	0.450	1505	11 16				
se07b18	3.900 4 147	0.073	0.282	0.004	0.40	0.100	0.001	1614	15	1602 1617	21 26	1620	13	99	1611	29	0.59	0.720	1620	13				
se07b09	4.135	0.085	0.285	0.005	0.44	0.104	0.001	1661	19	1626	25	1624	10	96 100	1650	35	0.05	0.435	1624	14				
se08a11	4.041	0.082	0.287	0.004	0.37	0.100	0.001	1643	17	1629 1630	22 43	1629 1667	14	100	1639	31	0.53	0.847	1629	14 16				
au26a44	4.184	0.070	0.289	0.009	0.39	0.099	0.001	1671	14	1638	19	1608	10	98 102	1663	26	0.13	0.399	1608	10				
se07b21 au26a29	4.089 4.137	0.112	0.289 0.289	0.005	0.33	0.105	0.001	1652 1662	22 22	1638 1639	26 27	1710 1685	16 21	96 97	1646 1654	39 40	0.60	0.359 0.953	1710 1685	16 21				
au26a07	3.903	0.164	0.290	0.006	0.25	0.100	0.001	1614	34	1643	30	1620	25	101	1631	50	0.46	0.913	1620	25				

Table A2.	Continued.
-----------	------------

			Measur	ed Isotop	pic Ratio	os								Calculated Ages (M	a)				Detrital	(Ma)	Metamor	phic (Ma)	CA-TIM	IS (Ma)	,
Sample/	²⁰⁷ Pb/	±lσ	²⁰⁶ Pb/	±lσ	Rho	²⁰⁷ Pb/	±lσ	²⁰⁷ Pb/	±lσ	²⁰⁶ Pb/ ²	±lσ	²⁰⁷ Pb/	±lσ	U-Pb/Pb-Pb	Concordia	±2σ	Probability of	Th/U	For Prob D	ens plots	For Prob	Dens plots	²⁰⁶ Pb/ ²³⁸	±2σ	notes
Analysis	235U	0.070	238U	0.004	0.46	206Pb	0.001	235U	10	³⁸ U	10	206Pb		concordancy (%)	age		concordance		age	±1σ	age	±lσ	U		
se09a24 se09a23	4.157	0.060	0.293	0.004	0.46	0.101	0.001	1666	12 36	1657	47	1582	20	101	1665	23 66	0.63	0.282	164/	20					
se08b27 au26a40	4.225 4.589	0.071 0.125	0.301 0.302	0.003	0.34 0.38	0.102 0.104	0.001 0.001	1679 1747	14 23	1697 1702	17 31	1655 1698	13 21	103 100	1685 1734	25 43	0.30 0.13	1.270 0.711	1655 1698	13 21					
se08b07	4.418	0.074	0.305	0.005	0.48	0.104	0.001	1716	14	1716	24	1693	14	101	1716	27	0.98	0.576	1693	14					
au26a68	4.727	0.235	0.311	0.010	0.31	0.111	0.002	1772	42	1747	27	1766	35 16	96	1781	39	0.05	0.294	1766	55 16					
se08a09 se08b24	12.907 13.554	0.182	0.505	0.007	0.52	0.181	0.001	2673 2719	13 16	2635 2723	31 34	2662 2686	7	99 101	2675 2719	26 33	0.16	0.463	2662 2686	7					
Tower Hill	Formatio	n (KSTI	HI)										-		_, _,										
mr12a56 mr11c81	0.449	0.032	0.050	0.002	0.27	0.057	0.001	376 570	23 30	315 503	12 24	499 778	33 49	63	322 523	23 43	0.01	0.092							
mrl1b46	0.747	0.020	0.087	0.002	0.36	0.057	0.000	567	12	540	10	496	18	109	550	18	0.03	0.588							
mr12a59 mr11c19	0.841	0.059	0.088	0.003	0.26	0.061	0.001	620 641	33 15	542 565	19	654 674	22	83	612	28	0.02	0.473							
mr11c79 mr12b11	0.849	0.036	0.094	0.002	0.23	0.067	0.001	624 993	20 124	581 586	11 46	846 2045	36 53	69 29	588 591	21 92	0.03	0.516							
