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ABSTRACT

The Siluro-Devonian Fogo Island Batholith is a high-level, bimodal, sill-like unit about 7 km thick, intruded by a
slightly younger, heterogeneous mafic unit. Stratigraphic evidence suggests emplacement of the batholith by raising
of the roof without strong deformation of the host rocks. Large composite gabbro-microgranite dykes below the sill,
intruded along axial planar cleavage, probably served as feeders. The upper 3-4 km of the sill comprise homogeneous
to slightly zoned, coarse, hastingsite-biotite granite. Ignimbrite sheets of similar composition above the sill suggest that
the granite was emplaced beneath cover rocks no more than 1 km thick. The lower 3 km of the sill consist of hetero-
geneous, locally layered, mafic rocks. Metre-scale, non-intrusive sheets of contrasting composition mark the contact
between the granitic upper and mafic lower part of the sill. A late influx of mafic magma disrupted older mafic rocks
and hybridised with granite, producing complex, heterogeneous “diorite”. The local presence of A-type compositions
in the granitic portion of the batholith may reflect diffusion during this process. A model for emplacement of the
batholith assumes crustal anatexis above mantle-derived, underplated mafic magma, followed by passive emplacement
of composite magma along tensional fractures related to movements on the Dog Bay Line, a dextral terrane boundary.
Later movements on this feature controlled emplacement of further batches of magma, and finally tipped the batholith
about 25° to the north, producing its present configuration.

RESUME

Le Batholithe siluro-dévonien de I’lle Fogo forme une unité a I’aspect d’un filon-couche bimodale de niveau élevé
et d’environ sept kilometres d’épaisseur, dans laquelle fait intrusion une unité mafique hétérogene légerement plus
récente. Les observations stratigraphiques laissent supposer une mise en place du batholithe par soulévement du toit
sans déformation marquée des roches hotes. Des dykes composites de gabbro-rhyolite de fortes dimensions au-des-
sous du filon-couche, ayant subi une intrusion le long de la schistosité de plan axial, ont probablement servi de voies
de passage. Les trois a quatre kilomeétres supérieurs du filon-couche sont constitués de granite a hastingsite-biotite
grossier allant d’homogene a légérement zoné. Des couches de tuf consolidé d’une composition semblable au-dessus
du filon-couche permettent de supposer que la mise en place du granite s’est faite sous des roches de couverture d’au
plus un kilometre d’épaisseur. Les trois kilometres inférieurs du filon-couche sont constitués de roches mafiques hété-
rogenes, localement stratifiées. Des nappes non intrusives de quelques metres d’une composition différente marquent
lazone de contact entre le sommet granitique et la base mafique du filon-couche. Un afflux tardif de magma mafique
a perturbé les roches mafiques 4gées et a entrainé une hybridation avec le granite, produisant des « diorites » hété-
rogenes complexes. La présence locale de compositions de type A dans la partie granitique du batholithe pourraient
témoigner d’une diffusion au cours de ce processus. Un modele de mise en place du batholite suppose une anatexie
crustale au-dessus d’un magma mafique reposant sur des plaques et d’origine mantellique, suivie de la mise en place
passive de magma composite le long de fractures de tension apparentées a des mouvements survenus le long de la ligne
Dog Bay, une ligne de démarcation de terrane dextre. Des mouvements ultérieurs le long de cette ligne ont déterminé
la mise en place d’autres mélanges de magma et ont finalement incliné le batholithe d’environ 25 degrés vers le nord,
pour produire sa configuration existante.

[Traduit par la rédaction]
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INTRODUCTION ies. Compare, for example, thermal modelling studies indicat-

Batholith emplacement, by definition, takes place deep
within the crust under conditions which are difficult to deter-
mine precisely, and even more difficult to scale accurately in
experiment or simulation, rendering dubious the applicability
of conclusions reached from experimental and modelling stud-
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ing that diapiric ascent of magma in the crust is impossible
(Weinberg 1996; Petford 1996) with structural studies of felsic
plutons indicating diapir-like emplacement (Sylvester 1964;
Paterson and Vernon 1995). However, conditions of emplace-
ment of a batholith can, in favourable cases, be constrained by
stratigraphic, structural, and geochemical data. For the Fogo
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Fig. 1 Regional geological setting of the Fogo Island Batholith (simplified after Currie 1995). The location of the map area is

shown by the box on the inset map.

