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ABSTRACT

Cambrian to Ordovician metamorphosed clastic sedimentary rocks of the Meguma terrane have no correlatives
elsewhere in Atlantic Canada but are similar to successions in North Wales. In the Meguma terrane, the Cambrian
Goldenville Group, dominated by sandstone, is overlain by the Halifax Group, consisting mainly of fine-grained slate
and siltstone. Within the Halifax Group widespread Furongian black slate units are overlain by greyer units with rare
Early Ordovician fossils, assigned to the laterally equivalent Bear River, Feltzen, Bluestone Quarry, Lumsden Dam and
Glen Brook formations. The type section of the Bluestone Quarry Formation, here defined, is on Halifax Peninsula,
where four constituent members are recognized; the type section of the Lumsden Dam Formation is here defined in
the Lumsden Dam region near Wolfville. Detrital zircons extracted from a sample of the Lumsden Dam Formation
show a range of ages similar to those displayed by the underlying Goldenville Group, including abundant Neoprotero-
zoic zircon representing Avalonian or Pan-African sources, and a prominent group of peaks between 1.95 and 2.2 Ga,
probably representing sources in West Africa. A sample from the Glen Brook Formation east of Halifax shows a similar
distribution. In contrast to the correlative Welsh successions, no influx of Mesoproterozoic zircon is seen in Early Or-
dovician samples, suggesting that, if the two basins were in close proximity in the Cambrian, they had diverged by the
Early Ordovician, possibly as a result of strike-slip motion along the margin of Gondwana.

RESUME

Les roches sédimentaires clastiques métamorphisées du Cambrien a 'Ordovicien du terrane de Meguma nont pas
de corrélatif ailleurs au Canada atlantique, mais sont semblables & des successions observées en Galles du Nord. Dans le
terrane de Meguma, le groupe de Goldenville du Cambrien, a prédominance de greés, est recouvert du groupe d'Halifax,
pour sa part composé principalement de siltite et d'ardoise a grains fins. Au sein du groupe d’Halifax, d'importantes
unités dardoise noire du Furongien sont recouvertes d'unités plutot grises et de rares fossiles de 'Ordovicien précoce
attribués aux formations latéralement équivalentes de Bear River, de Feltzen, de Bluestone Quarry, de Lumsden Dam
et de Glen Brook. Le stratotype de la formation de Bluestone Quarry est ici défini comme se trouvant sur la péninsule
d’Halifax, ol on reconnait quatre membres constitutifs, tandis que le stratotype de la formation de Lumsden Dam est
ici défini comme se trouvant dans la région de Lumsden Dam, prés de Wolfville. Des zircons détritiques extraits d’'un
échantillon de la formation de Lumsden Dam révelent différents 4ges semblables a ceux du groupe de Goldenville sous-
jacent. On y trouve notamment une abondance de zircon du Néoprotérozoique représentant des sources avaloniennes
ou pan-africaines et un groupe proéminent de pics 4gés de 1,95 a 2,2 Ga représentant probablement des sources de
IAfrique de 'Ouest. Un échantillon de la formation de Glen Brook, située a lest d'Halifax, révele une distribution sem-
blable. A la différence des successions du Pays de Galles qui y sont liées, aucun afflux de zircon du Mésoprotérozoique
nest observé dans les échantillons de 'Ordovicien précoce, ce qui tend a indiquer que les deux bassins, qui étaient
situés tout pres au Cambrien, se sont éloignés a 'Ordovicien précoce, vraisemblablement a la suite d'un mouvement de
décrochement le long de la limite de Gondwana.

[Traduit par la redaction]
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INTRODUCTION

Metamorphosed clastic sedimentary rocks of the Meguma
terrane (Fig. 1), the most outboard terrane of the Canadian
Appalachians, have no correlatives elsewhere in Atlantic
Canada, and their source has been the subject of disagree-
ment. The terrane resided along the northern margin of
Gondwana during the Cambrian; however, its exact posi-
tion along this margin relative to West Africa and Amazo-
nia, and to other peri-Gondwanan terranes, remains uncer-
tain (e.g., Schenk 1997; Waldron et al. 2009).

The Meguma terrane takes its name from a distinctive
stratigraphic unit, named the Meguma Series by Wood-
man (1904) and subsequently termed the Meguma Group
(Stevenson 1959) or Supergroup (Schenk 1995a, 1997). It
comprises the Cambrian to Early Ordovician Goldenville
and Halifax groups (Schenk 1995a; White 2010a), which
are overlain by the Silurian to Devonian Rockville Notch

Group (White 2010a, White et al. 2012), all of which are
intruded by mainly Late Devonian plutons (Clarke and
Halliday 1980). Recent mapping of the Meguma terrane
in Nova Scotia has led to the identification and division of
several mappable units within the Halifax and Goldenville
groups (White 2010b). In this paper we formally define the
Lumsden Dam and Bluestone Quarry formations of the
upper Halifax Group in the Wolfville and Halifax regions.
Although type sections for the remaining units have yet to
be defined, they have been named as formations, and to
avoid confusion we here follow the suggestion of a reviewer
and the journal editors and use formal nomenclature (e.g.,
Cunard Formation) for all of these units pending future
formal definition of type sections. Both the Lumsden Dam
and Bluestone Quarry formations record similar sedimen-
tological features, and the presence of a mass transport
deposit in the Bluestone Quarry Formation suggests they
were deposited in a slope environment. Here we also pres-
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Figure 1. Meguma terrane (after White 2010b) with inset map showing its location in the northern Appalachian-Caledonide
orogen (after Hibbard et al. 2006). Boxes show location of maps shown in Figs. 3 and 6. Numbers refer to stratigraphic columns

shown in Fig. 2. Abbreviations: HD - Harlech Dome; MCT - Monian composite terrane; MT - Meguma terrane.
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ent the first detrital zircon data from the Halifax Group,
which complement previous provenance studies conducted
in the Goldenville and Rockville Notch groups (Krogh and
Keppie 1990; Murphy et al. 2004b; Waldron et al. 2009) and
in correlative units in the British Isles (Pothier et al. 2014).
The data show similar distributions to underlying units,
and are consistent with a primary West African source re-
gion with a minor input of Amazonian detritus.

