A note on the occurrence of *Arthrophycus* in the Bell Island Group of eastern Newfoundland

Ron K. Pickerill, Denis Fillion*

Department of Geology, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada

and

Pat J. Brenchley

Department of Earth Sciences, University of Liverpool, Liverpool, England LG9 3BX

Date Received August 20, 1990

Date Accepted November 13, 1990

INTRODUCTION

In a recent monograph that described systematically the trace fossils of the Cambrian(?) to Early Ordovician trace fossils of the Bell Island and Wabana groups of Conception Bay, eastern Newfoundland (Fillion and Pickerill, 1990), we noted the remarkable similarity between these trace fossils and those previously described from coeval strata in France, Spain and Portugal. At the ichnogeneric level, one of the notable differences between eastern Newfoundland and these latter countries was the apparent absence in eastern Newfoundland of *Arthrophycus* Hall, 1852, *Daedalus* Rouault, 1850 and *Volkichnium* Pfeiffer, 1965.

During the summer of 1989, subsequent to the research originally undertaken by R.K.P and D.F., two of us (R.K.P. and P.J.B.) discovered a single specimen of *Arthrophycus* within the sequence. The purpose of this short note is, therefore, primarily to document this occurrence, but also to reiterate the "European" aspect of the ichnoassemblage as initially noted by Seilacher and Crimes (1969), Bergström (1976) and Pickerill and Fillion (1983, 1984) and more recently by Fillion and Pickerill (1990).

LOCATION AND STRATIGRAPHY

The Bell Island and Wabana groups are exposed on Bell Island, Little Bell Island and Kellys Island in Conception Bay, eastern Newfoundland (Fig. 1). These groups have been subdivided by Ranger et al. (1984) into eleven formations, as indicated in Figure 1. The sequence is essentially Early Ordovician (Tremadoc-Arenig) in age though the basal portions could conceivably be latest Cambrian (Fillion and Pickerill, 1990). More detailed discussions on the stratigraphy and age of the succession have been undertaken by Bergström (1976), Pickerill and Fillion (1983), Pickerill et al. (1988), King et al. (1988) and Williams (1990).

The specimen described herein was collected from talus material of the Beach Formation of the Bell Island Group in a coastal section exposed between Dominion Pier and Scotia Pier on the southeastern shore of Bell Island (Fig. 1). The Beach Formation is essentially Tremadoc in age, though, as noted by Pickerill and Fillion (1983), the Tremadoc-Arenig boundary may possibly be located within its upper horizons. The essentially Tremadocian age is apparently supported by the discovery of a single graptolite specimen probably belonging to the *Rhabdinopora flabelliformis* group (S.H. Williams, personal communication, 1989).

The Beach Formation, as indeed the entire sequence constituting the Bell Island and Wabana groups, is essentially a siliciclastic sequence of interbedded sandstones, siltstones, shales and ironstones. As outlined by Ranger et al. (1984), Pickerill et al. (1988) and Fillion and Pickerill (1990), these strata were deposited in a storm-dominated shelf and deltaic environment.

SYSTEMATIC PALICHNOLOGY

Ichnogenus *Arthrophycus* Hall, 1852

Arthrophycus isp.

(Fig. 2)

Material

Single specimen from the Beach Formation approximately midway between Dominion Pier and Scotia Pier, southeastern shore of Bell Island, Conception Bay, eastern Newfoundland.
Fig. 1. Location and simplified geological map (after Ranger et al., 1984) of Bell, Little Bell and Kellys islands, Conception Bay, eastern Newfoundland. Arthrophycus isp. location is denoted by arrow.
Fig. 2. *Arthrophycus* isp. preserved on a sandstone sole from the Beach Formation, Bell Island Group, Bell Island, Conception Bay, eastern Newfoundland. Specimen GSC 98485.

(Fig. 1). The specimen is reposited at the Geological Survey of Canada, Ottawa, Ontario, GSC 98485.

