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Introduction 

The coast of the Middle Atlantic Bight of North'America's Atlantic shelf consists of a 
series of spit - barrier island systems attached on their northern ends to eroding headlands. It 
has been suggested that these barriers were generated as coastwise-prograding spits (Fisher, 1967) 
or alternatively as mainland beaches detached by the Holocene rise of sea level (Hoyt, 1967). The 
shore face before the barriers consists of fine, seaward-fining sand. Locally, it is corrugated 
by oblique-trending ridges with up to 8 metres of relief — see for instance CSGS Chart 1109. 
Beyond the shore face lies a vast submarine sand plain with a subdued ridge and swale topography. 
The sand has faunal and petrographic characteristics indicative of subaerial deposition during 
Pleistocene low stands of the sea (Emery, 1965). Its ridge and swale topography has been 
described as a relict strand plain (Shepard, 1963, p. 213), and as a modern, hydraulically 
maintained topography (Uchupi, 1968). At present we are engaged in a study of the Cape Hatteras 
to Cape Henry sector, North Carolina - Virginia, in order to further investigate these various 
features and determine their geneses. Our study is supported by the Coastal Engineering Research 
Centre, Geology Branch; by the United States Geological Survey, and by the National Science 
Foundation. Some of our preliminary findings are presented below. 

Regional Reconnaissance 

Sample Plan: 

Our first step has been to reconnoitre the inner shelf along a series of transects from 
Cape Henry to Cape Hatteras (Fig. 1). Primary transects were occupied every 20-km. Grab samples 
were collected at the beach, and across the shore face at 2-metre depth intervals until the 
horizontal spacing between stations exceeded two km. Grab samples were then collected every two 
km until two consecutive samples of medium to coarse "relict" sand were obtained. Beach, 14-
metre and 8-km stations were sampled in triplicate for purposes of heavy mineral analysis. 
Supplementary transects, consisting only of beach, 14-metre, and 8-km stations were sampled 
between each set of primary transects. An additional beach sample was collected between each 
primary and supplementary transect. Bottom profiles were recorded for some of the transects. 
Finally, 14 samples were collected from the Pleistocene of the adjacent mainland. 

* Manuscript received February 23, 1970. 
Manuscript revised March 30, 1970. 
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Figure 2 - Bottom prof i les of selected coastal transects. 

Grain Size and Bathymetry: 

The bottom profiles (Fig. 2) indicate that at most transects two well-defined geomorphic 
provinces are present. A nearly planar shore face has a gradient of 8 m/km (approximately 50 ft/mi). 
Seaward of the shore face an undulating shelf floor slopes seaward at 1 m/km (approximately 5 ft/mi) 
with a relief of up to seven m. Preliminary examination of the samples indicates that the shore 
face is floored with fine- to very fine-grained, grayish sand, while the shelf surface consists of 
patches of both fine- to very fine-grained, medium gray sand and medium- to very coarse-grained, 
gravelly, orange-brown sand. 

Such sharply angulated profiles appear to be characteristic of sandy coasts undergoing 
erosion (Zenkovich, 1967, p. 205) and most of this sector is in fact retreating. The rate for the 
Virginia sector, averaged over a century, is 22 cm/yr (Felton, unpublished report, Norfolk District 
Corps of Engineers). Profiles 1, 10, and 11 are anomalously flat and shoal, indicating accretion. 
At Cape Henry the accretion may be associated with a clockwise residual current gyre (Harrison and 
others, 1964) resulting from the interaction of the tidal vet of Chesapeake Bay mouth and the 
shelf tide. Profiles 10 and 11 cross the north flank of Diamond Shoals, generated by seaward 
diversion of littoral drift off Cape Hatteras (Tanner, 1960, El Ashry and Wanless, 1968). 

Heavy Mineral Analysis: 

Heavy mineral content of the Pleistocene, beach, 14-metre, and 4-kilometre stations was 
determined as follows: five gram cuts from each subsample were combined in order to reduce 
sampling error at each station (Kruinbein and Rasmussen, 1941) . The 88-177 micron fractions of 
each composite sample were placed in separatory funnels containing tetrabromoethane, (S.G. of 2.9). 
The heavy mineral fraction thus obtained was split where necessary with a microsplitter, and 
about one gram was mounted ongriddied slides, in arochlor (n = 1.665). One hundred heavy minerals 
were counted on each slide, using a Swift mechanical stage and point counter. First the percentage 
of opaque heavy minerals was determined in this manner, then in the course of a separate, 100-
grain count, the percentages of garnet, epidote, hyanite, tourmaline, zircon, apatite, hypersthene. 
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sillimanite, staurolite, amphibole, and miscellaneous minerals were determined. 

The percent of non-opaque heavy minerals at each station is shown in Fig. 3, and is 
compared with the modal grain size of the whole sample estimated visually in Wentworth classes. 
Samples of "anomalous" grain size (fine samples in the offshore province, medium or coarse samples 
in the nearshore province) are indicated by exclusion from the trend line. The most consistent 
trends occur in the beach and nearshore stations. The percentages of garnet and opaque heavy 
minerals (not shown) increase toward Hatteras as. does grain size, while the percentage of 
amphibole decreases. In the nearshore zone the percentage of epidote increases toward Hatteras, 
while the percent of staurolite and kyanite decrease. The trends become more distinct if only 
the major littoral drift cell, Cape Henry to Oregon Inlet, is considered (Fig. 4). 