mr11b34	0.698	0.041	0.096	0.003	0.28	0.054	0.001	537	24	591	19	383	49	154	573	33	0.04	0.594							
mr11c14 mr12b42	0.877	0.022	0.097	0.002	0.41	0.061	0.000	639 681	32	596 596	21	668	43	94 89	616	20 40	0.00	0.177							
mr12b20 mr12b56	1.236 0.944	0.139	0.097	0.006	0.27	0.080	0.002	817 675	63 21	597 603	35 13	1189 652	55 30	50 92	618 617	68 25	0.00	0.815							
mr11b27	1.211	0.099	0.099	0.007	0.42	0.080	0.002	806	45	608	40	1190	38	51	664	74	0.00	1.139							
mr11b47 mr12a63	0.715	0.033	0.101 0.102	0.002	0.26	0.052	0.001	548 712	20 33	619 625	14 20	285 868	39 159	217 72	596 640	25 38	0.00	0.525							
mr12a28 mr11b45	0.998	0.040	0.103	0.003	0.30	0.066	0.001	703 694	20 25	631 639	15 20	808 748	29 32	78	649 658	27	0.00	0.357							
mr11b48	0.990	0.034	0.105	0.002	0.30	0.063	0.001	698	17	643	13	696	29	92	658	23	0.00	0.395							
mrl1c78 mrl1c21	0.995 1.158	0.023 0.066	0.105 0.107	0.002 0.003	0.42 0.25	0.062 0.073	0.000	701 781	12 31	646 654	12 18	682 1015	17 38	95 64	673 672	20 34	0.00	0.574 0.836							
mr12b13 mr12b39	1.078	0.066	0.108	0.003	0.21	0.063	0.001	743 748	32 29	659 664	16 19	718 699	36 27	92	670 681	32	0.01	0.845							
mr11c08	1.285	0.107	0.118	0.007	0.37	0.072	0.002	839	48	717	42	996	61	72	759	76	0.02	0.729							
mr12a65 mr11b33	1.251 1.168	0.077 0.036	0.120 0.123	0.004 0.002	0.25 0.30	0.068 0.068	0.001 0.001	824 786	35 17	730 747	21 13	879 875	28 25	83 85	747 760	41 24	0.01 0.04	0.194 0.351							
mr12b37	1.341	0.091	0.124	0.005	0.29	0.068	0.001	864 801	40 18	751 758	28 17	862 785	25 25	87 97	777 777	53 29	0.01	0.616							
mr12a66	1.396	0.101	0.129	0.005	0.31	0.065	0.001	887	43	782	33	775	27	101	810	60	0.02	0.356							
mrl2b19 mrl2b12	1.457 1.661	0.121 0.062	0.130 0.136	0.005 0.004	0.25 0.36	0.068 0.071	0.001 0.001	913 994	50 24	785 822	30 21	865 945	35 31	91 87	806 879	58 38	0.02	0.545 0.522							
mr11c69 mr12b52	1.565	0.117	0.139	0.006	0.31	0.080	0.001	956 955	46 34	842 863	36 21	1200 957	19 29	70 90	874 880	66 40	0.02	0.131							
mr11b22	1.243	0.038	0.145	0.003	0.32	0.061	0.001	820	17	887	16	637	31	139	855	27	0.00	0.303							
mrl1c82 mrl1c70	1.617 1.798	0.037 0.075	0.155 0.158	0.003 0.006	0.39 0.43	0.071 0.075	0.001 0.001	977 1045	15 27	927 945	15 31	967 1057	17 27	96 89	954 1003	25 50	0.00	0.322 0.632							
mr11b21 mr12b31	1.820	0.085	0.160	0.005	0.35	0.077	0.001	1053	30 21	956 964	29 26	1128	28 22	85	997 1076	50 41	0.00	0.100							
mr11b32	1.794	0.069	0.162	0.004	0.33	0.076	0.001	1043	25	967	23	1098	27	88	998	40	0.01	0.318							