Description

The specimen is preserved in convex relief on the sole of a 35 to 45 mm-thick slab of parallel- and cross-laminated, fine-grained, micaceous sandstone and mudstone. It comprises an imperfectly preserved, straight, horizontal lower surface expression of a presumed endichnial unbranched burrow, 70 mm in length, and where observable, at least 12 mm in width. The burrow is characterized by unornamented, transverse, 2.5 to 3 mm-wide, gently convex ridges separated by 1 mm-wide, flat-bottomed grooves. Burrow margins cannot be discerned as both the ridges and grooves pass gradationally into the enclosing rock. Vertical relief is only in the order of a few millimetres. Associated trace fossils on the same slab include *Calycraterion samsonowiczi* Karaszewski, 1971, *Rosselia* Dahmer, 1937 and *Skolithos* Haldeman, 1840.

Remarks

The ichnogenus *Arthrophycus* was erected by Hall (1852) for simple or branched burrows "...marked by ridges or articulations..." (Hall, 1852, p. 4) from the Silurian Medina Formation of western New York. Seilacher (1955) considered it to be a junior synonym of *Phycodes* Richter, 1850, but most subsequent authors have regarded the two as separate and distinctive ichnogenera (e.g., Häntschel, 1962, 1975; Osgood, 1970; Pickerill et al., 1984). Osgood (1970) has outlined the several differences between the two ichnogenera which we also consider should both be retained.

With better and more completely preserved material than that described here, *Arthrophycus* is commonly branched to form bunches or bundles of burrows each of which, however, still retains the distinctive transverse articulations (e.g., Hall, 1852, pl. 2, fig. 1a; Lessertisseur, 1955, pl. VII, figs. 9, 10; Seilacher, 1969, pl. 1, p. 121; Baldwin, 1977, pl. 2a, p. 22; Turner and Benton, 1983, fig. 4A, p. 452; Pickerill et al., 1984, fig. 2a, p. 252). Commonly with such examples the individual burrows also possess a narrow central furrow or depression which runs longitudinally along their length. Hall (1852, p. 5) referred to this latter feature as a "...longitudinal depressed line..." The presence of bundles and the central furrow is, however, unnecessary for ichnogeneric assignment to *Arthrophycus*. Indeed, several additional authors (e.g., Książkiewicz, 1977, pl. 1, figs. 8, 14; Legg, 1985, pl. 4E, p. 160; Durand, 1985, pl. 4, figs. 3, 4; Bjerstedt, 1987, fig. 8.1, p. 876) have identified the ichnogenus based on single, commonly incomplete burrows that exhibit neither bunching nor the central furrow. Such is the case here where even though the specimen is poorly preserved and incomplete, we are confident with respect to its ichnogeneric assignation. In view of the fact that only a single specimen has, to date, been discovered, we are reluctant to attempt an ichnospecific assignation.

Arthrophycus is generally regarded as the feeding burrow of an arthropod or sedentary polychaete annelid and ranges in age from Cambrian to Tertiary (Sarle, 1906; Häntschel, 1975; Książkiewicz, 1977). To date it has only been reported from marine sequences.

DISCUSSION

Fillion and Pickerill (1990) recorded 40 ichnogenera, represented by 111 ichnospecies, and 5 vernacular ichnotaxa from the Bell Island and Wabana groups. The Beach Formation contained 26 ichnogenera, 78 ichnospecies and 2 vernacular ichnotaxa and represented the most diverse formation (ichnologically) of the entire sequence. In part this high diversity resulted from the considerable range of lithologies constituting the formation, conducive to preservation of trace fossils by toponomic processes, and the variety of marginal and shallow marine environments represented within it (see Ranger, 1979; Ranger et al., 1984; Pickerill et al., 1988; Fillion and Pickerill, 1990). The occurrence of *Arthrophycus*, as described herein, further in-
creases the ichnogenetic diversity of this formation.

