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The St. Croix Terrane of coastal Maine and adjacent New Brunswick is characterized by Ordovician carbonaceous pelites 
in the upper part of the stratigraphic section. These pelites are locally interbedded with mafic volcanic rocks. Metamorphism 
in the terrane varies from the albite-epidote-homfels facies along the New Brunswick-Maine border to greenschist and lower 
amphibolite facies in southwestern Maine.

The mafic volcanic rocks are evolved basalts that have trace-element abundances similar to intraplate tholeiites. Their La/ 
Nb ratios of 1.3 to 1.9 and absolute REE concentrations of 30 times chondrite in the more evolved basalts are features common 
to many continental flood basalts. Enrichment in high field-strength elements relative to MORB distinguishes them from 
volcanic-arc tholeiites.

Depositionof carbonaceous pelites coincided with the widespread development of oceanic crust in the early Paleozoic. The 
trace-element and REE patterns of the associated basalts suggest eruption through rifted continental crust marginal to an 
expanding ocean basin.

La presence de pelites riches en carbonc dans la partie superieure de sa section stratigraphique caracterise la Laniere de St.
Croix qui se rencontre au littoral du Maine et dans les regions du Nouveau-Brunswick avoisinantes. Ces pelites s’interlitent 
localement avec des volcanites mafiques. Le metamorphisme de la laniere va du facies des comeennes a albite et epidote le long 
de la frontiere entre le Nouveau-Brunswick et le Maine jusqu’au facies inferieur des amphibolites dans le sud-ouest du Maine.

Les volcanites mafiques sont des basaltes evolues presentant des abondances d ’elements en traces semblables a celles des 
tholeiites intraplaques. Leurs rapports La/Nbde 1.3 a 1.9, ainsi que leurs concentrations absolues enT.R. egales a 30 fois celles 
des chondrites au sein des basaltes plus evolues, sont communes a plusieurs nappes d ’inondation basaltique continentales. On 
les distingue des tholeiites d ’ arc insulaire par leur enrichissement en elements a intensite de champ elevee par rapport aux MORB.

Le depot de pelites riches en carbone co'incida avec le developpement largement repandu de croute oceanique au debut du 
Paleozoi'que. Les spectres de T.R. et d ’elements en traces des basaltes qui leur sont associes suggerent une eruption a travers 
une croute continentale a la derive en bordure d’un bassin oceanique en expansion.

[Traduit par le journal]

Paleozoic ocean and were accreted to the North American 
continent during the Taconian, Acadian and Alleghenian oro­
genies (Bird and Dewey, 1970; Williams and Hatcher, 1982).

The Appalachian rocks of southeastern Maine have been 
divided into three discrete belts (Fig. 1). These are from the 
southeast to northwest: the Coastal Volcanic Terrane, the St.

INTRODUCTION

The northern Appalachians have been divided into a number 
of fault-bounded terranes that include remnants of oceanic crust, 
oceanic islands, volcanic arcs, and rifted continental fragments. 
These terranes formed within or along the margin of an early
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Fig. 1. GeologicmapofsoutheastemMaineandadjacentNew Brunswick. Younger plutonic rocks have been omitted. Sources: Stewart and Wones 
(1974), Bickel (1976), Ruitenberg and Ludman (1978), Osberg el al. (1985).

Croix Terrane, and the Casco Bay Terrane (Stewart and Wones, 
1974;Ludman, 1987). Stewart and Wones (1974) correlated the 
Coastal Volcanic Terrane with the Precambrian Avalonian Ter­
rane of Atlantic Canada, which contains a distinctive European 
faunal assemblage and may represent a fragment of the Eur- 
African craton (Wilson, 1966; Schenk, 1971).

The Casco Bay Terrane is one of several volcanic terranes 
(including the Miramichi Terrane of central New Brunswick) 
located between the Coastal Volcanic Terrane and vestiges of an 
early Paleozoic ocean to the northwest. The St. Croix Terrane is 
a predominantly sedimentary belt lying between these two vol­
canic belts. These sedimentary rocks have been interpreted as an 
early Paleozoic slope sequence deposited off the northwestern 
margin of Avalon (Schenk, 1971; Rast and Stringer, 1974).

Chemical analyses from volcanic rocks, which are locally 
interbedded with the sedimentary sequence of the St. Croix 
Terrane, are reported here in order to provide some constraints on 
the tectonic environment of the St. Croix Terrane.