mr11b38 mr12b27	1.845 2.188	0.094 0.172	0.163 0.166	0.008 0.009	0.45 0.34	0.074 0.080	0.001 0.001	1062 1177	34 55	976 989	42 48	1036 1186	20 30	94 83	1033 1051	64 87	0.03	0.124 1.324							
mr11c62 mr12b46	1.834	0.056	0.168	0.004	0.37	0.076	0.001	1058	20	1001	21	1096	23	91	1030 1073	34 50	0.01	0.392							
mr12b10	2.315	0.143	0.177	0.007	0.30	0.079	0.001	1217	44	1053	36	1172	21	90	1101	65	0.00	0.340							
mr12a18 mr12a33	2.668	0.250	0.187	0.013	0.37	0.099	0.001	1320 1175	69 19	1103	24	1602 1170	21	69 96	1195	35	0.01	0.362							
mr12a19 mr12b50	2.366	0.097	0.196	0.007	0.46	0.082	0.001	1232 1345	29 41	1153	39 46	1242	24 28	93 87	1212	56 75	0.03	0.399							
mrl1b18	2.430	0.046	0.203	0.003	0.44	0.081	0.000	1251	14	1189	18	1213	12	98	1234	26	0.00	0.277							
mr11c49 mr11c22	2.944	0.265	0.203	0.016	0.43	0.096	0.001	1393	21	1189	84 32	1548 1234	21 16	97	1312	42	0.01	0.349							
mr11b51 mr11b23	2.530 2.646	0.095	0.206	0.005	0.34 0.24	0.084	0.001	1281 1313	27 30	1206 1214	28 22	1285 1401	25 27	94 87	1242 1239	46 39	0.02	0.322							
mr11c28	3.518	0.182	0.216	0.009	0.41	0.112	0.001	1531	41	1258	48	1825	13	69	1402	78	0.00	0.270							
mr12a25 mr12b23	4.574 3.993	0.127	0.240	0.007	0.48	0.120	0.002	1633	24 54	1384	65	1950	18	94	1542	102	0.00	0.942							
mr11b30 mr12b49	3.685 4.005	0.145 0.224	0.249	0.008	0.41 0.28	0.096 0.110	0.001	1568 1635	31 45	1432 1435	41 40	1539 1807	29 28	93 79	1525 1502	60 70	0.00	0.400 0.416							
mr12a31	3.524	0.086	0.254	0.005	0.38	0.096	0.001	1533	19	1459	24	1540	18	95	1507	36	0.00	0.452							
mrllc17	3.900	0.090	0.262	0.005	0.41	0.099	0.001	1634	19	1512	29	1603	17	92	1613	37	0.00	0.588							
mr11b52 mr12b43	3.764 4.554	0.090 0.146	0.268 0.280	0.005 0.006	0.36 0.35	0.094 0.093	0.001 0.001	1585 1741	19 27	1529 1591	23 32	1514 1484	15 18	101 107	1565 1679	35 49	0.02	0.289							
mr11c24	5.020	0.119	0.282	0.005	0.40	0.122	0.001	1823	20	1599	27	1986	12	81	1747	39	0.00	0.172							
mr112a29 mr11b13	4.356	0.268	0.284	0.0011	0.38	0.114	0.001	1854	45 28	1615	38	1703	30	86 95	1/55	53	0.00	0.267							
mr12a22 mr11c32	6.006 5.325	0.269 0.183	0.303	0.013	0.49 0.35	0.130 0.123	0.001	1977 1873	39 29	1708 1738	66 37	2097 2000	12 15	81	1945 1824	79 55	0.00	0.193 0.357							
mr12b29	5.953	0.253	0.315	0.008	0.31	0.114	0.001	1969	37	1765	41	1865	19	95	1869	66	0.00	0.559							
mrl1c41	5.731	0.121	0.321	0.006	0.43	0.114	0.001	1936	19	1795	28	2024	15	96 92	1925	34	0.00	0.353							
mr11b31 mr11c75	6.113 6.636	0.119 0.284	0.336 0.336	0.006 0.011	0.45 0.40	0.125 0.135	0.001 0.001	1992 2064	17 38	1867 1868	29 55	2031 2166	12 15	92 86	1978 2015	34 74	0.00	0.277 0.284							
