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ABSTRACT

The Litchfield pluton is a poorly exposed 7 km2 composite alkalic intrusive complex that cuts previously deformed 
and metamorphosed Silurian turbidites in south-central Maine. The pluton includes a variety of alkaline syenites, in-
cluding the type locality of “litchfieldite,” a coarse-grained cancrinite-, sodalite-, and lepidomelane-bearing nepheline 
syenite first recognized over 150 years ago and common in many petrologic collections. A new U-Pb zircon age of 321 
± 2 Ma from the nepheline syenite is interpreted to represent the crystallization age of the plutonic complex. A new 
biotite 40Ar/39Ar age of 239 ± 1 Ma from the syenite is similar to previously published mica ages from the surrounding 
country rocks and dates the time of regional cooling in the area below ~ 300°C. Whole-rock chemical analyses of 
rocks of the Litchfield pluton reveal silica-undersaturated alkaline compositions that are consistent with formation in 
a within-plate tectonic setting. The age and geochemical characteristics of the alkalic igneous rocks near Litchfield are 
consistent with a model that invokes the generation of a small volume of alkalic magma beneath south-central Maine 
during a period of Carboniferous transcurrent tectonism in the northern Appalachian orogen.

RÉSUMÉ

Le pluton de Litchfield est un complexe intrusif alcalin composite de sept kilomètres carrés peu affleurant qui re-
coupe des turbidites siluriennes précédemment déformées et métamorphisées dans le centre-sud du Maine. Le pluton 
inclut diverses syénites alcalines, notamment la localité type de la « litchfieldite », une syénite néphélinique renfermant 
de la cancrinite, de la sodalite et de la lépidomélane à grain grossier identifiée pour la première fois il y a plus de 150 
ans et répandue dans maintes collections pétrologiques. Une nouvelle datation U-Pb sur zircon de 321 ± 2 Ma de la 
syénite néphélinique est interprétée comme une représentation de l’âge de la cristallisation du complexe de roches 
plutoniques. Une nouvelle datation de la syénite par biotite et 40Ar/39Ar de 239 ± 1 Ma est similaire aux âges du mica 
des roches encaissantes voisines publiés auparavant et situe le moment du refroidissement régional dans le secteur 
au‑dessous d’environ 300 oC. Des analyses chimiques sur roche totale des roches du pluton de Litchfield révèlent des 
compositions alcalines sous-saturées de silice correspondant à une formation dans un milieu tectonique intraplaque. 
L’âge et les caractéristiques géochimiques des roches ignées alcalines près de Litchfield sont conformes à un modèle 
évoquant la production d’un volume modeste de magma alcalin sous le centre‑sud du Maine durant une période d’ac-
tivité tectonique de coulissage du Carbonifère dans le nord de l’orogène appalachien.

[Traduit par la redaction]
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nepheline syenite (Fig. 2) that was assigned the name 
“litchfieldite” by Bayley (1892), is part of a composite 
alkalic plutonic complex (Barker 1965) that occupies an 
area of approximately 7 km2 (Fig. 3). While these unusual 
rocks have attracted the interest of mineral collectors for 
over a century and a half, extremely poor exposure has 
discouraged detailed study; thus the age and tectonic 

INTRODUCTION

Since the mid-1800s (Jackson 1845; Clarke 1886), the 
small village of Litchfield in south-central Maine (Fig. 1) 
has been known as a collecting locality for specimens of 
cancrinite, sodalite, nepheline, and lepidomelane (Fe-rich 
biotite). The host rock to these minerals, a coarse-grained 
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Figure 1. Generalized geologic map of part of Maine and New Brunswick (modified from Bradley et al. 2000). Box outlines 
the area of Figure 3. C.H. = location of Carboniferous peralkaline felsic volcanic rocks of the Cumberland Hill Formation.
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of the Litchfield pluton, Barker (1965) suggested that they 
are associated with the Mesozoic White Mountain magma 
series. However, limited major element geochemical data 
are available from these rocks, and no isotopic igneous 
crystallization ages have been published. The purpose of 
this paper is to report new U-Pb zircon ages and complete 
whole-rock chemical analyses from a limited number of 
samples of the Litchfield pluton in south-central Maine. 
These data are then used to determine the igneous 
crystallization age of the pluton and speculate on the 
processes responsible for the generation of this unusual 
magma composition. Additionally, the new age constraints 
provided by our U-Pb work allow us to make connections 
with other alkaline igneous rocks of broadly similar age in 
the northern Appalachian orogen and place constraints on 
the tectonic setting of the region at the time of intrusion.

significance of these unusual rocks have remained elusive.
Silica-undersaturated, nepheline-bearing plutonic rocks 

are uncommon in the geological record and are generally 
attributed to small degrees of partial melting of previously 
metasomatized mantle in anorogenic tectonic settings (e.g., 
Woolley 2001; Martin et al. 2012). Burke et al. (2003) have 
also proposed that the presence of these alkaline plutonic 
rocks may be indicators of ancient suture zones. Detailed 
studies of these unusual rock types, when they are present, 
can thus be used to provide important constraints on the 
tectonic setting of a region at the time of their formation. 
Additionally, these rocks have received renewed attention 
due to their tendency to contain relatively high abundances 
of rare earth and high field strength elements (Kogarko 
1990; Sørensen 1992; Möller and Williams-Jones 2016).