GEOLOGIC SETTING
Meguma terrane

The Meguma terrane is exposed south of the Minas Fault
Zone in Nova Scotia (Fig. 1). The thick (>13 km) Cambrian-
Ordovician variably metamorphosed sandstone-shale
succession of the Goldenville and Halifax groups is
overlain unconformably by Silurian-Devonian volcanic-
sedimentary rocks of the Rockville Notch Group (White et
al. 2012). This succession has been deformed into SW-NE
trending folds during the Middle Devonian Neoacadian
orogeny (van Staal 2007; White et al. 2007), and were in-
truded by the South Mountain Batholith and other plutons
during the Late Devonian (Clarke and Halliday 1980). Re-
gional metamorphism is greenschist facies (chlorite-biotite
zones) with low-pressure amphibolite facies (andalusite-
staurolite-cordierite zones) in southwestern and eastern
mainland Nova Scotia (Keppie and Muecke 1979; Raeside
and Jamieson 1992). Low-pressure (andalusite-cordierite-
K-feldspar zones) contact metamorphism is present within
ca. 2 km of the contact with the South Mountain Batholith
and numerous smaller plutons (Jamieson et al. 2012). Un-
conformably overlying the Meguma terrane and adjacent
Avalonia are the Late Devonian to Carboniferous succes-
sions of the Maritimes Basin and the Mid-Triassic to Early
Jurassic Fundy Group (Klein 1962; Martel and McGregor
1993).

The Chebogue Point Shear Zone (CPSZ) is located in
southwestern Nova Scotia in the Yarmouth region (Fig. 1).
It strikes N-S to NE-SW (White 2010b) and is assumed to
pass into the South Mountain Batholith, although has not
been clearly traced east of its intersection with the batho-
lith. White (2010b) has described the CPSZ as a tectono-
stratigraphic boundary, dividing the Meguma Supergroup
into different, though correlative, units at the formation
level, lying to the northwest and southeast of the shear zone
and South Mountain Batholith.

Basement characteristics such as age, deformation, and
composition normally provide critical information about a
terrane’s origin; however, Meguma terrane basement rocks
are not exposed anywhere in Nova Scotia. Sm-Nd isotopic
studies on Meguma granitoid rocks (Clarke et al. 1988) and
basement xenoliths (Eberz et al. 1991) indicate that the
deeper crust includes material with a younger residence
age than the overlying Meguma Supergroup. Greenough et
al. (1999) dated zircon and monazite from basement xe-

noliths, which showed a Pan-African - Avalonian popula-
tion (575-630 Ma), with a possible Mesoproterozoic grain
population defined by the upper intercepts of a discordant
zircon fraction. These data were interpreted by Greenough
et al. (1999) to suggest that the Meguma succession rests
upon a basement with Avalonian affinities. It has been
proposed that the West Avalonia and the Meguma terrane
once formed a part of the same microcontinent and that
the Meguma succession was deposited on Avalonian crust
(e.g., Keppie et al. 1997; Landing 2004; Murphy et al. 2004a;
Linnemann et al. 2012). Others interpret the contact be-
tween the two terranes as a thrust (e.g., Eberz et al. 1991;
Keppie and Dallmeyer 1987; Waldron et al. 1989; Gre-
enough et al. 1999) along which the Meguma terrane was
emplaced over Avalonia.

Goldenville Group

The Goldenville Group (Fig. 2) is the oldest unit in the
Meguma terrane, and spans the early Cambrian (Terreneu-
vian) to the early Furongian (White et al. 2012). It is pri-
marily composed of thick-bedded metamorphosed sand-
rich turbidites with local interbedded siltstone and slate
(Harris and Schenk 1976; Waldron and Jensen 1985) with
an estimated thickness of 28000 m (White et al. 2012). The
highest part of the Goldenville Group is characterized by
manganese-rich slate and siltstone (e.g., Waldron 1992). In
southwestern Nova Scotia, the High Head member (Fig.
2) contains abundant trace fossils, including Oldhamia,
that are characteristic of the early Cambrian (Gingras et al.
2011). These fossils are consistent with detrital zircon col-
lected from the Church Point Formation (Fig. 2) that sug-
gested a maximum depositional age close to the Ediacaran-
Terreneuvian boundary (Waldron et al. 2009). In southern
Nova Scotia, the Government Point Formation (Fig. 2)
yielded a middle Cambrian (Epoch 3) Acado-Baltic trilo-
bite faunule (Pratt and Waldron 1991).

Halifax Group

The Halifax Group spans the Furongian to Lower Ordo-
vician (Fig. 2) and is generally much finer grained than the
underlying Goldenville Group (White et al. 2012). The low-
est unit in the Halifax Group as defined by White (2010b) is
the Cunard Formation in the Halifax region and its correla-
tives, the Acacia Brook and North Alton formations in the
Digby-Yarmouth and Wolfville regions (Fig. 2, 3a). These
units are strongly cleaved, dark grey to black slate, with thin
lenses and beds of metamorphosed siltstone and fine- to
medium-grained sandstone. They contain abundant sul-
phide minerals (dominantly pyrrhotite) and weather rusty
brown. An acritarch assemblage sampled from the North
Alton Formation indicates a Jiangshanian (mid-Furongian)
age (White et al. 2012). Conformably above these units are
the regionally correlative Lumsden Dam, Bluestone Quar-
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Figure 2. Generalized stratigraphy of the Meguma terrane in different regions in Nova Scotia (after O’Brien 1988; Horne and
Pelly 2007; White 2010b; White et al. 2012) showing the locations sampled in detrital zircon studies. Paleontological and
U-Pb age data are from sources described in the text. Time scale of Peng et al. (2012).
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ry, Glen Brook, Feltzen, and Bear River formations (Fig. 2).
These formations, which are the focus of the remainder
of the paper, comprise light to dark grey slate interlayered
with cross-laminated siltstone and fine-grained sandstone.
They contain noticeably less pyrrhotite, pyrite, and arseno-
pyrite than the underlying formations. Tremadocian grap-
tolite fossils are preserved in the Bear River, Feltzen, and
Lumsden Dam formations (White 2010a).