mrl1c20	6.326	0.136	0.343	0.006	0.43	0.124	0.001	2022	19	1902	30	2020	8	94	2003	37	0.00	0.265							
mr12a06	6.548	0.202	0.345	0.009	0.45	0.131	0.001	20/1	27	1914 1921	45 40	2109 2076	19	91 93	2053	54 46	0.00	0.528							
mr12a41 mr12b47	6.773 6.451	0.161 0.244	0.350	0.008 0.007	0.45 0.26	0.130 0.117	0.001	2082 2039	21 33	1935 1942	36 33	2097 1916	12 23	92 101	2066 1987	42 54	0.00	0.292							
mr12b57	7.533	0.285	0.352	0.009	0.35	0.128	0.001	2177	34	1946	45	2065	16	94	2095	65	0.00	0.209							
mr11c61 mr11b24	7.123	0.113	0.356	0.007	0.54	0.123	0.001	2048 2127	15 29	2007	32 47	2000	13 16	98 93	2051 2107	50 58	0.00	0.219							
mr12a60 mr12a24	8.156 7.211	0.282 0.165	0.366 0.370	0.010 0.007	0.39 0.42	0.128 0.131	0.001 0.001	2248 2138	31 20	2009 2031	46 33	2077 2112	15 12	97 96	2187 2121	62 40	0.00	0.140							
mr12a25	7.379	0.158	0.376	0.007	0.43	0.131	0.001	2158	19	2057	32	2114	11	97	2145	38	0.00	0.229							
mrl1c85	10.003	0.240	0.379	0.009	0.30	0.174	0.001	2433 2435	25 36	2071	44 47	2509	11	80	2418	40 68	0.00	0.478							
mr12b62	11.487	0.250	0.420	0.009	0.49	0.155	0.001	2564	20	2259	40	2402	12	94	2554	41	0.00	0.012							

			Measure	ed Isotop	pic Ratio	s								Calculated Ages (M	a)				Detrital (Ma)		Metamorphic (Ma)	CA-TIM	S (Ma)	
Sample/	²⁰⁷ Pb/	±lσ	206Pb/	±lσ	Rho	²⁰⁷ Pb/	±lσ	207Pb/	±lσ	²⁰⁶ Pb/ ²	±lσ	²⁰⁷ Pb/	±lσ	U-Pb/Pb-Pb	Concordia	±2σ	Probability of	Th/U	For Prob Dens plo	ots	For Prob Dens plots	²⁰⁶ Pb/ ²³⁸	±2σ	notes
Analysis	235U		~~U			Pb	_	235U		°°U		200 Pb		concordancy (%)	age		concordance		age ±1σ		age ±1σ	U		
mr12a39 mr11c44	11.176 14.156	0.233 0.328	0.455 0.507	0.009 0.013	0.45 0.54	0.162 0.195	0.002	2538 2760	19 22	2418 2645	38 54	2482 2783	17 8	97 95	2532 2768	39 43	0.00 0.01	0.441 0.245						
mr12a30	0.576	0.020	0.074	0.001	0.29	0.057	0.001	462	13	463	9	472	28	98	463	16 34	0.94	0.501	463	9 18				
mr11c23	0.661	0.008	0.079	0.005	0.28	0.060	0.001	515	21	490	14	601	24	93	494 501	26	0.54	0.957	490	14				
mr12b16	0.797	0.095	0.082	0.005	0.24	0.065	0.001	595 533	53	506	27	782 476	45 28	65	516	53 24	0.11	0.650	506 517	27 13				
mr11c68	0.666	0.033	0.084	0.002	0.22	0.059	0.001	518	20	519	11	583	33	108	519	24	0.40	2.675	519	11				
mr11c83 mr11c64	0.715	0.023	0.085	0.002	0.31	0.057	0.001	547 549	14 20	526 530	10 15	509 633	24 40	103 84	532 535	18 27	0.13	0.484	526 530	10 15				
mr12a42	0.705	0.034	0.086	0.003	0.24	0.059	0.001	542	24	530	14	576	31	92	532	26	0.62	0.985	530	14				