Island Batholith of northeast Newfoundland, these data pro-
vide valuable information on the evolution and emplacement
of the batholith, including its geometric form and a mecha-
nism of creating sufficient space for emplacement.

GEOLOGICAL SETTING

The Fogo Island Batholith lies within a curved, northeast-
trending fault slice dominated by mid-Ordovician to Silurian
strata (Fig.1) which underwent polyphase deformation in
Silurian time (Karlstrom et al. 1982; Currie 1997c¢). Southwest
of Fogo Island, isoclinal, steeply dipping, northeast-trending,
northwest-verging structures dominate the outcrop pattern
within this slice, but on Fogo Island these folds are open, with
limb dips rarely exceeding 40°. The folded strata comprise
back-arc volcanogenic rocks of the mid-Ordovician Exploits

Group (O’Brien ef al. 1997), late Ordovician—early Silurian,
westerly-derived, greywacke and conglomerate turbidites of
the Late Ordovician-early Silurian Badger Group (Williams et

al. 1995), and clastic and volcanic rocks of the Silurian Botwood
Group (Williams 1972). The Dog Bay Line (Williams et al.
1993), a dextral terrane boundary marked by tectonic melange,
juxtaposes the Badger and Botwood groups against Silurian
limestone and limy coralline siltstone of the Indian Islands

Group (Currie 1995). Along the Dog Bay Line, the bimodal
Fogo Island Batholith abuts coeval peraluminous anatectic
plutons (Currie and Pajari 1981) and the metaluminous early
Devonian Deadman’s Bay megacrystic pluton (D’Lemos and
Holdsworth 1995). Metaluminous Siluro-Devonian bimodal
batholiths similar to the Fogo Island Batholith occur between
the Dog Bay and Red Indian lines (Mount Peyton, Loon Bay,
Long Island), but northwest of the Red Indian Line only sparse
Siluro-Devonian salic dykes occur (Elliot e al. 1991)
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Fig. 2 Geological map of Fogo Island, Newfoundland (after Currie

DESCRIPTION OF UNITS

Botwood Group

Fogo Island (Fig. 2) comprises salic and mafic igneous
rocks of the Fogo Island Batholith and its host, the Botwood
Group, which on Fogo Island comprises siltstone, sandstone,
and matrix-supported conglomerate of the Fogo Harbour
Formation overlain by rhyolite ignimbrite, rhyolitic tuff,
and minor tuffaceous sandstone of the Brimstone Head
Formation. The lowest unit of the Botwood Group, the
Llandovery Lawrenceton Formation (Williams 1972), does
not outcrop on Fogo Island, but appears on nearby islands.
This formation, consisting of about equal amounts of basalt
(flows and breccias) and rhyolite (flows, tuffs, and breccias),
reaches thicknesses in excess of 2000 m on Change Islands,
10 km west of Fogo Island (Currie 1997a), but elsewhere does
not exceed 300 m in thickness, suggesting presence of a vent
area just west of Fogo Island. The presence of several rhyolite
ignimbrite sheets within the Lawrenceton Formation indicates

1997b).

subaerial emplacement. The top 100 m of the Lawrenceton
Formation contains metre-scale lenses of pale green, thinly
laminated siltstone identical to the conformably overlying
Fogo Harbour Formation.