The uppermost units of the Halifax Group are preserved
only in the Wolfville area. The Elderkin Brook Formation
(Fig. 2) conformably overlies the Lumsden Dam Forma-
tion. It consists of diffusely to finely laminated, cleaved
mudstone. Unlike the Lumsden Dam Formation this unit
lacks cross-laminated siltstone and sandstone beds, but is
mildly bioturbated. Its colour ranges from pale greenish
grey to medium grey, and it weathers to a purple-red colour
in places. Acritarch and trace fossils in this unit indicate late
Tremadocian age (White et al. 2012). The overlying Hell-
gate Falls Formation (Fig. 2; White 2010a), is light to dark
grey slate interbedded with light to dark grey thin siltstone
and sandstone beds and lenses. Abundant bioturbation tex-
tures and trace fossils characterize this unit. Locally, black
slate occurs at the very top of the formation (White 2010a).
It is disconformably overlain by the Silurian White Rock
Formation (White 2010a). The age of the Hellgate Falls For-
mation is constrained by Early Ordovician acritarch fossils,
which range from the latest Tremadocian to Floian (White
et al. 2012).

Rockville Notch Group

The Silurian to Lower Devonian Rockville Notch Group
(formerly the Annapolis Supergroup of Schenk 1995b) is
preserved on the northwest side of the CPSZ and South
Mountain Batholith (Fig. 2). The basal White Rock Forma-
tion, which rests unconformably over the Halifax Group
(White 2010a), comprises shallow marine metamorphosed
sedimentary (Lane 1975; Bouyx et al. 1997) and rift-related
volcanic rocks (Schenk 1997; Keppie and Krogh 1999; Mac-
Donald et al. 2002). A rhyolite near its base produced an
early Llandovery U-Pb zircon age of 442 + 4 Ma (Keppie
and Krogh 2000) and a felsic tuff higher in the formation in
the Yarmouth area produced a mid-Llandovery age of 438
+ 3 Ma (MacDonald et al. 2002). The White Rock Forma-
tion is overlain by siltstone and slate of the Kentville For-
mation (Smitheringale 1960; Taylor 1965). The Kentville
Formation contains graptolites and microfossils (Smither-
ingale 1973; Bouyx et al. 1997) indicative of a late Wenlock
to early Pridoli (Silurian) age. The Kentville Formation is
overlain by Pridoli to upper Lower Devonian (Smitherin-
gale 1973; Bouyx et al. 1997) marine sedimentary and vol-
canic rocks of the New Canaan and Torbrook formations
(Smitheringale 1960; Taylor 1965).

FORMAL DESCRIPTIONS

White (2010b) has provided a review of the informal
stratigraphic subdivisions within the Goldenville and Hali-
fax groups established during mapping in the Meguma
terrane. Herein, we formally define two of the regionally
correlative units in the upper part of the group, the Blue-
stone Quarry and Lumsden Dam formations and present
more detailed descriptions of these formations to better de-
fine the environment of deposition and regional tectonic
significance of the sedimentary rocks in the upper part of
the Halifax Group. All coordinates are based on the Uni-
versal Transverse Mercator (UTM) projection, using North
American Datum 1983.

Bluestone Quarry Formation

The Bluestone Quarry Formation is mappable in the Hal-
ifax area where it is exposed in the core of a SW-plunging
syncline in Point Pleasant Park, in an adjacent railway cut,
and in numerous other exposures on both sides of North-
west Arm (Fig. 3). It was recognized as a distinctive unit
(Bluestone member of the Halifax Formation) by Jamieson
et al. (2005), and named Bluestone Formation by White et
al. (2008); the unit is here named Bluestone Quarry Forma-
tion to avoid confusion with a similarly named unit in West
Virginia, USA (Cardwell et al. 1968). The name is derived
from a quarry located immediately SW of Northwest Arm
(Jamieson et al. 2012), the source of a common building
stone in the Halifax area. The unit conformably overlies
graphitic, sulphide-rich slate and hornfels of the Cunard
Formation. The rocks of the Bluestone Quarry Formation
are interbedded light grey to beige sandstone and siltstone
with medium to dark grey slate, variably overprinted by
contact metamorphism. Bedding is continuous at the out-
crop scale (several metres). Beds are graded and have sharp,
flat bases, with scour structures in places. Sandstone com-
monly appears massive to parallel or cross-laminated; silt-
stone is most often cross-laminated, and slate exhibits weak
parallel to wavy laminae. The cross-laminae show unidirec-
tional current flow, typically with a northward component,
and the ripples have sinuous crest morphologies. Trough
cross-laminations and climbing-ripple cross-laminations
are common (Fig. 4).

The Bluestone Quarry Formation lacks the abundant
sulphide minerals present in the underlying Cunard For-
mation. It contains carbonate concretions that have locally
been metamorphosed to calc-silicate rock (Jamieson et al.
2005, 2012). The concretions, which are broadly parallel to,
but overprint bedding, typically lie within the upper parts
of siltstone and sandstone beds; this association helps to
distinguish this unit from the underlying Cunard Forma-
tion. Much of the Bluestone Quarry Formation lies within
the contact aureole of the South Mountain Batholith (Hali-
fax Pluton), where the regional chlorite zone assemblage is
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a b

Figure 4. Typical field appearances of the Bluestone Quarry Formation: (a-b) Point Pleasant member, showing thick sand-
stone beds with well developed Bouma "B" divisions of parallel-laminated sandstone; (c) Black Rock Beach member showing
abundant thinly bedded siltstone and sandstone beds with ripple cross-laminations; bed in middle of view shows four oval
carbonate-bearing concretions; (d) Chain Rock member showing folded bedding; (e) Chain Rock member showing isolated
sandstone lens; (f) Quarry Pond member showing thinly bedded graded siltstone; climbing ripple cross-lamination is dis-
torted by tectonic deformation and emphasized by differentiated cleavage.
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overprinted by the assemblage cordierite + biotite + andalu-
site, and the slaty cleavage is annealed within ca. 1 km of the
contact (Jamieson et al. 2012). Compositional differences
from the adjacent Cunard Formation produce distinctive
metamorphic mineral assemblages and isograds within the
Bluestone Quarry Formation, which have proven useful in
mapping the boundary (Jamieson et al. 2005; Jamieson et
al. 2012).