mr11b43 mr11b07	0.690 0.700	0.030	0.086	0.002	0.33	0.053	0.001	533 539	18 22	531 543	14 18	310 546	37 45	171	532 542	26 31	0.94	0.910 1.041	531 543	14 18				
mr12a08	0.732	0.058	0.089	0.004	0.25	0.063	0.001	558	34	552	21	694	35	80	553	39	0.87	0.635	552	21				
mr12b30 mr11c72	0.835 0.775	0.074 0.065	0.090	0.003	0.21 0.23	0.063	0.001	617 583	41 37	555 556	20 20	707 925	33 47	78 60	562 560	39 39	0.15	0.266	555 556	20 20				
mr11c38	0.740	0.072	0.090	0.006	0.31	0.061	0.001	563	42	557	33	640	42	87	558	59	0.89	0.824	557	33				
mr12a53 mr12b08	0.886 0.832	0.071 0.057	0.092 0.092	0.004 0.003	0.27 0.21	0.062 0.058	0.001 0.001	644 614	38 32	568 570	24 16	666 537	40 54	85 106	582 575	45 30	0.06 0.17	0.169 1.365	568 570	24 16				
mr11c63	0.849	0.069	0.093	0.006	0.39	0.064	0.002	624	38	572	35	726	65	79	593	61	0.20	1.605	572	35				
mr11c73 mr12b61	0.765	0.028	0.094 0.094	0.002	0.26	0.058	0.001	577 652	16 43	578 580	23	535 781	32 45	108	578 590	20 44	0.96	0.373 0.825	578 580	11 23				
mr11c27	0.791	0.041	0.095	0.002	0.23	0.062	0.001	592	23	583	13	660	29	88	584	25	0.70	0.369	583	13				
mr11b17	0.724	0.072	0.095	0.004	0.19	0.062	0.001	622	17	593	12	680	25	87	601	23	0.40	0.946	593	12				
mr12b07 mr11b54	0.846	0.079	0.097	0.004	0.22	0.063	0.001	622 574	44 25	596 597	23	699 468	47 44	85	600 589	44 36	0.56	0.577	596 597	23 21				
mr12b60	0.943	0.096	0.098	0.004	0.18	0.068	0.002	674	50	604	21	857	50	70	610	42	0.18	0.819	604	21				
mr12a09 mr11b28	0.832 0.869	0.032 0.027	0.098 0.100	0.003	0.38 0.29	0.059	0.001	615 635	18 15	605 612	17 11	578 555	24 27	105	610 618	29 19	0.61	0.844	605 612	17 11				
mr11b29	0.845	0.037	0.101	0.002	0.28	0.059	0.001	622	20	617	14	562	32	110	619	26	0.83	0.613	617	14				
mr12b48 mr11c54	0.906 0.751	0.078 0.077	0.101 0.101	0.004 0.004	0.24 0.18	0.064 0.062	0.001 0.001	655 569	42 45	618 619	24 22	735 674	42 39	84 92	624 611	46 42	0.39 0.27	0.014 0.314	618 619	24 22				
mr12a64	0.999	0.089	0.101	0.004	0.25	0.066	0.001	704	45	620	26	793	31	78	634	50	0.08	0.259	620	26				
mr11c65 mr12b63	0.914 0.894	0.037 0.055	0.101 0.101	0.002	0.27 0.25	0.064 0.061	0.001 0.001	659 649	19 29	621 623	13 18	733 628	38 39	85 99	629 628	24 34	0.06 0.40	0.424 0.710	621 623	13 18				
mr11c31	0.943	0.045	0.102	0.003	0.28	0.065	0.001	674	23	627	16	782	36	80	638	30	0.06	0.616	627	16				
mr11c39 mr11b19	0.856 0.932	0.047 0.038	0.102 0.103	0.002 0.003	0.20 0.32	0.068 0.061	0.001 0.001	628 669	26 20	629 633	13 16	855 639	34 26	74 99	629 644	25 28	0.99 0.10	1.333 1.137	629 633	13 16				
mr12b59	0.958	0.044	0.104	0.002	0.21	0.066	0.001	682	23	636	12	793	39	80	642	22	0.06	0.639	636	12				