STRATIGRAPHY

Ordovician volcanic rocks within the St. Croix Terrane are 
exposed in the St. Croix River area on the Canada-U.S. A. border 
and in the Penobscot Bay area of Maine (Fig. 1). These are mostly 
mafic in composition but felsic rocks occur locally.

Cambrian-Ordovician rocks on the New Brunswick side of 
the border are referred to as the Cookson Formation after the 
excellent section on Cookson Island in Oak Bay at the head of

Passamaquoddy Bay (Ruitenberg, 1967). Recent mapping of 
lithologic divisions within the same rocks of adjacent Maine 
required that they be elevated to group status (Ludman, 1987). 
The newly recognized formations of the Cookson Group are from 
the base upward: Pocomoonshine Lake Formation - grey to black 
pelite with minor siltstone and sandstone; Kendall Mountain 
Formation - quartzite with minor siltstone, pelite, conglomerate 
and felsic volcanic rocks; Woodland Formation - graded wacke 
and black pelite; Calais Formation - black carbonaceous pelite 
with minor siltstone, sandstone and basalt. The Cookson Group 
is estimated to be about 2,500 m thick, and the Calais Formation, 
from which samples were taken for analysis, is in the order of 
1,000 m thick (Ludman, 1987).

The mafic rocks in the Calais Formation comprise a pillowed 
unit and a massive unit. A 100 m thick, northwest-younging 
pillow basalt unit is exposed at Todd Point on the New Brunswick 
side of the S t Croix River (Fig. 2). The massive basalt unit is 
exposed on the Maine side of the river about 150 m southeast of 
the pillow basalt unit. Graded beds in sandstone intercalated with 
the massive unit indicate a younging direction to the southeast. 
These top indicators, together with the style of minor folds, 
suggest that the pillowed and massive basalts occupy approxi­
mately the same stratigraphic level on opposite limbs of an 
anticline overturned to the northwest (Stringer, 1987). Themafic 
volcanic rocks were thermally metamorphosed to a plagioclase- 
actinolite-biotite-sphene-iron oxide assemblage during emplace­
ment of nearby Devonian gabbroic plutons.
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Lithologic correlatives of the Cookson Group in the Penob­
scot Bay area are quartzite, quartzite-pebble conglomerate and 
pelite of the Megunticook Formation (150 m of exposed thick­
ness) and conformably overlying carbonaceous pelite, graded 
quartzose sandstone, and minor amphibolite of the Penobscot 
Formation (3,150 m thick) (Bickel, 1976; Osberg et a i, 1985). 
Actinolitic hornblende and plagioclase (An,,,), in the amphi­
bolites, together with andalusite and cordierite in the pelitic 
layers, indicate that regional metamorphism locally reached the 
lower amphibolite facies in the Penobscot Bay area.

The amphibolites, which locally possess relict pillow-like 
structures and agglomerate beds, are included within the Gushee 
Member(500m thick) ofthe upper Penobscot Formation (Bickel, 
1976). The Gushee Member appears, therefore, to correspond 
with the Calais Formation of the Cookson Group, whereas the 
res t of the Penobscot Formation resembles the Woodland Forma­
tion. The Megunticook Formation is lithologically similar to the 
Kendall Mountain Formation of the Cookson Group, although 
the latter lacks coarse conglomerate.

The Gushee Member is exposed at the Belfast waterfront 
where it comprises at least five separate amphibolite layers from 
3 to 5 m thick, each separated by 10 to 20 m of black pelite and 
sandstone. Grading in sandstone beds indicates that the sequence 
is locally younging to the south. The amphibolites typically 
contain about equal proportions of plagioclase and amphibole 
(actinolite and actinolitic hornblende occur together), with ac­
cessory biotite, chlorite, epidote, sphene, Fe-Ti oxides and quartz.

GEOCHEMISTRY

Their minor representation in the stratigraphic sections 
together with meagre exposure resulted in only relatively few 
samples of volcanic rock being collected for study. Eight 
specimens were analysed from the Calais Formation: samples 1 
through 6 (Fig. 1) were collected, respectively, from the top

downward within the pillow basalt unit at Todd Point on the New 
Brunswick side of the St. Croix River; samples 7 and 8 are from 
the massive basalt unit on the Maine side of the river. Three 
samples were analyzed from the southern part of the Gushee 
Member of the Penobscot Formation: samples 9 and 56 were 
collected at the Belfast waterfront and sample 75, at the junction 
of Fletcher Hill and Stockton Springs roads. Samples from the 
northern portion of the Gushee Member were excluded from this 
study because of their extensive alteration. The results are pre­
sented in Tables 1 and 2; analytical procedures are summarized 
in Appendix I.