The bulk of the Fogo Harbour Formation (Baird 1958)
consists of grey-green to brown siltstone and sandstone,
laminated on centimetre-scale, and exhibiting grading, ripple
marks, and cross-bedding. Most exposures contain no obvious
volcanic material, but a few beds contain 2 to 10% by volume
of pink feldspar lapilli and crystal fragments up to a centime-
tre in diameter. Near Rogers Cove one bed contains volcanic
bombs. Conglomerate lenses with rounded siltstone cobbles
in a homogenised siltstone matrix occupy erosive channels up
to 2 m thick. Composite stratigraphic sections for the Fogo
Harbour Formation suggest a relatively constant thickness of
1000 to 1300 m. Observations indicate a shallow marine origin
for the formation, with the conglomerate intervals attributed
to slumping during deposition. No fossils have been found in
the Fogo Harbour Formation, but interbedding of its lower
part with the Llandovery Lawrenceton Formation fixes a



82 K.L. CURRIE

maximum age, and a precise U-Pb zircon age of 422 +2 Ma
(Ludlow) from a composite dyke cutting the formation on Dog
Bay (Elliot e al. 1991) provides a minimum age.

A sharp, conformable contact of the Fogo Harbour
Formation with the overlying Brimstone Head Formation
(Baird 1958) can be traced across northern Fogo Island at the
base of a cliff of rhyolite ignimbrite (Currie 1997b). A single
metre-scale lens of tuffaceous sandstone resembling the under-
lying sedimentary section occurs about 60 m above the base of
the Brimstone Head Formation at Brimstone Head. On Fogo
Island, the Brimstone Head Formation comprises several
sheets of densely welded, brown, rhyolite ignimbrite with a
foliation marked by elongate pale streaks of less welded mate-
rial (fiamme). Offshore islands consist of moderately welded
crystal tuff and tuff breccia with a few lenses of red, subaerial
sandstone up to 10 m thick. The thickness of the formation
is unknown, but locally exceeds 1000 m. The composition of
the ignimbrite sheets resembles that of salic parts of the Fogo
Island Batholith, and the Brimstone Head Formation may
represent an erupted portion of the batholith, as suggested by
Sandeman and Malpas (1995).

All of the supracrustal rocks on Fogo Island are openly
folded about axial planes trending northeast and dipping
about 65° to the south. Limb dips rarely exceed 40°, and fold
amplitudes vary from a few metres to a few hundred metres.
All of the folds exhibit strong axial planar cleavage, a cleavage
which is developed on a regional scale, extending tens of kilo-
metres southwest from Fogo Island. An envelope to the folds
dips north-northwest at about 25°, so that stratigraphically
higher levels are exposed to the north.

Fogo Island Batholith

The Fogo Island Batholith, which underlies 80% of Fogo
Island (about 250 km?) and also appears on small islands up
to 8 km offshore to the east and southeast, intrudes the Fogo
Harbour Formation. The batholith comprises five distinct
lithologies. In order of decreasing age they are (1) agmatite con-
taining blocks of host rock in a coarse-grained igneous matrix,
(2)felsite, rhyolite porphyry, and microgranite, (3) layered and
massive gabbro, (4) medium- to coarse-grained amphibole-
biotite granite, (5) heterogeneous mafic rocks with a generally
dioritic to tonalitic matrix containing schliers and blocks rang-
ing from layered gabbro, to monzonitic, syenitic and granitic
varieties. In the Tilting Harbour area, Aydin (1995) reported
an emplacement age of 422 + 2 Ma for the amphibole-biotite
granite, and 408 + 2 Ma for agmatitic diorite, consistent with
field observations.

Layering in the batholith, commonly present in intermedi-
ate to mafic units and locally in granitic units, parallels bedding
innearby sedimentary rocks, and exhibits open folds congruent
to those in the host rocks. However, folds in the igneous rocks
do not exhibit axial planar cleavage, suggesting that folding in
the host rocks pre-dated emplacement of the batholith, at least
in part. Both top and bottom contacts of the batholith with the
Fogo Harbour Formation can be observed in the western part

of the island, dipping moderately north. These observations
indicate a sill-like form for the exposed part of the batholith.
Geological mapping shows the batholith to be about 6.5 km
thick at its western end increasing to 8 km or more toward the
east. The batholith comprises a homogeneous granitic upper
part, 3-4 km thick, and a texturally complex intermediate to
mafic lower part about 3 km thick.