mr12a55 mr11c59	0.829	0.073	0.104 0.104	0.003	0.18 0.34	0.063	0.002	613 673	40 17	636 638	19 15	694 670	62 28	92 95	633 650	36 26	0.57	0.595 0.384	636 638	19 15				
mr12a54 mr12b28	1.029	0.087	0.104	0.004	0.25	0.066	0.001	718 674	43 36	641 643	26	793 385	28	81	654	49	0.09	0.381	641 643	26 24				
mr11c60	0.942	0.058	0.105	0.004	0.27	0.054	0.001	630	32	647	24	722	40	90	642	43	0.41	1.072	647	24				
mr11c50 mr12b41	0.899	0.048	0.106	0.003	0.25	0.062	0.001	651 683	26 337	647 653	17	658 639	33 51	98 102	648	31 232	0.87	0.460	647 653	17				
mr11c51	0.882	0.035	0.107	0.020	0.32	0.062	0.001	642	19	654	16	657	30	99	649	27	0.56	0.530	654	16				
mr12a38 mr11b41	0.966 0.971	0.033	0.108	0.002	0.27 0.35	0.060	0.001	686 689	17 18	660 663	11 16	612 697	30 20	108 95	667 673	21 28	0.14 0.18	0.525 0.102	660 663	11 16				
mr11c13	0.945	0.040	0.108	0.003	0.30	0.060	0.001	675	21	663	16	611	31	109	667	28	0.56	0.858	663	16				
mr12a14 mr12a05	1.009 0.935	0.069 0.043	0.109 0.109	0.005 0.002	0.31 0.24	0.062 0.064	0.001 0.001	708 670	35 23	665 668	27 14	688 736	40 28	97 91	678 668	49 26	0.24 0.91	1.465 0.757	665 668	27 14				
mr11c10	0.982	0.034	0.110	0.003	0.35	0.064	0.001	695	17	673	15	735	23	92	682	27	0.26	0.149	673	15				
mr11b10 mr12a07	0.917 0.951	0.037 0.036	0.111 0.111	0.003 0.002	0.37 0.27	0.057	0.001 0.001	661 678	20 19	676 677	19 13	504 659	32 24	134 103	669 677	32 23	0.48 0.94	0.683 0.145	676 677	19 13				
mr11c43	0.977	0.026	0.112	0.002	0.37	0.062	0.001	692	13	685	13	665	22	103	688	22	0.64	0.485	685	13				
mr12a67 mr11c45	0.785	0.104	0.112	0.004	0.12	0.082	0.002	653	26	694	21	576	42	100	678	40 37	0.09	0.184	694	21				
mr11c42	0.996	0.069	0.114	0.004	0.23	0.066	0.001	702	35	698 703	21	800 780	40 29	87	698 709	39 33	0.91	0.601	698 703	21				
mr11c80	1.002	0.062	0.115	0.004	0.20	0.065	0.001	705	32	709	25	775	43	90 91	709	44	0.46	1.106	709	25				
mr12b58 mr11c52	1.068 1.052	0.077 0.047	0.119	0.003	0.18	0.067	0.001	738 730	38 23	723 761	17 21	840 772	44 39	86 99	725 747	33 35	0.71	0.572	723 761	17 21				
mr12b17	1.358	0.103	0.129	0.005	0.24	0.068	0.001	871	45	783	27	881	31	89	798	50	0.06	0.716	783	27				
mr12a58 mr12b18	1.373 1.259	0.200 0.137	0.129 0.129	0.007 0.004	0.18 0.15	0.069 0.070	0.002 0.001	877 828	86 61	785 785	38 24	906 923	45 37	87 85	794 789	73 47	0.31 0.50	0.166 0.421	785 785	38 24				
mr11c30	1.243	0.048	0.131	0.003	0.30	0.067	0.001	820	22	795	17	842	20	94	803	30	0.29	0.096	795	17				
mr12b33 mr11b55	1.324 1.335	0.104 0.060	0.132 0.133	0.004 0.003	0.18 0.23	0.079 0.068	0.002 0.001	856 861	46 26	801 806	22 15	1174 880	48 33	68 92	808 816	42 29	0.25 0.05	0.308 0.391	1174 880	48 33				