Major-, minor- and trace-element chemistry of volcanic 
rocks is susceptible to modification by metamorphic fractiona­
tion and submarine weathering. However, it has been shown that 
these secondary processes do not significantly alter the concen­
trations of some minor and trace elements such as Ti, Zr, Y, Nb 
and rare-earth elements (REE’s) (Cann, 1970; Elliott, 1973; 
Field and Elliott, 1974; Herrmann et al„ 1974; Winchester and 
Floyd, 1976, 1977; Floyd and Winchester 1978; Dostal and 
Capedri, 1979). Although abundances of these “immobile” 
elements can be influenced by the presence of C 0 2-rich fluids 
(Hynes, 1980; Clough and Field, 1980), such alteration may be 
discerned from the wide range of element concentrations and 
ratios exhibited by the affected samples (Sun and Nesbitt, 1978; 
Heilman et al., 1979; Hynes, 1980; Murphy and Hynes, 1986). 
The suite of eight samples from the Calais Formation and three 
samples from the southern portion of the Penobscot Formation 
show no erratic variation in “immobile” element content (Tables 
1 and 2) and are, therefore, assumed to reflect primary values for 
these elements. In contrast, analysed samples from the northern 
portion of the Penobscot Formation displayed considerable 
chemical variability (one contained 3.4% C 0 2) and further 
sampling would be required before any conclusions could be 
drawn about their original compositions.
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Table 1. Major-element oxide (weight per cent) and trace-element (parts per million) compositions for mafic rocks of the St. 
Croix Terrane. Total iron is expressed as Fe2 C>3 . Sample locations are shown on Figure 1; sample descriptions are given in 
text and analytical techniques are in Appendix 1. nd = not detected.

1 2 3 4 5 6 7 8 56 75

S i0 2 47.19 46.20 48.52 47.18 47.27 48.88 47.3 49.7 48.9 48.4
T i02 2.78 2.55 2.40 2.39 2.44 2.35 3.18 3.30 2.91 4.30
A12C>3 17.12 15.11 15.11 14.57 15.50 14.92 15.1 16.2 14.59 13.7
Fe2C>3T 11.82 13.33 12.13 12.62 12.73 12.28 14.1 12.0 14.7 16.7
MnO 0.15 0.20 0.19 0.18 0.19 0.17 0.22 0.18 0.40 0.29
MgO 6.46 7.47 6.74 6.82 6.47 6.27 7.10 6.39 5.97 5.58
CaO 6.52 9.22 9.43 10.42 9.94 10.15 6.57 5.94 7.08 6.62
Na20 4.17 2.88 3.31 3.32 3.28 2.76 3.51 4.12 1.91 3.65
k 2o 0.25 0.53 0.21 0.13 0.14 0.36 1.27 0.82 0.29 0.44
P2 O5 0.28 0.26 0.24 0.25 0.24 0.24 0.46 0.47 1.03 0.48
L.O.I. 1.8 0.8 0.6 0.8 0.4 0.5 1.0 0.4 3.4 1.1
TOTAL 98.54 98.55 98.88 98.68 98.60 98.88 99.8 99.7 101.1 101.3

Mg# 53 54 54 53 51 51 51 52 45 41
Ba 231 300 293 122 116 288 210 350 44 45
Rb 2 13 3 nd nd 5 20 30 10 47
Sr 270 314 352 239 441 263 170 150 160 321
Y 40 43 38 38 40 36 64 70 69 76
Zr 197 183 174 174 179 163 270 280 379 317
Nb 6 6 6 6 5 6 20 30 13 12
Ga 21 21 21 24 22 21 _ _ _ _

Zn 132 132 124 121 125 121 - - 153 148
Cu 42 21 38 35 57 63 . _ _ _

Ni 79 90 114 113 115 137 - _ _ _

V 488 429 406 404 421 395 - - - _

Cr 250 240 352 262 253 264 190 200 14 22

Table 2. Rare-earth-element compositions (parts per million) for mafic rocks of the 
St. Croix Terrane. Analytical techniques are in Appendix 1.