Minor intrusive bodies related to the batholith occur both
above and below the main mass. Dykes related to the batholith
tend to strike parallel to bedding in the host rocks, but dip at
high angles to bedding, lying in the axial planar cleavage of
open folds. Below the body, on the southwest corner of the
island, composite dykes up to 60 m thick (Fig.3) have a core
of gabbro up to 20 m thick, commonly plagioclase-porphy-
ritic, with thick rims of porphyry or microgranite chemically
indistinguishable from granite of the main body. The contacts
between mafic and salic phases are sharp, but lobate, with occa-
sional rounded blobs or streaks of one lithology in the other,
indicating some degree of mingling. These distinctive dykes
occur up to 20 km from Fogo Island. One gave a precise U-Pb
zircon date of 422 + 2 Ma (Elliot et al. 1991), identical to that
of the main batholith. In some cases these dykes connect to
small microgranite sills or laccoliths. Above the main body near
Fogo Harbour, porphyry and microgranite dykes abound, but
they lack mafic cores and rarely exceed 15 m in width. Many
of these dykes connect to sills up to 10 m thick, with the dyke-
sill transition forming prominent rock ridges, possibly due to
thickening of the erosionally resistant igneous bodies at this
point. Sandeman and Malpas (1995) considered these sills to
be ignimbrite sheets, but their intrusive nature is demonstrated
by (1) equal and intense hornfelsing of the host on both sides of
the sills, and (2) presence of laminated siltstone on both sides
with no increase in tuffaceous material.

Agmatite

Although some small-scale contacts of the batholith with
its host rocks appear knife-sharp and generally conform-
able, agmatite (Fig. 4) commonly appears along internal
and external contacts of the Fogo Island Batholith and may
be up to 100 m thick. Agmatite in contact with the Fogo
Harbour Formation consists of 50 to 80% of centimetre to
metre-scale hornfelsed blocks of Fogo Harbour Formation in
a medium- to coarse-grained matrix which is granitoid along
the northern and southwestern margins of the complex, but
becomes more tonalitic to the south. Similar agmatite forms a
semi-continuous fringe, 10 to 100 m thick, separating granite
bodies between Joe Batts Arm and Barr’d Islands. Within the
agmatite, the blocks become larger and more coherent with
distance from more massive igneous rocks, passing outward
into irregularly folded sedimentary rocks with a few granite
dykes. Throughout the agmatite, the blocks exhibit a strong
preferred orientation, in many examples preserving only
slightly disrupted stratigraphy. Within 50 m of the main body,
some centimetre-scale beds appear to have melted to thin
layers of brownish aphanitic material which locally forms a
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Fig. 3 Composite
gabbro-rhyolite
dyke, quarry west of
Little Seldom Cove.
The central mafic
core of the dyke
(dark grey)is 10 m
wide with a grain
size of 1-2 mm. The
microgranite rims,
about 20 m wide,
are aphanitic. Host
rocks, siltstone of
the Fogo Harbour
Formation, visible
to the left of the
dyke, dip gently
from left to right,
perpendicular to the
dip of the dyke. The
height of the quarry
face is about 10 m.
Note trees on top
for scale.

Fig. 4 Agmatite
along the contact
of the granite of the
Fogo Island Batho-
lith with the Fogo
Harbour Forma-
tion, north of Island
Harbour. Note

the well-preserved
foliation defined by
disrupted beds. The
pale grey material
surrounding the
lenticular frag-
ments is felsite or
granophyre, form-
ing about 25% of
the volume in this
exposure.
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selvedge around blocks. Despite intense hornfelsing and pos-
sible local partial melting, new mineral growth was confined to
sparse growth of fine biotite, suggesting that cooling took place
rapidly enough that thermal equilibrium was never attained.

