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ABSTRACT

The Canaan River pluton comprises megacrystic monzogranite and quartz diorite to monzodiorite that is 
exposed in several small inliers on the Carboniferous New Brunswick Platform west of Moncton in southeastern 
New Brunswick. Its distinct magnetic geophysical signature and borehole data suggest that the Canaan River 
pluton is part of a large buried felsic to mafic intrusive body that lies at relatively shallow depths beneath flat-
lying Pennsylvanian sandstone on the platform. New laser ablation ICP-MS in situ analysis of the megacrystic 
monzogranite yielded a U–Pb zircon concordia age of 412.6 ± 2.1 Ma, indicating that the intrusion is of Early 
Devonian (upper Lochkovian) age.

The new radiometric data along with lithological, geochemical, and isotopic data suggest that the Canaan 
River pluton is most like the megacrystic Hawkshaw Granite of upper Lochkovian age in the Pokiok Batholith in 
southwestern New Brunswick. The similarities shown by these granites suggests that they may have been generated 
in the same complex tectonomagmatic setting related to the successive arrival of the leading edge of Ganderia and 
Avalonia at the composite Laurentian margin during the Salinic and Acadian orogenies.

RÉSUMÉ

Le pluton de la rivière Canaan est constitué de monzogranite mégacristallin et de diorite quartzique passant 
à de la monzodiorite exposée dans plusieurs petites boutonnières de la plateforme carbonifère du Nouveau-
Brunswick, à l’ouest de Moncton, dans le sud-est du Nouveau-Brunswick. Sa signature géophysique magnétique 
distinctive et les données de puits de forage permettent de supposer que le pluton de la rivière Canaan représente 
une partie d’une masse intrusive felsique à mafique de forte dimension enfouie, reposant à une profondeur 
relativement faible sous le grès pennsylvanien horizontal de la plateforme. Une nouvelle analyse in situ par ICP-
MS avec ablation au laser a attribué au monzogranite macrocristallin un âge U-Pb sur zircon concordia de 412.6 ±  
2.1 Ma, ce qui révèle que l’intrusion remonte au Dévonien précoce (Lochkovien supérieur).

Les nouvelles données radiométriques tout comme les données lithologiques, géochimiques et isotopiques 
laissent présumer que le pluton de la rivière Canaan est très semblable au granite mégacristallin de Hawkshaw, 
qui remonte au Lochkovien supérieur, dans le batholite de Pokiok, dans le sud-ouest du Nouveau-Brunswick. 
Les similarités entre les granites laissent supposer qu’ils pourraient avoir été produits au sein du même cadre 
tectonomagmatique complexe apparenté à l’arrivée successive des fronts de la Gandérie et de l’Avalonie le long de 
la marge composite laurentienne durant les orogenèses salinique et acadienne.
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the first to describe the megacrystic granite on Canaan Riv-
er west of Moncton (Fig. 1), but since then very little work 
has been done. Whalen et al. (1986) named the granite the 
Canaan River pluton and sampled it as part of a larger iso-
topic and geochemical study. More detailed mapping of the 

INTRODUCTION AND REGIONAL GEOLOGY

The Canaan River pluton is located on Canaan River and 
in the surrounding area, about 40 km west of Moncton in 
southeastern New Brunswick (Fig. 1). Hamilton (1962) was 
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Paleozoic inliers and surrounding Carboniferous rocks was 
conducted by St. Peter and Johnson (2006; 2008) and John-
son and St. Peter (2008), but the pluton has never been for-
mally named.

The Canaan River area is largely underlain by flat-lying 
Pennsylvanian sandstone that is part of the Carboniferous 
New Brunswick Platform of Poole (1967), an area of uplifted 
Early Paleozoic basement within the larger Late Devonian 
to Lower Permian Maritimes Basin of Atlantic Canada (Ro-
liff 1962; Bradley 1982; Gibling et al. 2008). The platform 
covers an area of over 25 000 km2 and forms the roughly tri-

angular area of Pennsylvanian Pictou Group that is exposed 
at surface over much of the eastern part of the province. The 
Pictou Group either disconformably overlies Mississippian 
red beds and peralkaline volcanic rocks or lies directly on 
pre-Carboniferous basement, as is the case with the Canaan 
River pluton (Ball et al. 1981; Fyffe and Barr 1986; Gray et 
al. 2010).