2 5 7 8 9 56 75

La 8.0 7.5 11.5 11.2 11.9 25.0 15.4
Ce 23.4 21.5 33.1 33.0 28.3 62 42
Pr 3.9 3.7 5.6 5.6 4.7 - -

Nd 19.3 19.6 30.5 31.2 24.1 41 30.7
Sm 6.3 5.5 9.1 9.6 6.4 11.1 9.2
Eu 1.99 2.19 2.84 2.78 2.24 3.8 2.92
Gd 7.3 7.2 11.6 12.9 7.8 12.2 9.6
Tb 1.3 1.2 1.9 2.1 1.4 2.22 2.13
Dy 7.9 7.8 12.1 13.0 8.4 - -

Ho 1.63 1.58 2.52 2.89 1.79 - _

Er 4.4 4.4 7.4 7.7 4.8 - -

Tm 0.6 0.7 0.9 1 . 0 0.7 0.93 0.98
Yb 3.6 3.9 6.2 6.5 4.0 6.64 7.31
Lu 0.54 0.58 1.06 1.02 0.60 1.00 1.09
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The analysed samples from the St. Croix Terrane contain 
47.8 to 50.7% Si02 (recalculated to 100% on a volatile-free basis) 
and are, therefore, basaltic in composition (Table 1). Most are 
silica-saturated, i.e., hypersthene-normative (CIPW norms were 
calculated using an FeO/FeOT ratio of 0.85), but sample 56 is 
oversaturated (quartz-normative). All samples have immobile 
trace-element Nb/Y ratios of less than 0.43 and, therefore, fall 
well into the subalkalic field (Winchester and Floyd, 1977). 
Sample 56 would, however, be classified as alkalic on the basis 
of its Zr/P20 5 ratio and T i02 content (Winchester and Floyd, 
1976). A plot of total iron against Mg’ values (Mg’ = 100 MgO/ 
MgO + 0.9 FeOT) (molar proportions) suggests that the basalts 
are tholeiitic rather than calc-alkalic (Fig. 3) but Fe/Mg ratios 
may have been affected by alteration (see below). However, no 
andesitic compositions, characteristic of calc-alkalic suites, were 
found among the samples, in support of tholeiitic affinity.

The pillow basalts (Samples 1 to 6) of the Calais Formation 
have Mg’ values ranging from 51 to 54 (average 53). These 
values (Table 1, Fig. 3) may not be primary as two previously 
published analyses of the same basalt on the Maine side of the St. 
Croix River show a variation of Mg’ from 64 to 55 between the 
core and rim of pillows due to submarine alteration (Ludman, 
1987). However, immobile-element ratios are not expected to 
vary significantly across pillows (Floyd and Winchester, 1978). 
The massive basalts (Samples 7 and 8) of the Calais Formation 
possess an average Mg’ value of 51. The amphibolites of the 
Penobscot Formation (Samples 56 and 75), with an average Mg’ 
value of 43, would appear to be more highly evolved (Frey etal., 
1978). The low Cr concentrations of the amphibolites (average 
18 ppm) suggest that they have undergone a high degree of 
fractionation consistent with their low Mg’ values.

Higher concentrations of incompatible high-field-strength 
trace elements such as Y, Nb and Zr indicate a more evolved 
character for the massive basalt compared to the pillow basalt of 
the Calais Formation (Table 1, Fig. 4). Correspondingly, REE 
contents in the massive basalt (Samples 7 and 8) are two to three 
times that of the pillow basalt (Samples 2 and 5) (T able 2, Fig. 5). 
A similar variation in REE abundances is present in the amphi­
bolite unit of the Penobscot Formation (sample 9 vs. samples 56 
and 75). '

Geochemical patterns of lithophile elements normalized to 
average mid-oceanic ridge basalt (MORB) composition can be 
used to constrain the tectonic settings in which basaltic magma 
has been generated (Pearce, 1982). Mafic rocks of the St. Croix 
Terrane exhibit enrichment in the incompatible elements Sr 
through Y (Fig. 4), similar to that observed in intraplate tholeiitic 
basalts. This similarity is supported by the ratios of high-field- 
strength elements Nb:Zr:Y (Fig. 6). Overlap of massive basalt 
samples into the E-MORB field is probably due to inaccuracy in 
the Nb analytical technique used for samples 7 and 8 (Appendix 
I ) .

Continental as opposed to oceanic intraplate tholeiites gen­
erally contain higher concentrations of large, low-valence cati­
ons (Sr, K, Rb, Ba) (Thompson ef al„ 1983, 1984). When 
compared to oceanic tholeiites of the Hawaiian Islands (Pearce, 
1982) and Mesozoic continental tholeiites of southern Africa 
(Cox, 1983) and the Atlantic margins (Dupuy and Dostal, 1984),

Fig. 3. Plot of magnesium number (Mg’) against total iron (FeOT). 
Boundary between tholeiitic andcalc-alkalic fields fromdataof Miyashiro 
(1974). Legend: open squares = amphibolite of Penobscot Formation 
(samples 56 and 75); closed circles = pillow basalt of Calais Formation 
(samples 1 to 6); open circles = massive basalt of Calais Formation 
(samples 7 and 8).