Felsite, rhyolite porphyry, and microgranite

The upper margin of the granite consists of an almost con-
tinuous layer of fine-grained, pink, felsic rock varying from
featureless felsite to microgranite with abundant granophyric
intergrowth and drusy miarolitic cavities, to rhyolite porphyry
that is commonly spherulitic. Similar to identical lithologies
occur as sills along the base of the granite where it contacts
the mafic phase, and as sills and dykes above and below the
batholith. In general felsite occurs close to the coarse-grained
granite, whereas microgranite tends to form sills below the
batholith, and rhyolite porphyry forms dykes above the
batholith. However, there is no sharp division and all these
rocks have similar or identical compositions (Appendix 1). A
typical feature of all these rocks is presence of thin seams or
clots of amphibole and magnetite. These segregations occur
erratically in the felsic rocks (which otherwise contain virtu-
ally no mafic minerals) and also in hornfelsed country rocks
adjacent to them.

Sandeman and Malpas (1995) reported that microgran-
ite sheets cut the batholith, and that coarse-grained granite
grades to microgranite. However, contacts between coarse and
fine-grained to aphanitic felsic rocks are always sharp where
exposed, and where intrusive relations can be determined,
the coarse-grained phase invariably cuts the fine-grained one.
Chemically no significant differences are present in major ele-
ment composition between coarse-grained and fine-grained
felsic rocks (Appendix 1). Sandeman and Malpas (1995) drew
attention to enrichment of the fine-grained rocks in high-field-
strength elements and Ga/Al ratio, suggesting an A-type affin-
ity. These tendencies are evident in all the felsic compositions
(Fig. 5), and there appear to be no systematic differences in
composition between fine-grained rocks and coarse-grained
rocks, with the possible exception of slightly lower FeO*/MgO
in the latter.

Gabbro and basalt

Baird (1958) noted the presence of layered mafic rocks
around Tilting Harbour and Seldom Come By. The Tilting
Layered Suite, which formed the subject of studies by
Cawthorn (1978) and Aydin et al. (1994), underlies an oval area
about 2 by 1.5 km in size, surrounded by hybrid dioritic rocks
into which it grades, and by which it is intruded. Centimetre
to metre-scale layering faces and dips 35-85° to the north,
and consistently pinches out to the southwest. Layers exhibit
modal and textural variation, including repeated cycles from
websterite bases (cumulate ortho- and clinopyroxene * olivine)
to gabbro or leucogabbro tops (cumulate clinopyroxene and
plagioclase). Large poikilitic hornblende and in some cases
plagioclase overgrow the cumulates. Local convolute layering

and prominent size and density sorting in some layers sug-
gest deposition from magmatic currents, although much of
the fine-scale layering may be due to in situ recrystallisation
(Aydin eral. 1994). The top of the section, northwest of Tilting,
consists of coarse-grained, unfoliated plagioclase-hornblende
rocks which grade to quartz dioritic agmatite containing metre-
scale fragments of layered mafic rocks.

Gabbroic rocks around Seldom Come By form two ovoid
masses. At Burnt Point, massive, pegmatitic gabbro contains
cumulus ortho- and clinopyroxene, and large poikilitic post-
cumulus amphibole and plagioclase. The body contains about
10% of sinuous, boudinaged basalt dykes up to 50 cm wide. At
the head of Seldom Harbour irregularly layered gabbro and
diorite grade to heterogeneous mafic rocks which contain
enclaves of layered gabbro, some sharply bounded in metre-
scale blocks, others apparently gradational to larger areas of
massive gabbro.

The layered mafic rocks of the Fogo Island Batholith
resemble large layered mafic intrusions, and imply that such
a body was formed or disrupted during emplacement of
the Fogo Island Batholith. Within the layered mafic rocks,
abrupt reversals to a more primitive crystallisation order
(clinopyroxene+plagioclase to orthopyroxene-+olivine) imply
repeated influx of primitive magma into a relatively stable
magma chamber (Brown 1956; Wager and Brown 1968).

Gabbroic compositions commonly occur in dykes and
sheets below the main batholith in the southwest corner of the
island. Distinctive plagioclase-porphyritic gabbro, resembling
the layered gabbro around Seldom Come By, occurs as discrete
dykes, in the cores of composite dykes, as synplutonic dykes
within the granite, and as synplutonic dykes within gabbro at
Burnt Point.