In the last detailed study completed on alkaline rocks 

Albite
Cancrinite

Sodalite

Fe- rich Biotite

Nepheline

Figure 2. A classic “Litchfieldite” sample of coarse-grained, sodalite-bearing, cancrinite, biotite, nepheline syenite from the 
Litchfield pluton.
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Figure 3. General geological relationships in the vicinity of the Litchfield syenite in south-central Maine. Map is modified 
from West and Ellenberger (2010).
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PREVIOUS WORK

Although the unusual rocks near Litchfield, Maine, 
had been known to mineral collectors for decades prior, 
Clarke (1886) provided the first detailed mineralogical 
descriptions of nepheline syenite from the Litchfield pluton. 
This work included major element mineral chemistry for 
cancrinite, nepheline, and biotite from these rocks. Of 
note, Clark (1886) showed that biotite in this rock, long 
referred to as “lepidomelane,” is high in both Fe2O3 (19.49 
wt.%) and FeO (14.10 wt.%), low in MgO (1.01 wt.%), and 
completely lacking in TiO2. While no detailed mineral 
chemistry is presented here, analysis of biotite using energy 
dispersive spectrometry on a scanning electron microscope 
confirmed that biotite from these rocks is high in iron and 
contains virtually no titanium or magnesium.

Bayley (1892) provided the first whole-rock chemical 
analysis (major elements only) from nepheline syenite of 
the Litchfield pluton and these old results are consistent 
with the modern results presented later in this paper. Upon 
review of the unusual aspects of the cancrinite-bearing 
nepheline syenite, Bayley (1892, p. 243) reported: “Its 
peculiarities are so strongly marked that the rock seems 
worthy of a distinctive varietal name, for which no more 
appropriate one can be found than litchfieldite, derived 
from the familiar locality – Litchfield – whence nearly all 
the specimens were obtained.” The rock name “litchfieldite” 
is included in the most recent IUGS Subcommission on 
the Systematics of Igneous rocks (Le Maitre et al. 2002, p. 
105) and is therein defined as “a coarse-grained, somewhat 
foliated variety of nepheline syenite consisting of K-feldspar, 
albite, nepheline, cancrinite, sodalite and lepiodomelane.”

Daly (1918) published the first systematic field 
descriptions of rocks associated with the Litchfield pluton, 
and was the first to describe other alkalic plutonic rocks 
in the area (e.g., nepheline-deficient, amphibole-bearing 
syenite). No detailed petrologic descriptions, geochemical 
data, or geologic map accompanied this work. Daly (1918, 
p. 469), based upon this limited field-based investigation, 
concluded that “ . . . it is tolerably certain that there is no 
large mass of litchfieldite in the region. The celebrated 
boulders seem to have been derived from short, sill-
like pods injected into the prevailing crystalline schists.” 
Additionally, Daly (1918) concluded that the unusual 
alkaline rocks were formed through variable assimilation 
of limestone in granite magma.

In the nearly 100 years since the publication of Daly’s 
work, only the detailed field and petrologic study of Barker 
(1965) and bedrock mapping of West and Ellenberger 
(2010) have provided additional data on the alkalic plutonic 
rocks near Litchfield, Maine. Barker’s study revealed 
three main rock types within what he interpreted to be a 
composite pluton: (1) fine-grained, leucocratic syenite that 
contains limited amounts of Na-rich pyroxene (aegirine-
augite) and amphibole (riebeckite-arfvedsonite) with 
no nepheline or quartz; (2) medium- to coarse- grained, 

GEOLOGICAL SETTING

The Litchfield pluton occupies a topographic basin 
in an area of very poor bedrock exposure. Although 
these unusual rocks had been the subject of directed 
mineralogical studies since the late 19th century (Clarke 
1886; Bayley 1892), field relationships were first mapped 
in detail by Barker (1965), and more recently at a scale of 
1:24 000 by West and Ellenberger (2010). Bedrock outcrops 
are most abundant in the northern part of the pluton, but 
the map pattern of the pluton is based primarily on the 
spatial distribution of alkalic granitoid boulders. Although 
contacts between the plutonic rocks of the Litchfield pluton 
and the surrounding country rocks are not exposed, map 
patterns in the surrounding country rocks appear to be 
truncated by the inferred outline of the pluton (Barker 
1965; West and Ellenberger 2010).