Pre-Carboniferous inliers are restricted to the southern 
parts of the platform between Chipman and Canaan River 
near the boundary between the New Brunswick Platform 
and the Cocagne Subbasin (Fig. 1). In addition to granite, 
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Figure 1. Map of southern New Brunswick showing major geological subdivisions and Silurian and Devonian plutonic 
rocks. Area outlined in black is location of figures 2 and 3. Inset map shows major tectonic elements of the northern Ap-
palachian orogen in New England and Atlantic Canada; the area of southern New Brunswick shown in Figure 1 outlined 
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thick turbidite sequences belonging to the Silurian Kings-
clear Group of the Fredericton belt (e.g., Fyffe et al. 2011) 
and minor diorite are also exposed. These inliers are the 
surface expression of a shallow-buried basement high re-
ferred to as the “Minto-Chipman/Canaan River basement 
high”, which was delineated by a series of shallow boreholes 
that were drilled during a study to determine the coal po-
tential of the Pennsylvanian rocks (Ball et al. 1981). Twelve 
of the boreholes that were drilled in the Chipman and Ca-
naan River areas intersected granodiorite, slate, phyllite, and 
schist at depths of less than 122 m beneath the Pennsylva-
nian cover. The distribution of the boreholes that intersect-
ed pre-Carboniferous rocks indicated that the boundaries 
of the basement high are in part controlled by parallel, 
northwest-trending faults, suggesting a horst-like structure 
(Ball et al. 1981). A regional aeromagnetic survey subse-
quently revealed prominent, parallel, northwest-trending 
linear magnetic highs, one of which appears to mark the 
western boundary of the predicted basement horst (Kiss 
et al. 2004a, 2004b, 2004c). These positive linear magnetic 
features were interpreted to be mafic dykes intruded into 
northwest-trending structures, possible feeders to Missis-
sippian volcanic rocks present west of the Canaan River area 
(Thomas and Kiss 2005). Subsequent mapping has shown 
that in most cases the bedrock at surface directly over the 
linear magnetic anomalies is part of the Pictou Group, thus 
indicating that the dykes are at least in part buried at shallow 
depths beneath the sandstone cover (St. Peter and Johnson 
2006; Johnson and St. Peter 2008). One exception is on Coal 
Creek (Fig. 1), where a less prominent, northwest-trending 
linear magnetic anomaly oblique to the main trend of inter-
preted dykes is related to a lamprophyre dyke in the Flume 
Ridge Formation of the Kingsclear Group (St. Peter and 
Johnson 2008).

The boundary between the New Brunswick Platform 
and the Cocagne Subbasin to the southeast (Gussow 1953; 
St. Peter and Johnson 2009) is the northeast-striking Bel-
leisle Fault (Fig. 1). In southwestern New Brunswick where 
Carboniferous cover is lacking, the Belleisle Fault separates 
Neoproterozoic and Early Paleozoic rocks of the New Riv-
er, St. Croix, and Annidale belts and Silurian rocks of the 
Mascarene and Fredericton belts to the west, from the Early 
Silurian Kingston belt on the east (Barr et al. 2002; White et 
al. 2006; Fyffe et al 2011). Immediately west of the Belleisle 
Fault, the Neoproterozoic and younger rocks are intruded 
by Late Silurian to Late Devonian granitic to gabbroic plu-
tons of the Saint George Batholith, and even farther west by 
the Pokiok Batholith (Fig. 1).

The purpose of this paper is to present a U–Pb (zircon) 
age for a sample of megacrystic granite collected from the 
Canaan River pluton on Thornes Brook (Fig. 2) and to com-
pare its chemical characteristics to plutons of similar age in 
southern New Brunswick.

CANAAN RIVER PLUTON

Location and distribution

The Canaan River pluton occurs in several small inliers 
on Canaan River and its tributary Thornes Brook in the 
Cherryvale – New Canaan area (Fig. 2). The largest expo-
sures are on Canaan River north of route 112 at New Canaan 
where megacrystic granite outcrops sporadically along the 
river bank for about 700 m. At those locations the granite is 
overlain by nearly horizontal beds of Pennsylvanian sand-
stone and pebbly conglomerate of the Minto Formation. 
A separate inlier about 1.5 km to the west consists of dark 
grey diorite cut by felsic veins and pods. On Thornes Brook, 
megacrystic granite is exposed in three separate inliers be-
tween 2 and 3 km south of its junction with Canaan River 
(Fig. 2). At the southernmost location the granite intruded 
graded feldspathic wacke and dark grey to black siltstone 
and shale of the Early Silurian Digdeguash Formation of the 
Kingsclear Group (St. Peter and Johnson 2006; Johnson and 
St. Peter 2008).