Chemical analyses of non-cumulate gabbroic rocks from
Tilting and Seldom show a considerable range of composition,
ranging from subalkaline basalt across the andesite/basalt and
andesite fields (Fig. 6d), a range approaching that of the appar-
ently much more heterogeneous diorite complex (Appendix 1).
On chemical discrimination diagrams (Fig. 6), compositions
fall into both arc (Fig. 6a) and non-arc fields (Fig. 6b), with a
large amount of scatter in some plots (Fig. 6¢).

Granite

Coarse-grained granite of the Fogo Island Batholith occurs
as an east-west belt across the northern part of the island, par-
tially separated into three lobes by narrow belts of hornfelsed
host rocks, agmatite, and sheets of felsite. All three lobes
exhibit hastingsitic amphibole with minor biotite, and a colour
index consistently <15. The central feldspar-porphyritic lobe
contains 1 to 2% of digested mafic inclusions up to 5 cm across.
The more equigranular eastern and western lobes lack mafic
inclusions. All three lobes tend to be locally homogeneous, but
become slightly more potassium feldspar-rich and leucocratic
toward the north. All three lobes contain sinuous synplutonic
basalt dyke segments exhibiting chilled margins, commonly
1 to 2 m wide and 5 to 10 m long (Fig. 7). Dyke lithologies
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Fig. 5 Chemical data for salic rocks of the Fogo Island Batholith plotted on tectonic discrimination diagrams of (a) Batchelor and
Bowden (1985), (b and ¢) Maniar and Piccoli (1989), and (d) Whalen et al. (1987).

include plagioclase-porphyritic varieties similar to the cores of
composite gabbro-rhyolite dykes. Felsic dykes and pegmatite
are absent and quartz veins extremely rare (one observed).

South of Fogo Harbour, granite cuts across a carapace of
felsite and rhyolite sills, and is in essentially conformable con-
tact with strongly hornfelsed sedimentary rocks. This region
exhibits crude sheeting parallel to the contact, and prominent
joints perpendicular to the contact.

Chemically, all analyses of the granite fall in a restricted field
(Fig. 5). On the diagram of Batchelor and Bowden (1985) this
region straddles the boundary between late orogenic and post-
orogenic granites (Fig. 5a), whereas in the diagrams of Maniar
and Piccoli (1989), it clearly falls in the post-orogenic granite
field (Fig. 5b, c). The trend to more differentiated compositions
from south to north in all lobes can be seen in Fig. 5S¢ (increas-
ing Si0, and FeO*/(FeO*+Mg0)) The tendency toward A-type

compositions noted by Sandeman and Malpas (1995), seen in
Fig. 5d, results from relatively high contents of (Zr+Nb+Ce+Y)
combined with extreme depletion in MgO (producing extreme
FeO*/MgO ratios). Alkali contents are not unusually high.

Diorite complex

The diorite complex forms the largest and most complex
unit of the Fogo Island Batholith. Some dioritic rocks exhibit
coarse, massive textures comparable to those of the gabbro and
granite. However, large exposures invariably include patchy,
inequigranular textures, streaks of one lithology in another,
and schlieren and blocks of more mafic lithologies in a dioritic
to granitic matrix. Characteristic gradational, centimetre-scale
pegmatitic patches with large amphibole and feldspar crystals
have widely varying alkali feldspar/plagioclase ratios, and
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Fig. 6 Chemical data for mafic rocks of the Fogo Island Batholith plotted on tectonic discrimination diagrams of (a) Wood
(1980), (b) Shervais (1982), (c) Pearce and Cann (1973), and (d) Winchester and Floyd (1977).