mr11c35	1.222	0.058	0.135	0.004	0.32	0.067	0.001	811	27	814 910	23	842	22	97	812	40	0.92	0.198	842	22 42				
mr12b26 mr12b51	1.338	0.153	0.135	0.006	0.19	0.066	0.001	862 1108	66 176	818 823	34 128	804 1551	42 24	102 53	824 871	64 245	0.52	0.455	804 1551	42 24				
mr11b56	1.323	0.106	0.136	0.006	0.28	0.073	0.002	856 822	46 30	825 826	35 24	1023	56	81	834	63 43	0.53	0.763	1023	56 41				
mr11c18	1.386	0.055	0.137	0.004	0.33	0.069	0.001	883	23	834	24	886	29	94	853	36	0.92	0.226	886	29				
mr12a43 mr11b42	1.339	0.050	0.140	0.003	0.33	0.066	0.001	863 867	22 54	843 850	19 41	811 1104	26 59	104 77	851 855	33 74	0.41	0.129	811 1104	26 59				
mr12a10	1.285	0.098	0.147	0.005	0.23	0.069	0.002	839	44	885	29	894	48	99	873	52	0.32	0.276	894	48				
mr12b32 mr12a32	1.672 1.425	0.177 0.056	0.148 0.149	0.009 0.004	0.28 0.32	0.075 0.069	0.001	998 899	67 23	888 893	49 21	1080 889	38 34	82 101	916 896	91 36	0.13	0.382 0.416	1080 889	38 34				
mr11b09	1.317	0.058	0.149	0.004	0.32	0.061	0.001	853	25	897	24	650	29	138	877	39	0.12	0.366	650	29				
mr11b08 mr12a52	1.573 1.408	0.057 0.145	0.152 0.156	0.004 0.005	0.36 0.16	0.073 0.067	0.001 0.001	960 892	22 61	911 933	22 29	1017 849	28 46	89 110	933 927	37 55	0.05 0.52	0.953 0.742	1017 849	28 46				
mr11c33	1.617	0.063	0.162	0.004	0.34	0.069	0.001	977	25	968	24	908	31	107	972	40	0.76	0.679	908	31				
mr12a34 mr11c09	1.690 1.851	0.062 0.097	0.168 0.169	0.004 0.005	0.33 0.27	0.071 0.078	0.001 0.002	1005 1064	23 35	999 1005	22 27	964 1135	28 39	104 89	1002 1023	37 48	0.84 0.12	0.291 0.548	964 1135	28 39				
mr11b53	1.738	0.066	0.170	0.004	0.28	0.073	0.001	1023	24	1012	20	1008	24	100	1016	35	0.69	0.628	1008	24				
mr12a20 mr11b12	1.931 1.836	0.097	0.171 0.172	0.005	0.29	0.073	0.001	1092 1059	34 23	1020 1022	28 22	1020 1065	33 29	100 96	1044 1038	49 37	0.05	1.032 0.365	1020	33 29				
mr11c29	1.546	0.084	0.173	0.007	0.37	0.057	0.001	949 1007	33	1026	38	477	47	215	978	57	0.05	0.332	477	47 27				
mr12a57	1.833	0.123	0.172	0.004	0.20	0.076	0.001	1057	20 44	1020	20	11098	27	93 94	1019	42	0.52	0.289	11098	29				
mr11b14 mr11b44	1.953 2.256	0.069	0.191	0.005	0.39 0.40	0.068	0.001	1099 1199	24 26	1125 1140	29 30	858 1141	31 32	131	1108	43 47	0.37	0.870	858 1141	31 32				
mr12a13	2.137	0.079	0.196	0.005	0.37	0.077	0.001	1161	26	1151	29	1129	23	100	1170	45	0.75	0.271	1129	23				
mr11c40	2.184	0.066	0.197	0.005	0.39	0.081	0.001	1176	21	1159	25	1216	19	95	1170	38	0.52	0.446	1216	19				

Table A2. Continued.