Fig. 4. MORB-normalized incompatible-compatible element patterns 
for average mafic rocks of the St. Croix Terrane. Normalizing values 
are from Pearce (1982). Legend as in Figure 3.

Fig. 5. Chondrite-normalized rare-earth-element patterns for average 
mafic rocks of the St. Croix Terrane. Normalizing values are from 
Taylor and McLennan (1985). Legend: closed squares = sample 9 and 
open sqares = samples 56 and 75 from amphibolites of Penobscot 
Formation; closed circles = samples 2 and 5 and open circles = samples 
7 and 8 from basalts of Calais Formation.
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2 N b

Fig. 6. Nb-Zr-Y discrimination diagram after Meschede (1986). N- 
MORB = normal mid-oceanic-ridge basalt; E-MORB = enriched mid- 
oceanic-ridge basalt; VAB = volcanic-arc basalt; WPT = within-plate 
tholeiitic basalt; WPA = within-plate alkalic basalt. Legend as in Figure 
3.

trace-element patterns of the less evolved (pillowed) basalts from 
the St. Croix Formation strongly resemble those of the latter two 
groups, i.e., they contain high Ba to Nb ratios (Fig. 4). Although 
this is suggestive of an intracontinental origin for these volcanic 
rocks, such a conclusion must be viewed with caution given the 
mobility of K^O, Rb, Sr and Ba during alteration processes 
(Cann, 1970). This mobility is evident from the irregularity of the 
patterns on the left compared to the right side of Figure 4.

REE abundances also provide constraints on tectonic setting 
of volcanic rocks. In contrast to normal MORB, intraplate 
tholeiitic basalts are enriched in light REE (LREE) relative to 
heavy REE (HREE) with La/Yb (chondrite-normalized) ratios 
typically ranging from 2 to 10(Basaltic Volcanism Study Project, 
1981). Also, LREE tend to be less strongly enriched relative to 
middle REE in oceanic compared to continental intraplate envi­
ronments. For example, tholeiitic basalts of the Hawaiian Islands 
and the Triassic of continental Nova Scotia have normalized La/ 
Sm ratios of 1.4 (Basaltic Volcanic Study Group, 1981) and 2.1 
(Dostal and Dupuy, 1984), respectively.

The volcanic rocks of the St. Croix Terrane are all enriched 
in LREE relative to HREE so that they are distinct from normal 
MORB (Table 2, Fig. 5). Amphibolites from the Penobscot 
Formation are more highly enriched in LREE than basalts from 
the Calais Formation (normalized La/Yb ratios range from 1.4- 
2.7andl.2-1.5, respectively). Normalized La/S m ratios from the 
Calais (0.73-0.85) and Penobscot formations (1.05-1.41) are 
similar to those of normal MORB and oceanic island tholeiites, 
respectively. However, La/Nb ratios, which do not exceed 1.25 
in oceanic basalts (Thompson etal., 1984), range from 1.3 to 1.5 
in the pillow basalt of the Calais Formation, and from 1.3 to 1.9 
in the amphibolite of the Penobscot Formation. Furthermore, 
HREE abundances of 30 times chondrite for the more evolved 
volcanic rocks of the St. Croix Terrane are far in excess of the 6 
to 15 times chondrite found in oceanic tholeiites (Basaltic Vol­
canism Study Project, 1981).

DISCUSSION AND CONCLUSIONS

A distinctive Atlantic fauna within the Avalonian Terrane of 
southern New Brunswick demonstrates that in the Early Cam­
brian, an oceanic tract had sufficient width to present a barrier to 
faunal exchange with the North American craton. Remnants of 
this oceanic crust, preserved within the northeastern Appalachi­
ans, range in age from Late Cambrian to Early Ordovician 
(Dunning and Krogh, 1985; Boone and Boudette, 1989). Subse­
quent compressional events in this region apparendy record the 
accretion of various terranes to the North American craton during 
closure of the oceanic basin(s) (Ludman, 1981,1986; Zen, 1983; 
Fyffe and Fricker, 1987; vanStaal, 1987; van derPluijm and van 
Staal, 1988; Boone and Boudette, 1989).