Hence the Litchfield pluton is interpreted to intrude 
Late Ordovician (?) to Silurian metamorphosed turbidites 
(mostly thin-bedded schist, granofels, quartzite, and more 
rarely impure carbonate rocks) of the Central Maine 
Sequence (Osberg 1988; Marvinney et al. 2010). These 
country rocks were multiply deformed and metamorphosed 
to amphibolite-facies conditions during the late Silurian-
Early Devonian Acadian orogeny (Gerbi and West 2007). 
While many of the alkalic rocks of the Litchfield pluton 
show weak to moderate preferred orientation of dark 
colored minerals, thin sections reveal little to no evidence 
for significant penetrative deformation or metamorphic 
recrystallization. Additionally, Barker (1965) reported that 
foliation in the plutonic rocks is locally at right angles to the 
foliation in adjacent metasedimentary rocks. Thus, while 
contacts cannot be observed directly, field relationships 
indicate the intrusion post-dated regional deformation and 
metamorphism associated with the Acadian orogeny.

In the general area of the Litchfield pluton, constraints 
on the timing of amphibolite-facies metamorphism are 
provided by a U-Pb age of 381 ± 4 Ma on metamorphic 
zircon overgrowths in the Hornbeam Hill pluton located 
approximately 15 km south of the present study area 
(West and Cubley 2006; Gerbi and West 2007). A 40Ar/39Ar 
hornblende cooling age of 349 ± 5 Ma from country rocks 
exposed approximately 10 km east of the Litchfield pluton 
indicates the time of regional cooling below approximately 
500°C following this metamorphism (West et al. 1988). 
Finally, a large number of 40Ar/39Ar biotite ages from both 
plutons and country rocks in the immediate area constrain 
the time of regional cooling below approximately 300°C 
in the vicinity of the Litchfield pluton to have occurred 
approximately 240 to 250 million years ago (Dallmeyer 
1979; 1989). Dallmeyer (1989, p. 427) reported that 
“Dallmeyer (1979) presented a 227 ± 5 Ma 40Ar/39Ar plateau 
age for biotite from nepheline syenite” near Litchfield, 
Maine. However, a review of Dallmeyer (1979) did not 
reveal these data.
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syenite occurrences in New England that are now known 
to be Mesozoic in age (i.e., Cuttingsville, Vermont: 100 Ma, 
Armstrong and Stump 1971; Red Hill, New Hampshire: 194 
Ma, Foland and Faul 1977; and Pleasant Mountain, Maine: 
112 Ma Foland and Faul, 1977).

PETROGRAPHY

As discussed in all previous studies, the paucity of fresh 
in situ exposures greatly hinders detailed petrologic study 
of the Litchfield alkalic rocks. Despite this, representative 
samples of each of the three major rock types identified by 
Barker (1965) and confirmed in this study were collected. 
Bayley (1892) provided detailed petrographic descriptions 
of the litchfieldite, and Barker (1965) provided multiple 
modal analyses of each of the rock types within the pluton 
and the reader is referred to these works for details. The type 
“litchfieldite” (Fig. 2) is coarse-grained and rich in K-feldspar 
and albite (combined about 70%); it contains conspicuous 
yellow granular-textured cancrinite, greasy-grey coarse-
grained nepheline, and less common fine-grained blue 
sodalite. Accessory minerals include coarse-grained biotite 
that is typically segregated into streaks within the lighter 
colored minerals, and euhedral zircon prisms up to 5 mm 
in length. Representative photomicrographs of litchfieldite 

magnetite-bearing biotite syenite that similarly contains 
no nepheline or quartz; and (3) coarse-grained, foliated, 
biotite nepheline syenite that includes the “type variety” 
of litchfieldite described by Bayley (1892) and the rock 
type that is found in most petrologic collections (shown in 
Figure 2). Barker (1965) also recognized rare cross-cutting 
dykes of mafic syenite and albite-rich pegmatite, but these 
rocks types could not be located in the field during the 
present study.

Barker (1965) interpreted the three main alkalic rock types 
described above to be included within a single oval-shaped 
composite pluton occupying an area of approximately 7 
km2. Although West and Ellenberger’s (2010) later detailed 
mapping recognized Barker’s (1965) three main alkalic rock 
types in the field and confirmed an overall map pattern 
consistent with that portrayed in Barker (1965), they did not 
subdivide the pluton into different phases due to the limited 
availability of in situ outcrops. Barker (1965) interpreted the 
different alkalic rock types in the Litchfield pluton to have 
been produced by differentiation of an initial nepheline 
syenite magma; furthermore, he suggested that, in places, 
country rock assimilation and metasomatism resulted in 
the late-stage textural and mineralogical variety observed 
within individual phases. Finally, Barker (1965) correlated 
rocks of the Litchfield pluton with three other nepheline 

Figure 4. Photomicrographs from thin sections illustrating various mineral assemblages and textures in rocks of the 
Litchfield pluton. (a) Cancrinite-bearing biotite nepheline syenite (crossed polars). (b) Sodalite-bearing cancrinite-biotite 
nepheline syenite (crossed polars). (c) Cancrinite-biotite, nepheline syenite (crossed polars). (d) Aegerine- and riebeckite-
bearing syenite (plane light).