Although the majority of surface exposures in the Canaan 
River area are Carboniferous sandstone, the aeromagnetic 
signature suggests that the intrusive rocks are part of a much 
larger plutonic complex buried beneath a relatively thin cov-
er of Carboniferous rocks. This is illustrated on the aero-
magnetic map, which shows the granite and diorite on Ca-
naan River clearly evident as magnetic low and high areas, 
respectively (Fig. 3). Based on the strength and arcuate shape 
of the aeromagnetic response, Thomas and Kiss (2005) pro-
posed that a large mafic/felsic intrusive complex underlies 
an area of over 200 km2. A coincident positive gravity anom-
aly associated with the intrusive complex (Thomas and Kiss 
2005; their figure 19) suggests that the mafic components 
are predominant. An obvious truncation of the magnetic 
highs associated with the Digdeguash Formation by the Ca-
naan River intrusive complex is also evident on the magnet-
ic map (Fig. 3). A northwest-trending, linear magnetic high 
interpreted to be a mafic dyke is also apparent in the upper 
left corner on Figure 3. As previously noted, similar north-
west-trending dykes delineate the boundaries of horst and 
graben structures to the west and here it appears to partially 
cut the arcuate magnetic high associated with the intrusion. 
Although not shown, a positive gravity anomaly associated 
with the mafic rocks in the intrusive complex is also trun-
cated sharply to the east along this lineament. It is interest-
ing to speculate that the semicircular magnetic high that is 
cut-off at the northern map boundary is the continuation 
of the Canaan River intrusive complex that has been offset 
sinistrally by a northwest-trending fault; unfortunately, no 
deep borehole data are available in this area to confirm or 
refute this hypothesis.

The boreholes drilled in the area indicate that the thick-
ness of Carboniferous sandstone overlying the intrusion is 
variable. Granite and granodiorite were encountered at 30 
and 40 m below surface in boreholes 219 and 220 near Ca-
naan River, but only 9 km to the north, boreholes 172 and 
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196 to 198 penetrated Carboniferous sandstone for the en-
tire depth of 122 m, although the magnetic response is still 
quite strong in that area (Fig. 3). Granite was intersected 
even deeper in hydrocarbon exploration boreholes drilled 
nearly 40 km to the northeast at Canaan Station and Coal 
Branch (Fig. 1), at depths of 330 and 362 m, respectively. 
Based on gravity data and the presence of fresh biotite and 
hornblende in the cuttings, St. Peter and Fyffe (1990) argued 
that the granite encountered in these deep boreholes is likely 

part of a buried Devonian pluton that is contiguous with the 
Canaan River pluton.

Petrography

The main textural variety in the Canaan River pluton is 
pink to grey, very coarse- to medium-grained monzogran-
ite containing potassium feldspar phenocrysts up to 6 cm 
in length, although 2 cm is more common (Fig. 4a). The 
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monzogranite consists of approximately equal amounts of 
amounts of plagioclase, orthoclase, and quartz, and about 
10% biotite. Apatite and zircon are abundant accessory 
phases, mainly as inclusions in biotite (Figs. 4b, c). Opaque 
phases are rare. Pink to grey aplite, biotite-rich fine-grained 
granite and microgranite porphyry dykes, and locally peg-
matitic feldspar dykes were observed to have cut the monzo-

granite. On Thornes Brook the monzogranite contains large 
xenoliths of garnet-bearing metasedimentary rocks likely 
derived from the adjacent Digdeguash Formation. The latter 
contains abundant dykes of dark grey, fine-grained to medi-
um-grained gabbro and plagioclase porphyry (Fig. 2), but 
the relationship of these mafic dykes to the Canaan River 
pluton is not known.
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The dioritic inlier in Canaan River consists of dark grey, 
medium-grained quartz diorite to monzodiorite with fel-
sic pods and veins. The rock consists of plagioclase, quartz, 
microcline, hornblende, and biotite, with accessory apatite, 
titanite, and magnetite.

LASER ABALATION ICP-MS U–PB 
GEOCHRONOLOGY

Methods

A 1 kg sample (07SJ-080) of megacrystic granite from the 
Canaan River pluton was sent to Overburden Drilling 
Management (ODM) in Ottawa, Ontario, for electro-pulse 
disaggregation and initial zircon separation. Zircon grains 
for dating were then picked from the zircon concentrates at 
Cape Breton University. Selected grains were mounted in an 
epoxy-covered thin section at the University of New Bruns-
wick, Fredericton, polished to expose the centres of the zir-
con grains, and imaged using cold cathodoluminescence to 
identify internal zoning and inclusions. These images were 
used to select ablation points (30 μm diameter), avoiding 
any visible inclusions, cracks, or other imperfections.

U and Pb isotopic compositions were measured using the 
Resonetics S-155-LR 193 nm Excimer laser ablation system 
connected to an Agilent 7700× quadrupole inductively cou-
pled plasma – mass spectrometer in the Department of Earth 
Sciences at the University of New Brunswick, following the 
procedure outlined by McFarlane and Luo (2012). Data re-
duction was done in-house using Iolite software (Paton et al. 
2011) to process the laser output into data files, and further 
reduced for U–Pb geochronology using VizualAge (Petrus 
and Kamber 2012). VizualAge outputs included uncorrect-
ed U–Pb ratios that were used to calculate 204Pb-based cor-
rections (Andersen 2002) and 208Pb-based corrections. Data 
were filtered using 204Pb as a monitor. In this sample no cor-
rections were applied to any data, which are presented in the 
Appendix, where those used in calculating the concordia 
age reported below are highlighted. Data points included in 
the concordia calculations and reported here are grains that 
are 98% to 101% concordant and do not require a correction 
for common Pb (204Pb <80 counts per second).