may contain a significant amount of quartz. Igneous breccias
of diverse mafic blocks in a more salic matrix form a major
part of the diorite complex (Fig. 8). The mafic component
varies from rare examples of layered gabbro, to hornblende-
rich amphibolite to hornblende-plagioclase rocks with minor
quartz. In coastal exposures at Wild Cove, Cape Fogo, and
Kippen Cove some mafic blocks exhibit intimate, amoeboid
interfingering with the matrix, and form pillow-like masses,
phenomena suggestive of coexisting magmas. The composi-
tion of the more homogeneous parts of the diorite complex
ranges from gabbroic through hornblende diorite and quartz
diorite to tonalite, monzodiorite, and rare syenite. Mafic vari-
eties contain mafic inclusions, whereas more silicic varieties
contain more silicic inclusions. Much of the interior part of

the diorite complex comprises locally homogeneous, fine to
medium-grained, granoblastic hornblende-plagioclase rocks
with variable but minor amounts of clinopyroxene, quartz,
and potash feldspar. Many of these rocks exhibit nebulous
pegmatitic patches of hornblende+plagioclase, commonly
associated with healed, epidote-filled fractures.

Near the contact between the diorite complex and granite,
diorite and granite are typically observed in alternate outcrops,
or in small adjacent areas with few exposed contact relations. In
a large highway quarry, felsite and diorite form conformable,
non-intrusive, metre-scale sheets. Coastal exposures at Cape
Fogo and Cape Cove exhibit a variety of complex relations
ranging from complexes of sills with contrasting compositions,
through diorite cross-cut by granite, or pillows of mafic in salic
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Fig. 7 Synplutonic mafic dyke segment in granite,
Deep Bay. The hammer at lower left is 30 cm long.

Fig. 8 Agmatite with
diorite and leucogab-
bro blocks in a dioritic
matrix, Seldom Come
By. The two elongate
blocks in the lower
left corner are Fogo
Harbour Formation.
Note the pale-coloured
reaction rims on some
specimens. The pen s
13 cmlong.
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phases, to completely gradational contacts over a few tens of
centimetres. In the absence of definitive contact relations,
Baird (1958) and Sandeman and Malpas (1995) interpreted
the salic phases of the batholith to intrude the mafic phases.
However, field observations during the present study gener-
ally suggested originally non-intrusive contacts within a zone
of mingling.

Although the textural range of the diorite complex is bewil-
deringly large, chemical analyses (Appendix 1) show a limited
range of composition, with SiO, content ranging fairly con-
tinuously from 52 to 61%. Two samples yielded SiO, contents
of 64 and 75%. The former is the only one of 65 analyses of
the batholith with an SiO, content between 61 and 70%. In
general, analyses of the diorite complex plot in the same fields
as the layered mafic rocks (Fig. 8) but contain much higher
concentrations of K, Zr, and U, and lower contents of Mg. An
obvious possible cause for these anomalies could be mixing
with the granitic component of the batholith, as suggested by
field observations. The strongly bimodal nature of the analyses
shows that if this model is correct, mixing involved incorpo-
ration of the salic component into the mafic phase but little
incorporation of the mafic component into the salic phase.

A MODEL FOR EMPLACEMENT OF
THE FOGO ISLAND BATHOLITH

The Fogo Island Batholith consists of a homogeneous salic
portion and a texturally heterogeneous mafic portion which
includes layered rocks. A model for emplacement must explain
the presence and mutual relations of these components. Field
observations relevant to emplacement of the batholith may be
summarised as follows. (1) Most mafic dyke emplacement and
all salic dyke emplacement preceded emplacement of the main
batholith and followed a near-vertical cleavage axial planar to
pre-batholith open folds. (2) Composite dykes with mafic cores
occur below the batholith but not above it. (3) The older part of
the batholith, a thicksill, is gravitationally stratified, with mafic
rocks at the base and salic rocks at the top. (4) Layered mafic
rocks are disrupted by and included within heterogeneous maf-
ic to intermediate rocks which show evidence of magma mix-
ing and assimilation. (5) The bimodal Fogo Island Batholith
developed close to a vent area of slightly older bimodal volcanic
rocks of the Lawrenceton Formation.