Widespread deposition of black carbonaceous pelite in Maine 
and New Brunswick coincided with the extensive development 
of early Paleozoic oceanic crust. To the northeast of the Casco 
Bay Terrane, late Tremadocian to Arenigian (Early Ordovician) 
black pelites, succeeding a coarser sandstone sequence, are 
known throughout the Miramichi Terrane of central New Brun­
swick (Fyffe et al., 1983). The pelites immediately underlie a 
thick, bimodal Middle Ordovician (Llanvimian to early Carado- 
cian) volcanic sequence thaLwas generated during extension of 
continental crust (van Staal, 1987). Rift basins in this area were 
locally floored by oceanic crust, i.e., the Fournier ophiolite (Rast 
and Stringer, 1980) of theElmtree Terrane in northeastern New 
Brunswick. Black pelites of Tremadocian age also were depos­
ited within the Avalonian Terrane where they form the upper 
Saint John Group (Ludman, 1987). These pelites overlie platfor- 
mal sedimentary rocks and interbedded continental volcanic 
rocks of the lower Saint John Group (Greenough et al., 1985). An 
extensional regime thus appears to have persisted within the 
Avalonian Terrane from the Cambrian to Early Ordovician.

The depositional interval of black pelite (and interbedded 
volcanic rocks) in the St. Croix Terrane is, at least in part, coeval 
with that of the flanking Miramichi and Avalonian terranes. 
Graptolites from Cookson Island, located about 7 km along strike 
to the east of the sampled volcanic rocks on the St. Croix River, 
are Tremadocian in age (Cumming, 1967; Ruitenberg and 
Ludman, 1978).

The geochemistry of the St. Croix volcanic rocks supports 
the regional stratigraphic evidence that during the early Paleo­
zoic, an extensional environment existed on the southeastern side 
of an expanding ocean basin. These basalts are enriched in high- 
field-strength elements relative to normal MORB so they are 
unlike most volcanic-arc tholeiites (Pearce, 1982). Therefore, it 
is very unlikely that a consuming plate margin existed between 
the St. Croix and any of its opposed terranes. The highly evolved 
nature of some of the basalts (HREE are 30 times chondritic 
abundances) and La/Nb ratios greater than 1.25 suggest a conti­
nental setting as does the strongly LREE-enriched pattern of the 
basalts form the Penobscot Formation. The basalts of the Calais 
Formation exhibit a marked depletion of light, relative to middle 
REE but such patterns are known from passive continental 
margins (O’Nions and Clarke, 1972; Komprobst et al., 1988).

On the basis of stratigraphic and geochemical data, the St. 
Croix Terrane is interpreted to be underlain by continental crust 
that underwent rifting during generation of an early Paleozoic
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oceanic basin. Although the terrane appears to have originated 
somewhere along the southeastern margin of this ocean, its 
specific source region is unknown as considerable strike-slip 
motion may have taken place along its bounding faults.
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APPENDIX 1: Analytical Procedures

Penobscot Fomation (Samples 9, 56, 75)
Major and trace elements by X-ray fluorescence at the U.S. 

Geological Survey Branch of Analytical Laboratories, Reston, 
Virginia (Samples 56 and 75). Precision: >20 ppm, +5%; <20 
ppm, ±2 ppm absolute. Analysts: R. Johnson, K. Dennen, B. 
Scott.

Rare earth elements, Zn and Cr by instrumental neutron 
activation analysis at U.S. Geological Survey, Radiochemistry 
Laboratory, Denver, Colorado (Samples 56 and 75). Precision: 
all values, +10%; most ±5%. Analyst: L. Schwarz.

Rare earth elements on sample 9 by inductively coupled 
plasma/mass spectrometry at X-ray Assay Laboratories, Don 
Mills, Ontario. Precision: +10%.

Calais Formation (Samples 1 to 8)
Major and trace elements by X-ray fluorescence at Regional 

XRF Centre, Saint Mary’s University, Halifax, N.S. (Samples 1 
to 6) and at X-ray Assay Laboratories, Don Mills, Ontario 
(Samples 7 and 8). Precision: Saint Mary’s, +5% for major 
oxides, ±5-10% for trace elements; X-ray Assay, +2% for major 
oxides, +10-20% for trace elements. Analyst: Saint Mary’s, K. 
Cameron.

Rare earth elements by inductively coupled plasma/mass 
spectrometry at X-ray Assay Laboratories, Don Mills, Ontario. 
Precision: ±10%.