Concordia ages were calculated using Isoplot versions 
3.75 and 4.15 (Ludwig 2003, 2012). Ages are reported at 
95% confidence, with decay-constant errors included in the 
calculations. The calculated concordia ages overlap with the  
weighted mean ages for the samples using all near-concordant  
data. 206Pb/238U ages are used in all the probability distribu-
tion calculations. The calculated concordia ages for refer-
ence materials FC1 and Plesovice during this analytical run 
are 1098.8 ± 2.5 Ma and 337.9 ± 2.4 Ma respectively, data for 
all reference materials are included in the Appendix.

Results

The zircon grains in sample 07SJ-080 range from dark 

(a)

(b)

(c)

Figure 4. (a) Photograph of a cut slab from dated sample 
07SJ-80 showing large alkali-feldspar megacrysts. (b) Pho-
tomicrograph of sample NB03-158 in plane polarized light; 
width of image is about 3 mm. Image shows quartz (clear), 
plagioclase, and biotite (shades of brown) partly altered to 
chlorite. Biotite has abundant inclusions of apatite (white) 
and zircon (high relief). (c) Same as (b) except with crossed 
polars.
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yellow to clear and are acicular to elongate and euhedral 
in shape. Most of the grains are <30 µm in size, but larger 
grains in the 50–100 µm range were picked for analysis. In 
CL most of the larger grains show clear oscillatory zoning 
typical of igneous zircon grains. The 206Pb/238U ages of grains 
between 98% and 101% concordant range between ca. 400 
Ma and 425 Ma with one older grain at ca. 445 Ma (Figs. 5a 
and b). The main cluster of near-concordant grains (n = 8) 
yielded a concordia age of 412.3 ± 2.6 Ma (Fig. 5c), which we 
interpret as the best estimate of the igneous crystallization 
age of the rock. While both the MSWD and probability of 
concordance can be improved by using fewer grains in the 
concordia calculation, we prefer the approach of including 
as many grains as possible in order to get a representative 
concordia age. This concordia age overlaps with the weight-
ed mean age of all the 98–101% concordant grains at 411.5 ± 
4.7 Ma at 95% confidence. Three older grains with 206Pb/238U 
ages of 423.1, 426.3 and 445.9 are interpreted as either in-
herited or anticrystic grains formed from essentially comag-
matic and related magma. Younger discordant grains are 
interpreted as results of Pb loss.

GEOCHEMISTRY

Four samples of megacrystic monzogranite and two sam-
ples of diorite were selected from the Canaan River pluton 
for whole-rock chemical analysis (Table 1). All samples 
were analyzed for major and trace elements, and three of 
the samples (two of monzogranite and one of diorite) also 
for rare-earth elements. Analyses for one additional sam-
ple of megacrystic granite (P9-WXNB353) from Whalen 
et al. (1996) were also utilized. To facilitate discussion of 
the geochemistry, analyses for granites of similar Lower 
Devonian (upper Lochkovian) age in the Saint George Ba-
tholith (John Lee Brook and Wellington Lake plutons) and 
Pokiok Batholith (Hawkshaw Granite) were plotted on the 
geochemical diagrams for comparison. The analyses for the 
John Lee Brook Granite include samples 85MM154B, 7f1/87 
and 7g76/87 from McLeod (1990) and P8-WXNB350 from 
Whalen et al. (1996). The one set of analyses from the Wel-
lington Lake Granite (sample 15-72) is from Mohammadi 
et al. (2017). The set of twelve analyses for the Hawkshaw 
Granite are from Whalen (1993).

The five monzogranite samples from the Canaan River 
pluton range in SiO2 content between 67% and 70%, and the 
two quartz diorite samples have 55% and 59% SiO2 (Table 1). 
Based on major-element components, the felsic rocks vary 
from granite to quartz monzonite and granodiorite; the Ca-
naan River dioritic samples are quartz monzodiorite (Fig. 
6a). The Canaan River and all of the other upper Lochkovi-
an age granite samples plot in the high-K field on the silica 
versus K2O diagram with the exception of the shoshonitic 
Wellington Lake Granite (Mohammadi et al. 2017) (Fig. 
6b). On the aluminum saturation index (ASI) diagram, the 
Canaan River monzogranite samples plot in and near the 
field defined by chemical data from twelve samples of the 
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Sample 07SJ-80 07SJ-184a NB03-158 03SJ-20 03SJ-18 07SJ-94
Easting 314368.4 319480.2 314346.4 319477 318137 318110