250 µm

1 mm

1 mm

1 mm

A

c d

b

Ab
Ab

Aeg

Rbk

Rbk

Kfs

Kfs
Ccn

Ccn

Ccn

Nph Ab

Bt

Sdl

Sdl

a



Atlantic Geology · Volume 52 · 2016 175

The Litchfield pluton in south-central Maine: 
Carboniferous alkalic magmatism in northern New England, USA

Copyright © Atlantic Geology, 2016

a session in March of 2011. Bradley et al. (2014) described 
analytical techniques used at this lab. A total of 13 spot 
analyses were completed and all individual spot results are 
reported in Table 1 and shown on Figure 5 as 206Pb/238U ages 
with 1 sigma uncertainty.

Biotite was also separated from sample P-603 and it was 
analyzed by the 40Ar/39Ar technique as a single total fusion 
increment. The sample was encapsulated and irradiated 
in the United States Geological Survey TIRGA reactor in 
Denver, Colorado (Dalrymple et al. 1981) with the MMhb-
hornblende age standard (Alexander et al. 1978; 519.4 ± 2.5 
Ma) used as a flux monitor. The sample and flux monitors 
were analyzed at the United States Geological Survey argon 
dating laboratory in Reston, Virginia, and the details of 
analytical methods employed are discussed in Kunk et 
al. (2005). Decay constants were those recommended 
by Steiger and Jäger (1977). The analytical results of this 
experiment are shown in Table 2 and the total fusion age is 
reported with two-sigma uncertainty.

Six samples representing a range of bulk compositions 
identified through field and petrographic observations were 
selected for whole-rock chemical analysis (locations and 
brief hand sample descriptions are provided in Appendix A). 
These samples were crushed in a porcelain jaw crusher and 
powdered in a tungsten carbide shatterbox. We recognize 
that the use of tungsten carbide has the potential to introduce 

are shown in Figures 4a-c. Nepheline comprises up to 20% 
of the rock and forms subhedral to anhedral grains up to 3 
cm across. Based upon old chemical analyses (Clark 1886; 
Barker 1965), the nepheline has a compositional range of 
Ne70-80. Cancrinite is anhedral, occurs in abundances of up 
to 10%, and shows no apparent textural affinity for other 
minerals. Sodalite is fine grained (< 3 mm) and occurs in 
abundances of less than 1%.

Fine-grained, nepheline- and cancrinite-absent syenite is 
most commonly found in the northern part of the pluton 
and is characterized by accessory Na-rich amphibole and 
pyroxene (Fig. 4d). These rocks are notably leucrocratic 
(color index <5) with the sizes of individual minerals rarely 
exceeding 5 mm across. Finally, coarse-grained nepheline- 
and cancrinite-absent biotite syenite (± magnetite) that 
texturally appears similar to the litchfieldite occurs in the 
central and southern portions of the pluton.

ANALYTICAL METHODS

Elongate, prismatic, and clear zircons displaying igneous 
zoning were separated from a sample of cancrinite-bearing 
nepheline syenite (P-603) from the Litchfield pluton. 
U-Pb isotopic analyses were carried out on these zircons 
at the United States Geological Survey-Stanford University 
sensitive high-resolution ion microprobe (SHRIMP) during 

Figure 5. U-Pb results from zircon analyses from sample P-603, nepheline syenite of the Litchfield pluton. Green horizontal 
bar represents a weighted average age that is interpreted to represent the age of igneous crystallization. MSWD = mean 
square of weighted deviates.
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Table 1A. U-Pb isotopic data for zircons  from sample P-603 of the Litch

232Th/
238U

field Pluton.

204Pb-corrected 207Pb-corrected
204Pb/ 207Pb/ % common U Th 

238U/   % 207Pb*/ % 207Pb/206Pb 206Pb/238U σ206 1σ206 206 1
Pb 206 err 206 errSpot Pb Pb (ppm) (ppm) Pb Pb* Age Age