Fisher (1967, personal communication) and Pierce and Colquhoun (1969, personal 
communication) have suggested that Currituck Spit, north of Oregon Inlet, formed as a coastwise-
prograding spit. These workers also suggest that Hatteras Island to the south of the inlet 
formed as a coastwise-prograding spit. Fisher (1967) has presented geomorphic evidence for such 
progradation of Hatteras Island in the form of oblique trending beach ridges (Fig. 5). These 
workers suggest that the area around Oregon Inlet was formerly a headland (Bodie Island Headland 
of Fisher). Pierce and Colquhoun have presented as evidence for this a buried soil profile 
(Fig. 5), indicating that here the barrier formed from the detachment of a mainland beach by 
rising sea level, in the manner that has been described by Hoyt (1967). 

Statistical analysis of our heavy mineral data may shed some light on the genesis of this 
coast. We plan to subject each heavy mineral species to multiple linear regression, with the 
percentage as the dependent variable, and grain size of the whole sample and distance from the 
head of the relevant littoral drift cell as the independent variables. If these variables account 
for most of the variance, then the littoral drift systems may be considered as essentially closed 
systems with sediment input via substrate erosion at the cell heads, and mineralogic gradients 
determined by progressive down-drift sorting. This model would support barrier construction by 
the coastwise prograding of spits. If, however, only a small amount of variance is attributable 
to distance and grain size, then an open system may be suspected, with sediment supplied by a 
variable substrate along the length of each littoral drift cell. Such a model would be compatible 
with barrier construction by detachment of a.mainland beach. 

PLEISTOCENE BEACH NEARSHORE OFFSHORE 

Figure 3 - Percent of Non-opague heavy minerals. See text for explanat ion. 
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Figure 4 - Direct ions of l i t tora l dr i f t between Cape 
Henry and Cape Hatteras. 
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Figure 5 - Quaternary framework of the Virg in ia-North 
Carolina Coast. 

Ridge System at False Cape 

At several points along the Virginia - North Carolina coast, the shore face broadens and 
deforms into a series of oblique-trending sand ridges, with wave-lengths of two to six km, and 
amplitudes up to eight metres, tied to the shore face at depths of three to five metres. A 
portion of such a ridge system at False Cape, near the Virginia - North Carolina line is shown in 
Figure 6. The map is based on a 1922 Coast and Geodetic survey. This survey was accomplished by 
means of lead line sounding, with navigation carried out with the aid of horizontal sextant angles 
and shore towers. Probable vertical accuracies for this method are ± 30 cms; horizontal accuracies 
are ± 10 metres within six km of shore, and somewhat less further offshore. During the summer of 
1969, we resurveyed this area, using an Edo Bottom Profiler and a Cubic Autotape Radio-Navigation 
System. Our survey methods were more accurate, but our survey lines were two km apart, as 
compared with those for the 1922 survey which were as close as .5 km apart. Hence our map (Fig. 7) 
is somewhat smoother. 

Figure 6 - Bathymetry of False Cape Study area, from 
1922 US C&GS survey. Depth in feet. 

Figure 7 — Bathymetry of False Cape Study area, from 
1969 survey. Depth in feet. 
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Profiles (Fig. 8) based on the two maps reveal the following changes: 
1. The shoreline has retreated approximately 500 metres in the north and 600 metres in 

the centre, but has advanced 500 metres in the south. 
2. Most ridge crests have advanced shorewards, for up to 300 metres. The southern portion 

of the central ridge, however, has become more northsouth in orientation, moving up to 400 metres 
seaward in the process. 

3. The inshore and northern portions of the map area have undergone up to three metres 
of erosion. The southeast quadrant has undergone up to two metres of accretion mainly through the 
appearance of a new offshore ridge. 

Grain size varies systematically across the ridge system (Fig. 9), as determined by visual 
estimation of Wentworth size classes. Medium- to very coarse-grained sand occurs on ridges, with 
fine-grained sand in the swales. Second order tongues of coarse grained sand extending from the 
main bodies in Figure 9 correspond to smaller ridges in Figure 7. 

Sub-bottom continuous seismic reflection profiles recorded over the outer ridge with a 
high resolution boomer were unable to resolve internal structure, but did reveal that the ridge 
has a plano-convex configuration, and that it rests on a prominent reflector which is exposed in 
the swale to the seaward of the ridge (Fig. 10). A scuba dive in the trough between the two 
branches of this ridge revealed 15 centimetres of coarse, shelly sand overlying stiff clay. The 
clay is tentatively correlated with the sand ridge and mud fiat complex of the Sandbridge 

— 1922 1969 

VERTICAL EXAGGERATION - 06 X 
INDICATES RIDGE CREST 

Figure 8 - Prof i les through the False Cape 
Study area. Horizontal scale 
same as in Figure 7. 