Northing 5104256 5105678.8 5104252.9 5105728 5105462 5105488

Major oxides (wt. %)
SiO2 67.42 69.97 69.39 67.78 58.82 55.30
TiO2 0.52 0.41 0.39 0.45 1.03 1.23
Al2O3 14.84 15.21 14.72 15.52 16.68 16.09
Fe2O3 4.45 3.30 3.30 3.34 6.29 8.11
MnO 0.12 0.08 0.09 0.08 0.13 0.17
MgO 0.95 0.69 0.71 0.75 3.51 4.14
CaO 2.50 1.80 1.63 2.10 6.28 6.45
Na2O 3.50 3.15 3.11 3.29 3.65 3.61
K2O 3.40 5.12 4.19 4.85 2.22 2.66
P2O5 0.17 0.13 0.14 0.14 0.34 0.33
Total 98.70 100.60 99.16 98.81 99.64 99.02

Trace elements (ppm)
Rb 154 173 172 166 66 86
Cs 9.2 4.5 3.4
Ba 632 977 874 926 450 605
Sr 196 181 157 179 385 351
Ga 22 18 18 19 19 21
Ta 1.2 0.9 1.4
Nb 13 10 13 14 15 18
Hf 6.7 5.4 5.1
Zr 223 193 210 194 185 166
Y 30 22 22 32 27 35
Th 15.9 16.9 5 13 6 10.3
U 4.2 3.9 1 5 2 3.1
La 40.1 36.3 39.3
Ce 81.8 70.0 86.1
Pr 10.0 7.3 10.8
Nd 34.3 26.6 37.6
Sm 6.9 6.0 7.7
Eu 1.3 1.4 1.9
Gd 6.2 5.0 6.9
Tb 1.0 0.8 1.1
Dy 5.7 4.3 6.5
Ho 1.1 0.8 1.3
Er 3.2 2.4 3.6
Tm 0.47 0.35 0.52
Yb 2.9 2.1 3.2
Lu 0.44 0.32 0.47
Cr 30 70 5 49 90
Ni 10 20 1.5 34 8 10
Co 6 5 76 48 58 23
Sc 11 8 22
V 49 32 54 60 148 173
Cu 30 20 130 14 30
Pb 30 25 16 38 12 20
Zn 100 30 51 51 72 120

Table 1. Major and trace element compositions of samples from Canaan River pluton. 
Coordinates are UTM Zone 20.
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Hawkshaw Granite from Whalen (1993), although the for-
mer samples are slightly more peraluminous (Fig. 6c). The 
Canaan River samples plot near the upper limit (<1.1) for 
I-type granite and transitional to S-type granite (Chappell
and White 1974, 2001), which is similar to the S-type John
Lee Brook Granite, although the latter is slightly more alka-
line (Fig. 6c).

Both the felsic and mafic components of the Canaan Riv-
er pluton exhibit similar rare-earth element (REE) patterns, 
with enrichment in light REE, small negative Eu anomalies, 
and relatively flat but slightly decreasing heavy REE profile 
(Fig.7a). The overall abundance of REE decreases with in-
creasing SiO2 content in the samples and is highest in the 
quartz diorite sample (~55% SiO2) and lowest in the mon-

zogranite sample 07SJ-184a (~70% SiO2), consistent with 
fractionation of REE-bearing minerals such as apatite and 
zircon. The quartz diorite also has slightly lower abundanc-
es of most large-ion-lithophile elements (LILE), with the 
exceptions of Sr and Eu (Fig. 7b), consistent with differ-
entiation and fractional crystallization of plagioclase. The 
Hawkshaw Granite samples show nearly identical trace el-
ement patterns, although with lower Ba (Fig. 7b). The John 
Lee Brook and Wellington Lake granites are also enriched in 
light REE relative to heavy REE but have much larger neg-
ative Eu anomalies than the Canaan River and Hawkshaw 
(Figs. 7a, c). The single Wellington Lake sample also has 
the highest absolute abundances of REE consistent with its 
A-type chemistry (Mohammadi et al. 2017). In contrast to
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granitoids but near the upper limit in all of Ga/Al ratio and 
alkali element oxide and Zr contents (Figs. 9a, b). However, 
they do not show characteristics of evolved I- and S-type 
granites (Figs. 9c, d). The Hawkshaw granite dataset over-
laps the Canaan River samples on diagrams utilizing Ga/Al  
ratio and alkali element oxide and Zr contents to distinguish 
I- and S-type granites from A-type granites (Figs. 9a, b) and
are similarly unevolved to slightly more evolved than the
Canaan River samples (Figs. 9c, d). In contrast, the Wel-
lington Lake granite plots clearly as A-type (Figs. 9a–d), as
determined previously by Mohammadi et al. (2017) and the
John Lee Brook near the boundary of I- and S-types (Figs.
9a, b), but clearly in the fractionated granite field (Figs. 9c, d).