P-603-1.1 2.48E-04 0.0521 -0.0685 218 125 0.595 20.0359 0.92 0.0521 2.89 121 111 314.2 2.9

P-603-13.1 --- 0.0523 -0.0434 336 101 0.311 20.0027 0.91 0.0523 2.64 299 60 314.6 2.9

P-603-2.1 --- 0.0554 0.3389 249 157 0.651 19.8584 1.07 0.0554 3.07 429 68 315.7 3.4

P-603-7.1 9.81E-05 0.0536 0.0994 313 138 0.454 19.5813 0.93 0.0536 2.70 293 78 320.8 3.0

P-603-8.1 1.95E-04 0.0537 0.1075 453 392 0.893 19.5640 0.76 0.0537 2.17 233 84 321.0 2.5

P-603-9.1 --- 0.0536 0.0906 605 148 0.253 19.5222 0.67 0.0536 1.93 353 44 321.7 2.2

P-603-3.1 9.48E-05 0.0538 0.1101 237 27 0.120 19.4203 1.08 0.0538 3.25 302 86 323.3 3.5

P-603-11.1 -1.71E-04 0.0544 0.1886 530 246 0.480 19.3887 0.72 0.0544 2.05 487 65 323.6 2.3

P-603-6.1 --- 0.0507 -0.2765 161 59 0.377 19.4652 1.29 0.0507 3.79 225 88 323.8 4.2

P-603-15.1 -1.02E-03 0.0501 -0.3514 72 24 0.343 19.4235 1.97 0.0501 5.99 768 281 324.7 6.4

P-603-4.1 9.98E-05 0.0533 0.0451 216 25 0.121 19.3411 1.13 0.0533 3.24 277 87 324.8 3.7

P-603-14.1 --- 0.0525 -0.0496 307 191 0.643 19.3533 0.95 0.0525 2.76 308 63 324.9 3.1

P-603-10.1 --- 0.0504 -0.3137 261 24 0.096 19.3802 1.05 0.0504 3.12 213 72 325.3 3.4

1450 98.2 1.26 E-12 15.1570 242 239.3 1.1

Notes: J value = 0.009359

Temp 
(C)

Table 2. Ar-Ar isotopic data for biotite from sample P-603 of 
the Litchfield Pluton.

Error 
(Ma) 

Age 
(Ma)

K/Ca
40Ar*/  
39Ark

39Ark
Rad. Yield 

(%)

small amounts of tantalum contamination; however, we do 
not consider this to be significant in this study given the 
relatively high concentrations of tantalum in the samples 
analyzed. A full suite of major- and trace-element analyses 
(Table 3) was completed at Acme Analytical Laboratories 
Ltd. in Vancouver, British Columbia. Major elements were 
measured using ICP-emission spectrometry and trace 
elements were measured using ICP-mass spectrometry. 
Both methods used lithium metaborate fusion techniques 
to prepare the samples for ICP analysis.

GEOCHRONOLOGY

U-Pb data

Thirteen new SHRIMP U-Pb zircon ages from a 
single sample of cancrinite-bearing nepheline syenite are 
presented in Table 1 and shown graphically in Figure 5 
(sample P-603: see Appendix A for location and a general 
rock description). The zircons analyzed are colorless and 
cathodoluminescence images (not shown) reveal zoning 
patterns consistent with igneous crystallization. Individual 
zircon ages are concordant within analytical uncertainties, 
and 206Pb/238U ages range from 314.2 to 325.3 Ma. A weighted 
average of the thirteen 206Pb/238U spot ages is 321.1 ± 2.3 Ma 
(2σ) (MSWD = 1.6) and we interpret this age to represent 

the age of igneous crystallization of the nepheline syenite.
40Ar/39Ar data

The results of a biotite total fusion 40Ar/39Ar analysis are 
presented in Table 2. The sample was analyzed as a single 
total fusion step rather than step-heated because it has 
been established that biotite release spectra do not reveal 
reliable information about the internal distribution of 
argon within the sample (McDougall and Harrison 1999). 
The total fusion age of 239.3 ± 1.1 Ma (2σ) determined 
from this sample is interpreted to represent the time of 
post-crystallization cooling of the Litchfield pluton below 
the closure temperature of biotite (~ 300°C: McDougall and 
Harrison 1999).

GEOCHEMISTRY

The whole rock major and trace element compositions of 
representative samples of the Litchfield pluton are presented 
in Table 3. The rocks are intermediate in terms of their SiO2 
contents (58 to 65 wt.%) and all contain high concentrations 
of both K2O (4 to 6 wt.%) and Na2O (6 to 9.5 wt.%). The 
rocks are also notably depleted in MgO (5 of 6 samples ≤0.1 
wt. %), and also have low concentrations of TiO2 (5 of 6 
below 0.2 wt.%) and CaO (0.26 to 1.27 wt.%). On a total 
alkali versus silica diagram (Fig. 6a) the rocks are classified 
as nepheline syenite and syenite, and on a SiO2 versus K2O 
diagram, compositions plot in the alkaline field (Fig. 6b). 
All of the samples analyzed are nepheline normative (range 
= 1.0 to 17.5% normative nepheline). Although there is 
variability in the major element abundances between the 
different rock types, Harker diagrams (Fig. 7) reveal no 
discernable fractionation trends.

In terms of trace elements, the rocks are generally 
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characterized by relatively high concentrations of Rb (67 
to 158 ppm), Nb (32 to 68 ppm), and Ga (24 to 38 ppm), 
and highly variable contents of Zr (28 to1809 ppm), Sr 
(2 to 810 ppm), and Ba (15 to 1482 ppm). All samples 
are essentially devoid of trace elements compatible with 
mafic silicates (e.g., Cr and Ni ≤ 2 ppm). As with the major 
elements, Harker diagrams of trace elements (Fig. 7) reveal 
no discernable fractionation trends.