The "European" aspect of the trace fossils within the Bell Island and Wabana groups was first noted by Seilacher and Crimes (1969) and later by Bergström (1976) and Pickerill and Fillion (1983, 1984). These publications essentially emphasized the remarkable similarity of trilobite-produced ichnospecies of *Cruziana* present in eastern Newfoundland and coeval strata in England and Wales (Crimes, 1970; 1975), northwest Spain (Baldwin, 1977), Brittany and Morocco (Blaise and Bouyx, 1980) and Portugal (Romano, 1982). More recently Fillion and Pickerill (1990) extended this correlation to include coeval sequences in Brittany (Durand, 1985) and Argentina (Alonso and Marquillas, 1981; Alonso et al., 1982; Manca, 1986). Fillion and Pickerill (1990) also noted the remarkable similarity of additional non-trilobite produced ichnogenus mutual to eastern Newfoundland and several of these successions. Unlike several of these sequences, however, Fillion and Pickerill (1990) drew attention to the fact that the ichnogenera *Arthrophycus* Hall, 1852, *Daedalus* Rouault, 1850 and *Volkichnium* Pfeiffer, 1965 were apparently absent from eastern Newfoundland. It must be noted, however, that Fillion and Pickerill (1990) did record the ichnogenus *Heimdallia* Bradshaw, 1981 from eastern Newfoundland and pointed out that comparison of types may render it a junior synonym of *Daedalus*. The apparent absence of *Daedalus* in eastern Newfoundland may, therefore, be unreal. Additionally, *Volkichnium* is also a candidate for taxonomic re-assessment, particularly as this simple stellate trace was not vertically sectioned when originally erected by Pfeiffer (1965), and it could well prove to be a junior synonym of one of several previously defined stellate ichnogenae. Also, *Volkichnium* is only a rarely occurring ichnotaxon in only two of the aforementioned sequences.

Thus, until now, the surprising but apparent omission from the eastern Newfoundland sequence was *Arthrophycus*. In the above mentioned coeval sequences, this ichnogenus occurs in Spain, Portugal, Brittany, Morocco and Argentina and typically in abundant and monospecific and gregarious populations preserved in convex relief on sandstone soles. Indeed, preservation as isolated specimens such as that described here is not common-place, though, for example, Ksiągkiewicz (1977), Legg (1985), Durand (1985) and Bjerstedt (1987) have described similar examples. Such occurrences as isolated individuals are, however, atypical and not clearly understood. However, the more important point to emphasize here is the actual occurrence of the ichnotaxon in eastern Newfoundland. This occurrence further corroborates the "European" aspect of the ichnofaunal assemblage as noted above.

As also pointed out by Fillion and Pickerill (1990) similarities also exist with acritarchs, trilobites and graptolites (Dean and Martin, 1978), between eastern Newfoundland and northwestern France and the Anti-Atlas mountains of Morocco (Dean 1976). Ranger (1979) and Hiscott (1982) also pointed to the remarkable similarity of Cambrian-Ordovician lithofacies and inferred depositional environments. All evidence confirms reconstructions that place the Avalon Zone of Newfoundland west of Spain during the Ordovician (Cocks and Fortey, 1982; Neuman, 1984; Dean, 1985).

ACKNOWLEDGEMENTS

We thank G. Nunn for his hospitality in Newfoundland, and A. Gomez, R. McCulloch and D. Tabor for technical assistance during preparation of this note. Reviews of the original manuscript were undertaken by L. Fahraeus and S.H. Williams who are gratefully acknowledged. Financial support was provided by a Natural Sciences and Engineering Council of Canada operating grant OGP0003857 to R.K.P. and a University of Liverpool travel grant to P.J.B., both of which are gratefully acknowledged. Use of isp. instead of ichnosp. as the standard abbreviation for ichnospecies follows the suggestion of R.G. Bromley.