The type section for the Bluestone Quarry Formation
is located along the railway cutting and in adjacent Point
Pleasant Park (Fig. 3), where the formation outcrops almost
in its entirety. The Bluestone Quarry Formation is here
divided into four informal members: the Point Pleasant
member, the Black Rock Beach member, the Chain Rock
member, and the Quarry Pond member (Fig. 3; follow-
ing Jamieson et al. 2011). The basal contact of the forma-
tion (Fig. 5), exposed in the railway cutting [20T 453021E
4942263N], is conformable and is defined within a grada-
tional transition at the lowest occurrence of fine-grained
metamorphosed sandstone beds (Point Pleasant member)
with carbonate concretions (Fig. 5). The highest part of the
section (Quarry Pond member) in the type area occurs in
the core of the Point Pleasant syncline. No overlying strata
other than Quaternary deposits are observed in the Hali-
fax region, where the Bluestone Quarry Formation is the
youngest exposed bedrock unit; thus an upper stratigraphic
contact cannot be defined. The minimum thickness of the
Bluestone Quarry Formation is estimated to be 531 m. Ad-
ditional descriptions are provided in a companion paper
which focusses on the interpretation of the Chain Rock
member (Waldron et al. 2015).

The lowest, Point Pleasant member (approximately 295
m thick) is well exposed inland and along the shoreline in
the south end of Point Pleasant Park (Fig. 3). It comprises
thinly to thickly bedded (bed-thickness terminology af-
ter Boggs 2001) high-energy turbidite deposits and is the
most sand-rich member (Figs. 4a, b). Bouma divisions A
through to E are common, but partial Bouma sequences
are also present, where the basal divisions are missing or
just divisions A and E are preserved. The interbedded slates
are distinctly darker, and more graphitic than in the higher
parts of the formation.

The Black Rock Beach member is ~68 m thick and is best
exposed at Black Rock Beach (Fig. 3). The member contains
very thin- to medium-bedded low energy turbidite depos-
its (Figs. 4c, 5). Bouma divisions C-E and D-E are com-
mon, but Bouma A divisions are absent.

The Chain Rock member is ~75 m thick and is more re-
sistant to erosion than the other members, forming a high
ridge within Point Pleasant Park (Fig. 3). It is character-
ized by bedding that is variably folded, discontinuous, or
completely disordered, with isolated blocks of siltstone and
sandstone within a featureless matrix (Fig. 4d, e), described
in more detail in a companion paper (Waldron et al. 2015).
The deformation and disruption of bedding pre-dated the
development of the regional slaty cleavage, but post-dated

the formation of the carbonate concretions (Jamieson ef al.
2011). On the east coast of the Northwest Arm, and in the
region of Bluestone Quarries to the west, the contact with
the underlying Black Rock Beach member is visible [20T
445499E 4940918N]. The sharp contact appears to be an
erosional surface where the Chain Rock member incises
into the underlying unit. Due to the stratiform geometry
and chaotic deformational style of the Chain Rock member
it is interpreted as a downslope mass-transport deposit (Ja-
mieson et al. 2011; Waldron et al. 2015).

The Quarry Pond member has a minimum thickness
of 93 m. It is best exposed in the railway cutting (Fig. 3)
and also forms scattered outcrops within Point Pleasant
Park and in adjacent residential subdivisions. This mem-
ber is very similar to the Black Rock Beach member as it
also consists of very thin- to medium-bedded, low-energy
turbidite deposits in which Bouma divisions C-E and D-E
are common (Fig. 4f). The Quarry Pond member is the
highest unit in the formation and occupies the core of the
Point Pleasant syncline; its original top is not exposed, but
it is unconformably overlain by unconsolidated Quaternary
sediments.

The age of the Bluestone Quarry Formation is not well
constrained, as no body fossils have been found in this
area (White et al. 2008). A single occurrence of deformed
burrows was reported by Hart (2006). Based on its strati-
graphic position above the Cunard Formation, the Blue-
stone Quarry Formation has been correlated with the un-
fossiliferous Glen Brook Formation (Fig. 2), and with the
Lumsden Dam, Feltzen, and Bear River formations, which
contain graptolite and acritarch fossils of Tremadocian age
(White et al. 2012). This provides the best estimate for the
age of the Bluestone Quarry Formation, assuming the con-
tacts are not diachronous.

Lumsden Dam Formation

The divisions of the Halifax Group in the Wolfville re-
gion, including the Lumsden Dam Formation, were first
described and informally named by White (2010b). In the
Woltville region, the Lumsden Dam Formation is exposed
on the northwest limb of an anticline (Fig. 6). Excellent ex-
posure of the unit can be seen in the Black River area, the
best exposures being in an overflow channel located to the
northwest of Lumsden Dam. This section has roughly 200
m of continuous outcrop (Fig. 7). The continuous outcrop
terminates southward at the south end of the channel cut
[20T 389943E 986789N]; to the north it disappears under
vegetative cover [20T 389878E 4986982N]. Sedimentary
structures were difficult to observe along the cliff edge of
the channel, but were easily seen on adjacent areas of flat
exposure (Fig. 8, 9). The remainder of the type section is
defined in intermittent exposure to the north and south of
this well exposed section.

The Lumsden Dam Formation consists mainly of meta-
morphosed light grey siltstone and dark grey mudstone

Stratigraphy, provenance, and tectonic setting of the Lumsden Dam
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Figure 6. Geological map of the Wolfville area (after White 2010a).

with minor very fine-grained sandstone (Fig. 9). Graded
beds are prevalent throughout the section and are very thin
(1-3 cm) to medium (10-30 cm) bedded. Siltstone and
sandstone beds are parallel laminated to cross-laminated,
while most mudstone layers contain thin parallel laminae
of silstone. Thicker siltstone and sandstone beds are lateral-
ly continuous at the outcrop scale (several metres), but thin
(less than 2 cm) cross-laminated beds commonly appear as
lenses or as semi-continuous and lenticular (Fig. 9¢). Bed
bases are sharp and flat with some scouring.