A plot of chondrite-normalized rare earth elements 
(REE) (Fig. 8a) reveals two groupings: one group (n = 3) 
with significant light REE (LREE) enrichment (~ 90 to 200 
times chondrite abundance), and another group (n = 3) 
with a much less pronounced LREE enrichment (~ 7 to 10 
times chondrite abundance). Five of the six samples display 
a positive Eu anomaly with only the aegerine-riebeckite-
bearing syenite sample displaying a negative anomaly. The 
largest positive Eu anomalies are in samples with the lowest 
total rare earth element contents. The samples have similar 
primitive mantle-normalized trace element patterns (Fig. 
8b) with most samples showing notable enrichment in Ta, 
Nb, Zr, and Hf, and all have a negative Ti anomaly.

DISCUSSION

Petrogenesis

Frost and Frost (2008) devised a means of classifying 
alkaline igneous rocks and comparing their geochemistry 
with “normal” granitic rocks based a plot of alkalinity index 
(AI) versus feldspathoid silica saturation index (FSSI) (refer 
to Fig. 9a). Syenites of the Litchfield pluton are all silica-
undersaturated (FSSI < 0), but there is significant variability 
in terms of their alkalinity (AI = -0.02 to 0.1), although 
most of this variability is within the metaluminous field. 
This pattern of alkalinity can be explained by increasing 
amounts of plagioclase feldspar fractionation in an alkali 
basalt parent magma (Frost and Frost 2008; Estrade et al. 
2014). Specifically, initial crystallization of calcic plagioclase 
consumes abundant aluminum, but little sodium and 
potassium (i.e. the “plagioclase effect” of Bowen 1945). 
Overall light REE enrichment and relatively flat heavy REE 
abundances relative to chondrites in the Litchfield pluton 
(Fig. 8a) are consistent with the geochemistry of most 
silica-undersaturated igneous rocks (Eby 1990; Woolley 
2001).

In summary, the mineralogical and geochemical 
characteristics of the Litchfield pluton samples analyzed in 
this study are most consistent with fractional crystallization 
of an alkalic basaltic parent magma generated through small 
degrees of partial melting in a within-plate tectonic setting. 
The variability observed within the pluton itself could be 
the result of variable amounts of crustal assimilation during 
the basaltic magma fractionation. Alternatively, some of the 
variation may be due to sampling both layered and massive 
parts of the intrusive complex. The samples with low REE 
abundances and positive Eu anomalies are consistent with 

Majors (wt. %) P-281 P-304 P-305 P-310 P-333 P-603

SiO2 58.06 59.66 58.39 65.11 60.65 59.62
TiO2 0.19 0.42 0.12 0.01 0.01 0.01
Al2O3 21.95 18.98 22.1 17.67 21.18 21.02
Fe2O3

t 6.04 5.8 3.79 2.7 1.9 4.69
MnO 0.13 0.09 0.06 0.07 0.03 0.01
MgO 0.07 0.34 0.1 0.01 0.01 0.01
CaO 0.76 1.27 0.26 1.16 0.61 0.69
Na2O 6.25 7.72 8.14 7.88 9.55 8.94
K2O 5.93 3.99 5.17 5.24 4.52 5.02
P2O5 0.04 0.08 0.01 0.02 0.01 0.01
Total 99.42 98.35 98.14 99.87 98.47 100.02

Traces (ppm)
Co 2 5 2 0 1 2
Ni 0 <0.1 <0.1 <0.1 <0.1 <0.1
Cr <1 1 <1 <1 2 2
Cu 1 4 1 1 1 1
Zn 103 113 52 8 45 110
Rb 141 67 103 158 87 114
Sr 41 810 116 2 43 41
Y 6 6 2 14 4 2
Zr 28 567 473 296 1809 219
Nb 58.9 57.6 33.9 55.8 31.9 68
Ba 64 1482 107 15 58 45
La 20.6 27.2 2.4 63 1.7 2.9
Ce 35.9 47.2 3.8 124.9 2.7 5.5
Pr 3.8 4.6 0.4 11.6 0.3 0.6
Nd 13 16.8 1.2 35.7 0.9 1.8
Sm 1.98 2.64 0.21 5.31 0.17 0.35
Eu 0.96 1.45 0.36 0.27 0.35 0.35
Gd 1.43 2.15 0.2 2.93 0.21 0.22
Tb 0.25 0.27 0.03 0.59 0.05 0.05
Dy 1.22 1.4 0.31 3.2 0.48 0.31
Ho 0.2 0.25 0.04 0.6 0.15 0.05
Er 0.52 0.53 0.16 1.85 0.55 0.21
Tm 0.07 0.08 0.02 0.36 0.11 0.03
Yb 0.38 0.43 0.22 2.9 0.74 0.21
Lu 0.05 0.08 0.04 0.51 0.13 0.04
Cs 11.3 0.4 1.3 0.4 1.6 6
Ga 24.6 24 27.1 37.9 26.5 27.5
Hf 0.7 9.5 6.9 8.6 28.1 3.8
Ta 3 2.9 2.3 4.5 2.5 4.5
Th 1.2 3 1.1 18.5 1.5 2.7
Pb 2.9 2.2 1.8 5.7 3.4 4.1
U <0.1 0.9 0.7 5.3 1.8 1.3
As 0.9 <0.5 <0.5 0.7 2.3 2.9