Mohammadi et al. (2017) observed that La/Yb and epsi-
lon Nd values varied systematically across the Saint George 

all of the other samples the majority of John Lee Brook sam-
ples are enriched in the heaviest REE (Fig. 7c). The Canaan 
River, Hawkshaw, and John Lee Brook samples all have neg-
ative Nb and Ti anomalies, suggesting a subduction com-
ponent or assimilation of an upper crustal material (Figs. 
7b, d) consistent with the positions of most of the samples 
in the overlapping volcanic-arc and post-collisional granite 
fields (Fig. 8a) and in the field for slab failure plutons (Fig. 
8b) on tectonic setting discrimination diagrams. Some of 
the Hawkshaw samples plot toward the within-plate granite 
field, as does the single Wellington Lake sample, but the lat-
ter has significantly higher Y (Fig. 8b).

The Canaan River monzogranite samples plot in or near 
the boundary of the combined field of I- and S- granites on 
diagrams that distinguish those granite types from A-type 
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of the younger megacrystic Jimmy Hill, Magaguadavic, and 
Gaytons granites, but are comparable to the John Lee Brook 
and Hawkshaw granites of similar age (Table 2). Howev-
er, when comparing the epsilon Nd data, the intrusions in 
the Saint George Batholith are mostly isotopically positive, 
ranging from + 3.3 for the A-type Welsford Granite to slight-ly 
negative - 0.4 for the S-type Tower Hill pluton (Whalen et 
al. 1994, 1996). In contrast, both the Canaan River and 
Hawkshaw granites have relatively high isotopically nega-
tive epsilon Nd values of - 2.0 and - 2.5, respectively, indi-
cating that melting of surpracrustal material was involved in 
the generation of both of these granites (Whalen et al. 1996).

DISCUSSION

Late Silurian to Late Devonian intrusions are abundant 
in all lithotectonic belts northwest of the Belleisle Fault in 
southern and central New Brunswick (Figs. 1, 10). In con-
trast, the only known plutons of this age in Ganderian belts 
southeast of this fault are the ca. 390 Ma Gaytons Granite 
and similar granite intersected at depth in several bore-
holes on the buried Westmorland uplift (Barr et al. 2007; 
St. Peter and Johnson 2009). Devonian megacrystic vari-
eties like that on Canaan River occur only in the Gaytons 
Granite, the Magaguadavic and Jimmy Hill granites in the 
Saint George Batholith and the Hawkshaw Granite in the 
Pokiok Batholith. The Gaytons Granite is composed main-ly 
of megacrystic quartz monzonite that yielded a Middle 
Devonian U–Pb (zircon) age of 390 ± 0.5 Ma (Barr et al. 
2007), so is significantly younger than the 412.3 ± 2.6 Ma 
age determined for the Canaan River pluton. The host rocks 
of the Gaytons Granite are not exposed but the intrusion 
is chemically and mineralogically identical to and the same 
age as quartz monzonite drilled beneath Carboniferous 
strata south of Moncton and associated with buried anor-
thosite and ferronorite of the Lower Coverdale plutonic 
suite (White 1996; Barr et al. 2007; Tesfai 2011; Miller et al. 
2018). It is unlikely that the Canaan River pluton is related 
to the Middle Devonian A-type Gaytons Granite (Barr et al. 
2007). Indeed, documentation of many tens of kms of post- 
Devonian movement on the Belleisle Fault (Waldron et al. 
2015) make any links between the Gaytons and Canaan Riv-er 
plutons unlikely.

The Saint George Batholith west of the Belleisle Fault 
(McLeod 1990; Mohammadi et al. 2017) is divided into 
three main groups based on age and petrogenetic charac-
teristics: (1) Late Silurian bimodal A-type plutons (Bo-
cabec, Utopia, Jake Lee, Welsford and Wellington Lake);  
(2) Early Devonian I – and S –type felsic intrusions (Ma-
gaguadavic, Jimmy Hill, John Lee Brook and Tower Hill),
and (3) a much younger suite of Late Devonian fractionated
I– type intrusions (Mount Douglas and satellite plutons).
The megacrystic Magaguadavic and Jimmy Hill granites are
also younger than the granite on Canaan River, as they have
Early Devonian (Emsian stage) U–Pb (zircon) ages of 396 ± 1
Ma (Bevier 1990) and 403± 2 Ma (Davis et al. 2004),