The Lumsden Dam Formation contains minor sulphide
minerals (noticeably less than the underlying North Alton
Formation) and it weathers to rusty brown. Rare, small (1-3
cm) carbonate concretions are also found within the silt-
stone and sandstone beds. The section contains four mafic
intrusions that were emplaced parallel to bedding. These
fine-grained, medium grey sills range in thickness from
90 to 120 cm and are easily confused with thick sandstone
beds, as they are similar in field appearance to the coarser
units of the host Lumsden Dam Formation (Figs. 7, 9d).

The boundary between the Lumsden Dam Formation
and the underlying North Alton Formation is located along
Jehill Davidson Road in Newtonville (Fig. 6). Intermittent
exposure along the roadbed shows a change from domi-
nantly medium grey to black mudstone with locally abun-
dant sulphides and siltstone beds less than 10 cm thick in
the North Alton Formation, up into dominantly medium

grey to greenish-grey mudstone with siltstone and sand-
stone beds that reach thicknesses greater than 10 cm in the
Lumsden Dam Formation. The boundary is placed at the
lowest occurrence of a siltstone bed with thickness greater
than 10 cm [20T 391089E 4986980N]. White et al. (2012)
have described the contact as gradational over an interval
of 5 m in continuous exposure revealed temporarily dur-
ing the draining of Lumsden Lake, and in other parts of
the region.

The boundary between the Lumsden Dam Formation
and the overlying Elderkin Brook Formation is not visible
along the east side of Black River Road, but is constrained
within 62 m between coordinates 20T 389838E 4987401N
and 20T 389815E 4987459N. Here there is a transition from
the Lumsden Dam Formation, which contains siltstone
and thick cross-laminated sandstone, into thick laminated
mudstone with only minor siltstone of the Elderkin Brook
Formation (Fig. 9¢). The boundary is placed at the high-
est occurrence of a siltstone bed thicker than 2 cm. In the
studied area the Lumsden Dam Formation is estimated to
be 550 m thick, although White (2010a) suggested it could
reach up to 1500 m thick in some areas.

The graptolite Rhabdinopora flabelliformis flabelliformis
has been identified (White et al. 2012) in beds near the
middle of the Lumsden Dam Formation (Fig. 9b), and ac-
ritarch assemblages restrict the age of the Lumsden Dam
Formation to the early to middle Tremadocian (White et

Stratigraphy, provenance, and tectonic setting of the Lumsden Dam
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2] b

Figure 9. Typical field appearance of units in the Wolfville area: (a) Lumsden Dam Formation general view; (b) graptolite
fossil in Lumsden Dam Formation, exposed on bedding surface to left of hand lens; (¢) thinly interbedded siltstone and
mudstone of the Lumsden Dam Formation displaying ripple cross-lamination; (d) Lumsden Dam Formation in contact with
a Type I mafic sill (contact below pick of hammer); (e) finely laminated mudstone of the Elderkin Brook Formation; and (f)
interbedded siltstone and mudstone of the Hellgate Falls Formation showing bioturbation structures on basal overhanging
surface of bed above hammer.
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al. 2012).
U-PB DETRITAL ZIRCON DATING
Wolfville area

Sample NB027A for detrital zircon analysis was collect-
ed from the Lower Ordovician Lumsden Dam Formation
in the overflow channel at Lumsden Dam [20T 0389877
4986952] (Fig. 1b, 2), approximately 20 m down-section
from the Rhabdinoporas flabelliformus graptolite local-
ity (shown at 162 m in Fig. 7). The sample was collected
from a medium grey bed, 8 cm thick, of coarse siltstone.
Petrographically, the sample is subarkosic wacke with sub-
rounded grains. The rock has a primary fabric defined by
the alignment of detrital mica grains and weak cleavage is
detectable.

The sample was crushed using a jaw crusher and disk
mill, and then passed over a Wilfley table to isolate the
heavy grain fraction. Franz and heavy liquid separation
were used to isolate the zircons. A random selection of
zircons was mounted and imaged by electron backscatter
using a scanning electron microscope. They were dated us-
ing U-PDb laser ablation multicollector inductively coupled
plasma mass spectrometry (LA-MC-ICP-MS) with a Nu-
Plasma instrument and UP213 laser ablation system from
New Wave Research. Analytical protocol and data reduc-
tion were a modification of the procedure outlined in Sim-
onetti et al. (2005). A 30 pm spot size was used except when
elevated *Pb cps tripped the ion counter. When this oc-
curred, if possible the grains were reanalyzed with a 20 um
spot size.

Two standards were used to normalize the grain ages.
Standard LH94-15 with a U-Pb age of 1830 + 1Ma is a ho-
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mogeneous calc-alkaline enderbite (Simonetti et al. 2005;
Ashton et al. 1999). Standard GJ-1 with a U-Pb age of 609
Ma is believed to have come from an East African pegmatite
(Jackson et al. 2004; Elhlou et al. 2006). LH94-15 was used
for all grains with uncorrected *”Pb/**Pb ratios greater
than 0.0658, corresponding to a *’Pb/**Pb age of 800 Ma.
GJ-1 was used for all grains with uncorrected *’Pb/***Pb
ratios less than this value.

Minor amounts of Hg present in the argon gas supply led
to slightly elevated background counts at atomic mass 204,
which therefore would have yielded invalid ages if treated as
common lead. Therefore, ages were not common-lead cor-
rected unless levels of *Pb were higher than background
levels (when counts per second of mass 204 were greater
than 250).

One hundred and thirty-five grains were analyzed from
the sample; however, 37 analyses were discarded due to
low **Pb counts per second (less than 10,000), high dis-
cordance, or very low **U contents suggesting a substan-
tial non-zircon component to the grain. Of the remaining
111 analyses, only 42 recorded ages that were between -10
and 10% discordant. For grains with *”Pb/**Pb ages older
than 800 Ma the *Pb/**Pb age is reported, as it typically
shows higher analytical precision. For younger grains the
206Pb/**8J age, normally more precise, is reported. The dis-
tribution of ages is shown in Figure 10. Full analytical re-
sults are reported in Appendices A and B.