Table 3. Whole rock geochemical data for representative rocks of 
the Litchfield pluton.
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Figure 6. (a) Geochemical classification of analyzed rocks from the Litchfield pluton using a total alkali-silica diagram 
(Wilson 1989). (b) K2O versus SiO2 classification diagram with suite subdivisions after Le Maitre et al. (2002) and Peccerillo 
and Taylor (1976).
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Figure 7. Harker geochemical variation diagrams illustrating the variability in SiO2 and selected major (wt.% oxide) and 
trace (ppm) elements from representative rock types of the Litchfield pluton.
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Figure 8. (a) Chondrite-normalized rare earth element plot (chondrite normalizing values are from McDonough and Sun 
1995) and (b) mantle normalized multi-element plot (primitive mantle values are from Sun and McDonough 1989) for 
representative rocks of the Litchfield pluton.
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Figure 9. (a) Litchfield pluton rock compositions plotted on the alkaline rock classification diagram of Frost and Frost 
(2008; 2014). AI = alkalinity index (Al-[K + Na]); FSSI = feldspathoid silica-saturation index (Quartz – [Leucite + 2 
Nepheline]/100). (b) FeO/MgO vs. Zr + Nb + Ce + Y diagram (from Whalen et al. 1987; Silva-Rosa et al. 2007) with fields 
of orogenic and anorogenic magmas.
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sequences in the northern Appalachians is aided by recent 
improvements in the geologic time scale. Calibrated to the 
time scale of Gradstein et al. (2012), the Litchfield pluton 
was emplaced during the first half of the Bashkirian (323.2–
315.2 Ma; early Pennsylvanian). This time span equates 
to the latter part of the Namurian of western Europe and 
Eastern Canada, and to the Morrowan of the United States 
(Gradstein et al. 2012). There are no stratified rocks of this 
age in Maine, the closest being probable Mississippian 
red beds found in narrow fault-bounded slivers along the 
Norumbega fault system in eastern Maine (Wang and 
Ludman 2003). In adjacent New Brunswick, rocks of early 
Namurian age are represented by the upper portions of 
the Mabou Group in the Maritimes Basin (St. Peter and 
Johnson 2009). These rocks are dominated by fine-grained 
terrestrial clastic rocks and the subordinate aforementioned 
alkaline volcanic rocks of the Cumberland Hill Formation 
(ca. 335 Ma; Gray et al. 2010). In southern New England, 
Carboniferous strata are preserved in the Narragansett 
and Norfolk, and Worcester basins of Rhode Island and 
Massachusetts (Hermes et al. 1994; Zen et al. 1983). Rocks 
of demonstrable Namurian/Morrowan age in these basins 
are unknown; the basin fill consists, instead, of younger 
nonmarine clastic sedimentary rocks of middle to late 
Pennsylvanian age (Skehan et al. 1979; Murray et al. 2004).

Regional tectonic significance

The early Pennsylvanian age of the Lithchfield pluton 
corresponds to a time in the northern Appalachians that 
was dominated by transcurrent tectonics (Bradley 1982; 
Ludman and West 1999; Murphy et al. 2011; Waldron et 
al. 2015). Although the stratified and igneous rock record 
of this activity is largely lacking in Maine, the adjacent 
regions of Atlantic Canada (Maritimes Basin) and coastal 
southern New England (Narragansett Basin) contain thick 
successions of largely non-marine Carboniferous strata that 
were deposited in large transtensional pull-apart basins. 
Although generally 20 to 40 million years older than the 
Litchfield pluton, alkalic igneous rocks in these basins have 
been interpreted to have been generated through localized 
decompression melting in association with the transcurrent 
tectonic origins of these basins (Pe-Piper and Piper 1998; 
LaFleche et al. 1998; Thompson and Hermes, 2003).