Batholith from southeast to northwest and demonstrated 
that the Early Devonian plutons in the northwest have con-
siderably higher La/Yb ratios and lower epsilon Nd values 
than the Late Silurian plutons in the southeast. The La/Yb 
values determined for the Canaan River pluton range from 
12.3 to 17.3, and therefore are significantly lower than those 
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are Early Devonian (Bevier and Whalen 1990a, 1990b; Mc-
Leod et al. 2003; Beal et al. 2010) and have chemical charac-
teristics typical of I-type granitoids (Whalen 1993; Yang et al. 
2008). A U–Pb (titanite) age of 411 ± 2 Ma (Bevier and Wha-
len 1990a, 1990b) for the Hawkshaw Granite, and a 414 ±  
2 Ma (U–Pb zircon) age for related granodiorite at depth 
in the Lake George area (McLeod et al. 2003; Leonard et al. 
2006; Lentz et al. 2016) indicate that the Hawkshaw Granite 
is the only megacrystic granite in the region known to be 
similar in age to the Canaan River pluton. Despite having 
no radiometric age control and chemical data from only one 
sample, Whalen et al. (1996) noted the lithological and geo-
chemical similarities between the Canaan River and Hawk-
shaw megacrystic granites and our dating and geochemical 
data presented above further support a link between these 
two granites.

respectively. The only granite in the Saint George Batholith 
similar in age to the Canaan River pluton are the garnetifer-
ous, two-mica John Lee Brook Granite and the Wellington 
Lake biotite granite both of which have upper Lochkovian 
ages of 413.3 ± 1 Ma and 415.5 ± 2.1, respectively (Moham-
madi et al. 2017), however as described above they are dif-
ferent compositionally and geochemically than the Canaan 
River pluton.

The Pokiok Batholith is situated about 50 km northwest 
of the Saint George Batholith, on the west side of the Freder-
icton Fault (Venugopal 1979; McCutcheon et al. 1981; Lutes 
1987; Whalen 1993; and Yang et al. 2008) (Fig. 1). The batho-
lith intruded rocks of the Fredericton belt on its southeast-
ern side and Cambrian to Early Ordovician rocks of the Mi-
ramichi belt (van Staal and Fyffe 1991; Fyffe 2001) along its 
northwestern side. All of the plutons in the Pokiok Batholith 
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granites were emplaced into rocks of the Fredericton trough, 
interpreted as a foredeep basin formed during loading of 
the passive margin of the Tetagouche backarc basin by the 
overriding Brunswick subduction complex (van Staal et al. 
2003). The signature may also be indicative of slab-breakoff 
during the Acadia orogeny, as postulated by Whalen et al. 
(2006).

The arrival of the leading edge of Ganderia at the Lau-
rentian margin and subsequent inversion of the Fredericton 
Trough during the terminal Salinic orogeny coincided with 
the arrival of Avalonia at its trailing edge and the onset of the 
Acadian orogeny, resulting in a highly complex geodynamic 
setting (e.g., van Staal et al. 2009; van Staal and Barr 2012). 
The mechanism by which the Pokiok Batholith and other 
plutons in the Central Plutonic belt were generated has been 
ascribed to crustal thickening following Salinic orogenesis 
and/or underthrusting of Ganderia’s trailing edge by the 
leading edge of Avalonia (van Staal et al. 2009; Wilson and 
Kamo 2016). The Early Devonian units of the Pokiok Ba-
tholith (e.g., Hawkshaw) and Saint George Batholith (e.g., 
John Lee Brook), as well and the Canaan River pluton (Fig. 
10) were emplaced immediately after these terranes and
their Silurian cover were telescoped into an area less than
150 km wide due to orthogonal shortening (Mohammadi et
al. 2017). The current position of the Canaan River pluton
suggests that the older A-type, bimodal intrusions proximal
to the Acadian suture were cut out along the Belleisle and
other faults in the Canaan River area by regional-scale strike
slip faulting (Fig. 1).

CONCLUSIONS

The Canaan River pluton was emplaced into rocks of the 

The systematic changes in isotopic and geochemical char-
acteristics observed across the Saint George Batholith by 
Mohammadi et al. (2017) are similar to those previously ob-
served by Whalen et al. (2006) across a major suture zone in 
central Newfoundland. This led Mohammadi et al. (2017) to 
suggest that the changes were reflecting the position of these 
granites relative to the Acadian suture zone. The Belleisle 
Fault is a major structure that separates the Silurian Kings-
ton arc and Mascarene backarc basin that formed above a 
northwest-directed subduction zone beneath the trailing 
edge of Ganderia (Fyffe et al. 1999, 2011; Barr et al. 2002). 
The older parts of the Saint George Batholith were emplaced 
following the arrival of Avalonia during the middle Silurian 
onset of the Acadian orogeny (Fyffe et al. 1999, 2009, 2011; 
Barr et al. 2002; van Staal et al. 2009; Mohammadi et al. 
2017).