The detrital zircon results for the Lumsden Dam Forma-
tion (Fig. 10 and Appendix A) show a prominent Neopro-
terozoic peak centered at 612 Ma, defined by a cluster of
ages (24 analyses) ranging from 556 to 796 Ma (Fig. 10).
This cluster is separated by a gap from an early Neoprotero-
zoic grain group (3 analyses, 899 to 966 Ma). Two grains
are of Mesoproterozoic age (1112 + 25 and 1429 + 30 Ma)
and a significant Paleoproterozoic grain population with a
cluster (9 analyses) ranges in age from ~ 1900 to 2140 Ma.
The sample also contains one older Paleoproterozoic grain
and two Archean grains with ages 2405 £+ 17,2610 £ 19 and
2803 + 20 Ma.

Young grains were generally euhedral to subhedral, and
many exhibited oscillatory zoning. Old grains were gener-
ally sub-rounded to rounded and showed more homoge-
neous internal compositions with only weak zoning. Other
features present in the grain population included core-rim
structures, inclusions and fractures. These features typically
were correlated with discordant ages.

Eastern Nova Scotia

Additional samples were collected in the Bluestone
Quarry Formation, but failed to yield sufficient zircon
grains on crushing and separation for worthwhile analysis.
Therefore, to supplement the Lumsden Dam sample, and
to represent equivalent strata lying unequivocally southeast
of the CPSZ, we present here an older data set, previously
unpublished, from the laterally equivalent Glen Brook For-

mation (Fig. 2). This sample (LR080B, Fig. 1) was collected
at a small quarry on Benvie Road [20T 498149 4997829]
in Halifax Regional Municipality, from a bed of laminated
siltstone approximately 15 cm thick. Zircons were extracted
using the same methods as the sample from the Lumsden
Dam Formation. One hundred and ten grains were anal-
ysed but, as for the Lumsden Dam sample, initial process-
ing of the data produced many discordant results. This was
probably due to the small grain size, which meant the ablat-
ed regions included zircon with variable isotopic age. Also,
these analyses were subject to unusually large fluctuations
in the signal at mass 204, leading to inappropriately large
common-Pb corrections. On re-examination of the results,
it proved possible to avoid some of the discordant results
by excluding aberrant signals at the beginning or end of the
ablation sequences, and by not attempting to apply the com-
mon-Pb correction; this probably resulted in the exclusion
of a few analyses that contained significant common-Pb,
but was more than compensated by additional concordant
results from grains with little common-Pb. The reprocessed
analyses contain sufficient concordant results (46 analyses)
for comparison with the Lumsden Dam sample. Complete
analytical results are provided in Appendix B.

The resulting distribution shows many similarities with
the Lumsden Dam results, but some differences. A single
grain at 511 = 25 Ma, within error of the inferred deposi-
tional age, has no counterpart in the Lumsden Dam sam-
ple. A Neoproterozoic cluster of 15 grains ranges from ~585
to ~685 Ma. There are no Mesoproterozoic grains, but as in
the case of the Lumsden Dam Formation a large Paleopro-
terozoic population (26 grains) is present. The range of this
Paleoproterozoic population is wider (~1750 to 2490 Ma)
but the largest concentration of grains is between 2000 and
2100 Ma, as in the Lumsden Dam sample. A small Archean
population of 4 grains also covers approximately the same
span as in the Lumsden Dam Formation.

DISCUSSION
Correlation

The Bluestone Quarry, Glen Brook, Feltzen, Bear River,
and Lumsden Dam formations have been correlated based
on their lithological similarities and their stratigraphic po-
sition above the Cunard Formation and its lateral equiv-
alents, the North Alton and Acacia Brook Formations
(White 2010a). The units comprise interbedded sandstone
and siltstone with medium to dark grey mudstone and
slate. The majority of beds exhibit vertical sequences of
sedimentary structures described in the Bouma sequence
(Bouma 1962), typical of turbidites. They are dominantly
low-energy turbidites that record Bouma divisions Tb-Te
and Tc-Te, and contain high-energy turbidites that record
Bouma divisions Ta—e and Ta,e. Given these similarities,
there are also important differences between the Bluestone
Quarry and Lumsden Dam formations in particular. The
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Bluestone Quarry Formation contains a higher proportion
of high-energy turbidites (Point Pleasant Park member)
than the Lumsden Dam Formation and the mass transport
deposits in the Bluestone Quarry Formation (Chain Rock
member) are not present in the Lumsden Dam Forma-
tion. This difference can be attributed to slightly different
positions relative to the basin margin, either laterally, or
basinward. The slightly coarser Bluestone Quarry Forma-
tion may have been more proximal than the Lumsden Dam
Formation. This is consistent with paleocurrent data that
suggest a northwestward (present-day coordinates) flow di-
rection, with the source region to the SE and a deep basin to
the NW (Schenk 1970; Waldron et al. 2015).

The Meguma Supergroup has been correlated with the
Cambrian to Tremadocian succession in the Harlech Dome
of North Wales (Waldron et al. 2011). Both regions record
thick early Cambrian continentally derived sandstone tur-
bidites, overlain by early to middle Cambrian alternating
mud-rich and sand-rich units that are enriched in man-
ganese. The manganiferous interval is characterized in all
regions by a diverse assemblage of trace fossils, including
locally abundant Teichichnus. Above, the succession con-
sists of anoxic, organic-rich turbidites, shallowing upwards
into paler, Tremadocian mudstone and siltstone of the Dol-
cyn-afon Formation. This unit has been correlated with the
Bluestone Quarry and Lumsden Dam formations of the
Meguma terrane (Waldron et al. 2011; White et al. 2012;
Pothier et al. 2015) based on its age and stratigraphic posi-
tion.

Age

The Lumsden Dam Formation contains the graptolite
Rhabdinopora flabelliformis flabelliformis and an acritarch
assemblage of Tremadocian age (White et al. 2012). No
fossils have been discovered in the Bluestone Quarry For-
mation and attempts to extract detrital zircons were unsuc-
cessful; hence there is still no direct evidence for its age. Its
stratigraphic position above the Cunard Formation and the
lithological similarities between it and the Lumsden Dam
Formation suggests the Bluestone Quarry Formation was
also deposited during the Tremadocian. However, it is pos-
sible that the top of the Cunard Formation (and laterally
equivalent units) represents a diachronous surface.