			Measure	ed Isotop	pic Ratio	os								Calculated Ages (M	la)				Detrital	(Ma)	Metamo	rphic (Ma)	CA-TIM	S (Ma)	
Sample/ Analysis	²⁰⁷ Pb/ ²³⁵ U	±lσ	²⁰⁶ Pb/ ²³⁸ U	±lσ	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±lσ	²⁰⁷ Pb/ ²³⁵ U	±lσ	²⁰⁶ Pb/ ² ³⁸ U	±lσ	²⁰⁷ Pb/ ²⁰⁶ Pb	±lσ	U-Pb/Pb-Pb concordancy (%)	Concordia age	±2σ	Probability of concordance	Th/U	For Prob D age	ens plots ±1σ	For Prob age	Dens plots ±1σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	notes
mr11b37	2.123	0.098	0.200	0.005	0.28	0.075	0.001	1156	32	1177	28	1058	31	111	1169	47	0.56	0.282	1058	31					
mr12b21	2.160	0.163	0.203	0.006	0.20	0.083	0.002	1168	52	1191	32	1277	49	93	1186	59	0.68	0.796	1277	49					
mr12a40	2.455	0.155	0.206	0.007	0.25	0.080	0.002	1259	46	1210	35	1194	38	101	1225	63	0.33	0.283	1194	38					
mr11b20	2.451	0.070	0.211	0.004	0.32	0.082	0.001	1258	20	1232	20	1236	21	100	1245	33	0.28	0.314	1236	21					
mr12b09	2.683	0.132	0.215	0.006	0.28	0.085	0.001	1324	36	1257	31	1325	32	95	1282	54	0.11	0.246	1325	32					
mr12a35	3.823	0.242	0.259	0.012	0.37	0.102	0.002	1598	51	1484	63	1652	32	90	1555	94	0.08	1.241	1652	32					
mr11c53	3.383	0.225	0.264	0.010	0.30	0.089	0.001	1500	52	1508	53	1395	25	108	1504	84	0.90	0.106	1395	25					
mr11c58	4.776	0.126	0.327	0.007	0.39	0.107	0.001	1781	22	1825	33	1742	12	105	1789	42	0.16	0.195	1742	12					
mr12b40	8.309	0.612	0.394	0.017	0.29	0.131	0.002	2265	67	2143	79	2116	26	101	2214	119	0.16	0.486	2116	26					
mr11c55	7.647	0.171	0.410	0.008	0.44	0.130	0.001	2190	20	2216	37	2103	15	105	2192	40	0.45	0.276	2103	15					
mr12b38	18.029	1.144	0.599	0.033	0.44	0.210	0.002	2991	61	3025	134	2906	13	104	2992	122	0.78	0.109	2906	13					

Footnotes

Toomotes Data in grey - probability of concordance <0.05 Data in red - interpreted as metamorphic, based on morphology and generally low Th/U Data in blue - youngest detrital zircon age population Data in black - all other detrital zircon dat

Notes
1. abundant cracks and an amorphous shaped core; included in metamorphic population despite high Th/U
2. relatively low probability of concordance
3. older age built low Th/U
4. excluded from weighted average in text and figure; reversely discordant outlier