Whalen et al. (2006) attributed the changes in La/Yb and 
epsilon Nd values over time in Newfoundland, to slab break-
off and the transition from shallow-level melting of juvenile 
crust adjacent to the suture zone to deeper-level melting of 
old granitic basement farther away in the backarc area. Mo-
hammadi et al. (2017) invoked the same model to explain 
the shift from older bimodal, A-type magmatism to felsic  
I- and S-type magmatism in the Saint George Batholith,
suggesting it reflected the change from an extensional tec-
tonic regime in the Masacrene backarc basin to a transpres-
sional environment related to the continued convergence
of the Avalonian microplate and slab-break off closer to the
telescoped boundary between the Fredericton Trough, St.
Croix belt, and Mascarene backarc basin (Fyffe et al. 2011).

The Canaan River, Hawkshaw, and John Lee Brook gran-
ites all exhibit strong negative Nb and Ti anomalies typical 
of arc-related rocks. However, the arc-like signature could 
be inherited from upper crustal source rocks as all of these 

Plutonic Name Age (Ma) ASI La/Yb ε
Nd(T)

Gaytons 390 ± 0.5 0.94 (n = 4) 22.5 – 32.4 +0.3
Magaguadavic 396 ± 1 0.95 (n = 5) 24.3 – 29.3 +1.5

Jimmy Hill 403 ± 2 1.04 (n = 6) 20.7 – 31.2 -----
Hawkshaw 411 ± 2 1.00 (n = 12) 10.0 – 20.9 -2.5

Canaan River 412.3 ± 2.6 1.09 (n = 5) 12.3 – 17.3 -2.0
John Lee Brook 413.3 ± 2.1 1.10 (n = 4) 5.5 – 12.0 +0.2
Wellington Lake 415.5 ± 2.1 1.21 (n = 1) 10.8 -----

Table 2. Radiometric ages, aluminum saturation index (ASI), La/Yb and epsilon Nd 
values for selected Devonian granites in southern New Brunswick.

Geochemical and isotopic data sources: Gaytons Granite - our unpublished data,
Barr et al . (2007) and Samson et al . (2000); Magaguadavic, Jimmy Hill and John
Lee Brook granites - McLeod (1990) and Whalen et al. (1994, 1996); Hawkshaw
Granite - Whalen (1993); Canaan River Granite - this study and Whalen et al . 
(1996). Wellington Lake - Mohammadi et al . (2017). Note: # of samples used to
determine range in La/Yb values is the same as for ASI, except for Canaan River 
pluton where N = 3 for La/Yb

Geochemical and isotopic data sources: Gaytons Granite - our unpublished data, 
Barr et al. (2007) and Samson et al. (2000); Magaguadavic, Jimmy Hill and John 
Lee Brook granites - McLeod (1990) and Whalen et al. (1994, 1996); Hawkshaw 
Granite - Whalen (1993); Canaan River Granite - this study and Whalen et al. 
(1996). Wellington Lake - Mohammadi et al. (2017). Note: # of samples used 
to determine range in La/Yb values is the same as ASI, except for Canaan River 
pluton where N = 3 for La/Yb.
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Fredericton trough during the Lochkovian stage of the Early 
Devonian. Although its current position immediately west 
of the Belleisle Fault appears to suggest that it is in a similar 
tectonostratigraphic position as the southern parts of the 
Saint George Batholith, the ages and isotopic and chemi-
cal characteristics of the latter intrusions are considerably 
different. Although the isolated location and limited expo-
sures of the Canaan River pluton make regional correlations 
uncertain, its tectonostratigraphic setting, U–Pb age and 
geochemical data presented above indicate that the Canaan 
River pluton is more similar to units on the northwestern 
margin of the Saint George Batholith and especially the 
Hawkshaw Granite of the Pokiok Batholith, emplaced into 
sedimentary rocks of the Fredericton Trough. This interpre-
tation indicates that the older A-type, bimodal intrusions 
proximal to the Acadian suture have been cut out along the 
Belleisle Fault in the Canaan River area by regional-scale 
strike slip faulting, thus explaining the termination of the 
Saint George Batholith and the whole Coastal Maine Mag-
matic Province.

The similarity of the Canaan River pluton to the Hawk-
shaw Granite also raises the possibility of the potential for 
the Canaan River pluton to host tungsten and/or intru-
sion-related gold - antimony mineralization, as studies on 

the Lake George Antimony deposit suggest that it is relat-
ed to granodiorite that has been genetically linked to the 
Hawkshaw phase of the batholith (Seal et al. 1985; Lentz 
et al. 2002; Yang et al. 2002, 2008; Thorne and McLeod 
2003; Thorne 2005).
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