Depositional Environment

Schenk (1983) suggested the Meguma succession was
deposited along the continental embankment of a passive
margin; however, whole-rock geochemical data have been
interpreted to suggest deposition in an active continental
margin and (or) an island arc setting, not a passive margin
(White et al. 2006; White and Barr 2010). Waldron et al.
(2009) proposed a rift or extensional environment that sub-
sequently became inactive. This hypothesis helps to explain
the upward transition from a relatively juvenile Avalonian

and Pan-African source to an older more diverse source re-
gion. In the early stages of basin development the uplifted
rift flanks would supply the only source of sediment; later
thermal subsidence permitted for a more extensive source
region including Proterozoic and Archean rocks. This
trend is reflected in e, values that show a change from a
restricted juvenile source to more diverse and isotopically
evolved sources (Waldron et al. 2009). This general model
also explains the rapid accumulation of the ~13 km thick
succession, and perhaps the differences in the stratigraphic
succession on either side of the CPSZ (Waldron et al. 2009).

The Goldenville Group is interpreted to represent a sub-
marine, deep-sea fan deposit formed by turbidity currents
and other types of sediment gravity flow (e.g., Schenk 1971;
Harris and Schenk 1976; Waldron and Jensen 1985). Man-
ganese accumulation at the top of the Goldenville Group
was interpreted by Waldron (1992) as reflecting the inter-
section of the base of an oxygen minimum zone, in which
Mn(II) was soluble, with the sea floor. The depositional
environment for the shaly Cunard Formation of the lower
Halifax Group has generally been interpreted as the mid-
or upper-fan region of a muddy deep-marine fan that pro-
graded over the Goldenville Group (Schenk 1971; Stow et
al. 1984). Waldron (1987, 1992) attributed the abundance
of graphite and sulphide minerals in the Cunard Formation
to anaerobic conditions in the water column. The Lumsden
Dam and Bluestone Quarry formations record a succession
of low to high-energy turbidite deposits, probably depos-
ited under slightly more oxidizing conditions, supported by
the presence of trace fossils in the Feltzen and Bear River
formations, inferred to be laterally equivalent. The presence
of a mass transport deposit in the Bluestone Quarry Forma-
tion (Waldron et al. 2015) indicates that this unit was like-
ly deposited in a slope environment. The Elderkin Brook
and Hellgate Falls formations, which overlie the Lumsden
Dam Formation (Fig. 2) show an upward progression into
a highly bioturbated facies with abundant trace fossils,
that lacks turbiditic structures. This suggests a transition
from a slope into an outer shelf environment by the late
Tremadocian. These observations are consistent with those
of Schenk (1997), who interpreted the upper formations of
the Halifax Group to represent a shoaling succession de-
posited between the upper slope of a prodelta and a muddy
outer shelf.

Provenance and paleogeography

The Meguma terrane resided along the northern margin
of Gondwana during the Cambrian (e.g., Cocks and Tors-
vik 2002; Nance et al. 2008); however, its exact position,
and whether it formed its own discrete terrane or was a part
of West Avalonia, are still subjects of controversy. Schenk
(1970, 1981, 1997) and Robinson et al. (1998) have sug-
gested the succession represents a continental prism that
formed off the northwestern African margin, while others
(e.g., Landing 2004; Murphy et al. 2004a) believed that it
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formed on the margin of West Avalonia. Some would place
the Meguma terrane adjacent to the Amazonian craton
(e.g., Keppie 1977; Linnemann et al. 2012), and others clos-
er to the West African craton (e.g., Schenk 1997; Waldron
et al. 2009).

Geochronological analyses of detrital zircon grains in
clastic sedimentary rocks offer important information
about potential source regions for sedimentary basin fill.
This method has been an essential tool in determining the
paleogeographic positions of many peri-Gondwanan ter-
ranes. Several detrital zircon studies (e.g., Waldron et al.
2009; Barr et al. 2012) within the Meguma terrane, West
Avalonia, and Ganderia have attempted to distinguish West
African craton from Amazonian craton sources. The West
African craton is characterized by Paleoproterozoic rocks
(2.0 to 2.2 Ga) related to the Eburnean and Birimian oro-
gens, and Archean rocks (Rocci et al. 1991; Lerouge et al.
2006). The Amazonian craton has Paleoproterozoic and
Archean sources as well, but also has extensive Mesopro-
terozoioc crust including the Rio Negro belt (1.6 to 1.8 Ga)
and the Rondonia-Sunsas belts (1.3 to 1.0 Ga) (Litherland
et al. 1985; Rowley and Pindell 1989). Thus the lack of a
Mesoproterozoic grain population (c. 800 to 1700 Ma) has
been considered an indicator of West African rather than
Amazonian provenance (e.g., Nance and Murphy 1996;
Linnemann ef al. 2004).

Several detrital zircon samples have been analyzed from
the Goldenville and Rockville Notch groups (Krogh and
Keppie 1990; Murphy et al. 2004b; Waldron et al. 2009)
(Fig. 10). Units sampled low in the Goldenville Group
show a restricted distribution with prominent late Neo-
proterozoic grain populations. A Neoproterozoic to early
Cambrian peak is common to many peri-Gondwanan ter-
ranes including Avalonia (Barr et al. 2012) and Ganderia
(Fyfte et al. 2009; Murphy et al. 2004b; Waldron et al. 2011)
and reflects Avalonian / Pan-African events that occurred
between c. 540 and 700 Ma along the Gondwanan margin
(Nance et al. 1991, 2008).

Samples from higher in the Goldenville Group contain
a few Mesoproterozoic grains, a significant population of
grains between 2.0 and 2.2 Ga, and a range of Archean
grains. These ages were interpreted by Krogh and Kep-
pie (1990) and Waldron et al. (2009) to indicate sources
in West Africa. The detrital zircon samples collected from
the Lumsden Dam and Glen Brook formations show very
similar distributions to the sample from the Government
Point Formation in the upper part of the Goldenville Group
(Fig. 10). In addition to the late Neoproterozoic peak they
also contain significant populations between 1.9 and 2.1
Ga, as well as 2.6 to 2.8 Ga Archean grains. Mesoprotero-
zoic grains are scarce in the Lumsden Dam Formation and
absent from the sample of the Glen Brook Formation. The
West African source interpreted for the Goldenville Group
(e.g., Waldron et al. 2009; Krogh and Keppie 1990) thus ap-
pears to have continued to supply detritus to the Meguma
terrane into the Ordovician.