Figure 9 - Prel iminary grain size map of the Flase Cape Study area, 
based on visual est imation of Wentworth size c lasses. 
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Figure 10 - High Resolut ion Boomer Prof i le 
through the outer ridge. Le f t margin 
of each prof i le continues as right 
margin of subjacent prof i le . 
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Formation (Fig. 5) ascribed to the late Sangamon regression by Oaks (1964). Three cores taken 
with a hydraulic coring system to the north of the study area appear to have nearly penetrated to 
this surface. They consist of 20 centimetres to one metre of sand that appears to fine downward. 
In two cases there is a coarse, shelly gravel at the base of the core and in the third case, a 
coarse coquina. The thickness of the basal layer is unknown since it was sufficiently coarse to 
stop the corer. Two cores contained large clay fragments near the base. Powers and Kinsman (1953) 
have reported taking 37 similarly graded cores up to two metres long to the north of the study 
area, off the mouth of Chesapeake Bay. 

We suspect that the surface is a compound one, formed in part by subaerial weathering 
during Wisconsin low stands of the sea, and in part by surf erosion during the Holocene 
transgression. At one point our ship's anchor brought up a mottled clay, suggestive of subaerial 
weathering, and similar to that reported by Pierce and Colquhoun as underlying parts of Hatteras 
Island. The role of surf erosion is supported by the basal gravel observed in cores, and by the 
geologic cross sections of Oaks (1964) which indicate that the shore face at False Cape has cut 
deeply into the underlying Pleistocene. Thus the discontinuous sand sheet over the surface 
appears to have been generated by shore face and sea floor erosion since the return of the Holocene 
Sea. 

The ridge and swale topography seen at False Cape and elsewhere on the inner shelf of the 
Atlantic Bight is problematic. Sanders (1963) has suggested that the False Cape ridges are relict 
Pleistocene beach ridges. They unquestionably parallel the beach ridges of the Sandbridge 
Formation (Fig. 5) but we nevertheless suspect that they are maintained by the modern hydraulic 
regime, for the following reasons: (1) They have moved inland with the beach face since 1922. 
(2) Oaks (1964) study indicates that the shore face has cut deeply into the Sandbridge Formation, 
destroying its upper surface. 

If hydraulically maintained, a further problem is the general category of bedforms to 
which the ridges belong, whether transverse or longitudinal to the major direction of flow. Large-
scale, submarine sand ridges described from the North Sea (Houbolt, 1968) and Georges Bank (Stewart 
and Jordan, 1964) are longitudinal forms. Houbolt (1968) has proposed horizontal helical flow 
cells of tidal origin as the generating mechanism for sand ridges in the North Sea and has 
presented field evidence for it. Smith (1969) has studied a sand ridge in Vinyard Sound, 
Massachusetts. The ridge is oriented parallel to the long axis of the tidal current ellipse. 
Smith concluded that the ridge was maintained by alternating cross-ridge flow, parallel to the 
short axis of the tidal ellipse. Smith's ridge is thus morphologically a longitudinal form, but 
is dynamically a transverse form. Smith's and Houbolt's generating mechanisms need not be mutually 
exclusive. 

Moody (1964) has described nearshore, oblique-trending sand ridges, similar to the False 
Cape system, from the Delaware coast. They appear to be moving to the southeast as asymmetrical 
transverse forms, mainly during storms. Moody showed that the ridges are growing at the same 
rate as the shore face is receding. He believed that as his ridges advance and sea level rises, 
slow ones are overtaken by larger ones, thus initiating the larger offshore ridge systems. In 
this way, the offshore ridge and swale topography of the Atlantic shelf may have been generated as 
inner shelf topography rather than as shoreline topography. It is not necessarily relict, either, 
since as Uchupi (1968) has indicated, the offshore ridges may still be active during storms. 

Detailed knowledge of the hydraulic regime associated with the False Cape ridge system 
must await the results of our current-metre study. However, a bathymetric map of the inner 
Virginia shelf is compatible with the sort of evolution suggested by Moody (Fig. 11). Here the 
False Cape ridge system can be seen to have a more weakly developed northern extension. The False 
Cape system of beach-tied ridges is part of the shore face as defined by the 55-foot contour; 
offshore on the flatter sea floor are other extensive ridge systems. The four major False Cape 
ridges here appear to represent a sequence of evolution from shore face ridges to offshore ridges. 
The changes between the two surveys are compatible with such evolution. In particular the 
straightening of the most seaward of the beach-tied ridges between 1922 and 1969 would be 
necessary for it to become an offshore ridge. Unfortunately limitations of funds prevented our 
extending our survey far enough south to determine whether or not it has actually severed its 
connection with the shore face. 

We plan a coring program to resolve the late Holocene history of the ridge system. We are 
presently undertaking current-metre studies, financially supported by the National Science 
Foundation, to shed further light on the hydraulic regime that maintains the sand ridge systems. 
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Figure 11 - Bathymetry of the Inner Vi rg in ia Shelf, from contouring of C and 
GS smooth sheet 1227. 
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