Immediately east of the Litchfield pluton in south-
central and southwestern Maine (Fig. 1), Carboniferous 
right-lateral strike-slip faulting associated with the 
Norumbega fault system is pervasive (West and Hubbard 
1997; Swanson 1999; West 1999). We propose that a likely 
northern Appalachian tectonic equivalent for the origins of 
the alkalic magmatism at Litchfield, Maine can be found 
in the Cobequid Highlands of Nova Scotia. In this area, 
Late Devonian to early Carboniferous alkalic magmatism 
has been attributed to local extension along portions 
of the right-lateral Cobequid-Chebabucto fault zone 
(Koukouvelas et al. 2002; Pe-Piper et al. 2004). Park et al. 

accumulation of plagioclase (and perhaps other minerals). 
Europium substitutes in the calcium sites of plagioclase 
and thus is used as a measure of plagioclase abundance 
(e.g., Drake et al. 1975). Samples lacking positive europium 
anomalies may be from massive units that represent true 
magma compositions.

The association of silica-undersaturated alkaline 
plutonic rocks with intra-continental tectonic settings 
is well established (see Woolley 2001 for a summary). 
The Litchfield pluton is not likely an exception as trace 
element compositions are consistent with formation in 
an anorogenic tectonic setting (Fig. 9b). Additionally, 
Litchfield pluton compositions plotted on various tectonic 
discrimination diagrams used for quartz-bearing granitic 
rocks consistently reveal within-plate tectonic settings (e.g., 
the Rb vs. Y + Nb diagram of Pearce 1996, not shown). It 
has been shown that anorogenic alkalic magmatism is 
common in terranes that have recently experienced an 
episode of collisional tectonics and thus mark times of 
tectonic relaxation (Martin et al. 2012). This tectonic 
scenario would fit well with that of south-central Maine 
in the Carboniferous as the peak period of collisional 
tectonism in the region (the Acadian orogeny) preceded 
the intrusion of the Litchfield pluton by about 50 million 
years (Bradley et al. 2000).

Age correlations

Silica-undersaturated alkalic magma of the Litchfield 
pluton intruded previously deformed and metamorphosed 
Late Ordovician (?) to Silurian turbidites in south-central 
Maine at 321 ± 2 Ma. This represents a time when New 
England was otherwise magmatically quiescent (Bradley et 
al. 2015a), with the only other known intrusion of similar 
age being the Palermo pegmatite in central New Hampshire 
(ca. 326 Ma, U-Pb zircon; Bradley et al. 2015b). Similarly, 
magmatism in adjacent Atlantic Canada seems to have also 
been limited during this time span with a notable exception 
being ca. 335 Ma peralkaline felsic volcanic rocks in the 
Cumberland Hill Formation in central New Brunswick 
(Gray et al. 2010; see Fig. 1 for location).

Although appreciably older than our reported age for 
the Litchfield pluton, there does appear to have been a 
significant pulse of alkalic magmatism in the northern 
Appalachians in Late Devonian to early Carboniferous 
time. This includes a suite of ca. 365–355 Ma bimodal 
intrusive and extrusive alkalic igneous rocks in the 
Cobequid Highlands of central Nova Scotia (Dunning et 
al. 2002; Koukouvelas et al. 2002; Pe-Piper and Piper 2002), 
recently recognized ca. 360–345 Ma alkalic igneous rocks 
of the Partridge Island Block in southern New Brunswick 
(Park et al. 2014), and a suite of ca. 373 Ma bimodal alkalic 
volcanic rocks in the Narragansett Basin of southern New 
England (Maria and Hermes 2001; Thompson and Hermes 
2003).

Correlating the age of the Litchfield pluton to stratigraphic 
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magma. Geochemical signatures are consistent with 
magma generation in an anorogenic tectonic setting.

4.	 The age and geochemical characteristics of the alkalic 
rocks near Litchfield, Maine are consistent with the 
generation of a small volume of alkalic magma beneath 
south-central Maine during a period of Carboniferous 
transcurrent tectonism in the northern Appalachian 
orogen.
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P-310: (Easting 428849, Northing 4896313) Light grey, 
hypidiomorphic-granular, medium grained, 
aegerine and riebeckite-bearing (~ 5%), syenite.

P-333: (Easting 0426665, Northing 4893736) Light grey, 
hypidiomorphic-granular, medium to coarse 
grained, cancrinite-bearing (< 5%), biotite (~ 6%), 
nepheline syenite.

P-603: (Easting 0426452, Northing 4894310) Light grey, 
hypidiomorphic-granular, coarse-grained with 
biotite schlieren, biotite (~ 12%), cancrinite (~ 
15%), nepheline syenite.

P-281: (Easting 0428892, Northing 4894500) Light grey, 
hypidiomorphic-granular, medium to coarse 
grained, biotite (<5%) nepheline syenite.

P-304: (Easting 0428235, Northing 4895224) Light grey, 
hypidiomorphic-granular medium grained, 
biotite (~ 12%), syenite.

P-305: (Easting 0428293, Northing 4895659) Light grey, 
hypidiomorphic-granular, medium to coarse 
grained, magnetite-bearing, biotite (< 5%) 
nepheline syenite.

APPENDIX A
Litchfield Pluton sample locations and general descriptions

(Locations in UTM grid coordinates, Zone 19T)