Relationship to the Welsh basin

The sedimentary rocks of the Meguma terrane have been
correlated with those of the Harlech Dome in North Wales
(Waldron et al. 2011), leading to the inclusion of both ter-
ranes in the domain Megumia. Both regions display thick
early Cambrian (Cambrian Series 1-2) continentally de-
rived sandstone turbidites, overlain by early to middle
(Series 2-3) Cambrian alternating mud-rich and sand-rich
units in which manganese is concentrated. Above, the suc-
cessions both comprise anoxic, organic-rich turbidites of
Furongian (Cambrian Series 4) age, shallowing upward
into paler, Early Ordovician mudstone and siltstone that
contain the graptolite Rhabdinopora flabelliformis flabel-
liformis. In the Harlech Dome, the Tremadocian is rep-
resented by the mudstone-rich Dol-cyn-afon Formation
which has previously been compared to the Lumsden Dam
Formation based on its age and fossil assemblage (Waldron
et al. 2011; White et al. 2012).

By the late Tremadocian the stratigraphic similarity be-
tween the Welsh Basin and the Meguma terrane ends and
their histories diverged. The Lumsden Dam Formation re-
cords slope conditions that transition into shelf sedimen-
tation recorded in the Elderkin Brook and Hellgate Falls
formations. This was followed by a period of non-deposi-
tion and/or erosion and then by deposition of the Silurian
volcano-sedimentary succession of the Rockville Notch
Group. In the Harlech Dome, the Dol-cyn-afon Formation
is unconformably overlain by late Tremadocian volcanic
rocks followed by Floian sandstones and back-arc volcanic
rocks through to the Late Ordovician.

Detrital zircon samples collected from Cambrian rocks
(Rhinog and Gamlan formations) in the Harlech Dome
exhibit a similar distribution (Fig. 10) to the Cambrian
rocks of the Goldenville Group indicating they too were
likely sourced from the Pan-African — Avalonian orogen
and the West African craton (Waldron et al. 2011; Pothier
et al. 2014). In contrast, new results from the Dol-cyn-afon
Formation (Pothier et al. 2014) exhibit a detrital zircon dis-
tribution interpreted to show input of sediment from the
Monian Composite terrane (Fig. 1a) in North Wales, which
has been correlated with Ganderia of Atlantic Canada (Col-
lins and Buchan 2004).

The similarities between the Dol-cyn-afon Formation
and Monian detrital zircon distributions indicate the jux-
taposition of the Monian composite terrane with North
Wales by the Tremadocian (Pothier et al. 2014) along the
NE-SW striking Menai Strait Fault System, which repre-
sents a terrane boundary in North Wales (Gibbons 1987).
The new observations presented here are consistent with
the divergence in Ordovician histories between the two ba-
sins and suggest that, if the two basins were contiguous in
the Cambrian period, they had parted by the Tremadocian.

Waldron et al. (2011) proposed two paleogeographic re-
constructions that would allow the Meguma terrane and
the Welsh Basin to be adjacent during the Cambrian. In
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these scenarios, a likely mechanism to accommodate their
diverging Ordovician histories would be strike-slip move-
ment; Neoproterozoic subduction and arc activity along
the Gondwanan margin were succeeded by a more stable
environment by the early Paleozoic, where sinistral trans-
current motion is thought to have been prevalent (Nance et
al. 1991, 2008). The Menai Strait Fault System between the
Monian composite terrane and Welsh basin, active between
the early Cambrian and late Carboniferous, is interpreted
to show sinistral transpression (Gibbons 1987; Gibbons
and Hordk 1990). If a continuation of this fault system were
to pass through Megumia, left-lateral migration could have
displaced the Welsh Basin from an original position next
to the Meguma terrane and juxtaposed it with the Monian
composite terrane along the Gondwana margin. Figure 11
shows a possible terrane configuration consistent with this
hypothesis, based on the assumption that Megumia was lo-
cated within a rift system between East and West Avalonia.
This model is consistent with both the sinistral transpres-
sional setting for the Menai Strait Fault System, with the
likely initial position of Ganderia (e.g., Pollock et al. 2009;
van Staal et al. 2012) along the Amazonian margin, and
with substantial rotation of portions of Avalonia during
later Paleozoic history as suggested by Vizan et al. (2003).

CONCLUSIONS

(1) The Lumsden Dam Formation and Bluestone Quarry
Formation are defined as formal lithostratigraphic units
within the Halifax Group.

(2) The Bluestone Quarry and Lumsden Dam formations
represent slope-related environments.

(3) The detrital zircon results from the Lumsden Dam
Formation and Glen Brook Formation (likely correlative
with the Bluestone Quarry Formation) show similar results
to the Government Point Formation in the upper part of
the Goldenville Group.

(4) These age populations are consistent with a source re-
gion in the West African craton with possible minor input
from the Amazonian craton.

(5) Although the age and depositional environment for
the Lumsden Dam Formation and the Dol-cyn-afon For-
mation of the Harlech Dome are similar, their different de-
trital zircon age populations suggest that the histories of the
basins had diverged by the Tremadocian.

(6) A possible explanation for the diversification in de-
trital zircon ages within the Harlech Dome succession, and
the diverging histories of the Meguma terrane and North
Wales, could be left-lateral relative movement parallel to
the margin of Gondwana along a transpressional fault sys-
tem that separated the once adjacent basins by the Floian.
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Figure A. U-Pb data for detrital zircons from the Lumsden Dam Formation. (a) U-Pb concordia plot. Errors are shown at the
two sigma level. (b) Probability density curve and histograms of detrital zircon. Data shown are for U-Pb analyses that are
<10% discordant: *’Pb/?**Pb ages for analyses >800 Ma, and ***Pb/>**U ages are analyses <800 Ma.
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Figure B. U-Pb data for detrital zircons from the Glen Brook Formation. (a) U-Pb concordia plot. Errors are shown at the two
sigma level. (b) Probability density curve and histograms of detrital zircon. Data shown are for U-Pb analyses that are <10% dis-
cordant: 2”Pb/**Pb ages for analyses >800 Ma, and ***Pb/**U ages are analyses <800 Ma.
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