These observations suggest a three-stage model for
emplacement, namely (i) generation of a composite magma,
here assumed to be due to mafic underplating of the crust with
subsequent crustal anatexis, (ii) buoyant rise of the composite
magma followed by gravitational differentiation to produce
the sill-like mass, and (iii) a late influx of mafic magma. These
stages are cartooned in Fig. 9, which uses the time scale of
Tucker et al. (1990) for comparison of stratigraphic and abso-
lute ages.

Eruption of the bimodal, subduction-related (Currie 1995)
Lawrenceton Formation (Fig. 9a) had almost ceased by Late
Llandovery time (~430 Ma) as motion along the Dog Bay Line

passed from subduction to dextral transpression (Karlstrom
et al. 1982). Reduction of magmatic activity led to subsidence
due to cooling of the crust, permitting a marine incursion and
deposition of the Fogo Harbour Formation. Magmatism had
not completely ceased, as shown by presence of tuffaceous
material in the Fogo Harbour Formation. The model assumes
that mafic magma, no longer able to erupt, underplated the
crust where dextral transpression was converted into extension
at the bend in the Dog Bay Line (Fig. 9b). The need for such a
deep-seated precursor to the high-level Fogo Island Batholith
follows from the regional distribution of the composite dykes
which appear to have fed the batholith.

Large scale emplacement of mafic magma eventually caused
anatexis of surrounding crustal host rocks, initially producing
a gravitationally stable system with light salic magma above
dense mafic magma. Such a system is unstable relative to its
host because both components have positive buoyancy with
respect to continental crust (Glazner 1994). If the volume of
magma becomes sufficiently large, it will rise buoyantly along
fractures. Analogs of basalt-rhyolite systems experimentally
studied by Huppert and Sparks (1988) showed that fingers
of hot mafic rock rise through the overlying salic melt car-
rying salic material along with them. The composite dykes
below the Fogo Island Batholith suggest such a process, with
magma following cleavage axial planar to slightly earlier folds
(Fig. 9¢). The large size of the dykes, and lack of mixing of salic
and mafic components, suggest that these fractures may have
opened during emplacement, allowing passive emplacement
with the mafic magma rising to its neutral buoyancy level, and
spreading laterally.

Glazner (1994) estimated the density of mafic magma near
surface to be about 2.75 g/cm?, in reasonable accord with
the measurement of 2.73 g/cm? for erupting Kilauea basalt

Fig.9 (Facing page) Cartoon of a model for the
emplacement of the Fogo Island Batholith. (a) ~430 Ma;
Emplacement of the bimodal Lawrenceton Formation above
asubduction zone. (b) ~430-422 Ma; Mafic underplating

of continental crust as the effusive outlets are cut off by
conversion of subduction into dextral transcurrent motion.
Anatectic melt forms at the base of the crust due to the influx
of heat. (c) 422 Ma; Buoyant rise of composite magma rising
as dykes along axial plane cleavage to the level of neutral
buoyancy. The roof'is assumed to float upward, creating
space. Part of the light salic fraction forms sills of felsite and
porphyry, eventually reaching the surface as ignimbrites,
while the mafic fraction sinks to the base. Stable conditions
permit gravitational differentiation and widespread forma-
tion of igneous layering. (d) 408 Ma; A late influx of mafic
magma into the body disrupts the mafic portion, producing
widespread agmatisation and hybridisation. The mafic mag-
ma remains below the salic rocks due to its higher density,
but the high temperature and composition contrast produce
double diffusive exchange across the boundary, creating local
A-type granite in the salic rocks.
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(Macdonald 1963). Both values are higher than the density
of Fogo Harbour Formation (~2.68 g/cm?®) but lower than the
density of basalt of the Lawrenceton Formation (~2.89 g/cm?).
Currie (1995) found the latter to be underlain by a thick sec-
tion of Ordovician mafic volcanic rocks and a thin section of
Ordovician-Silurian greywacke (Badger Group). It is therefore
plausible that mafic magma would rise buoyantly to the top
of the mafic volcanic rocks, but stop near the base of the low-
density Fogo Harbour Formation. The abrupt transition from
submarine deposition of the Fogo Harbour Formation to the
subaerial ignimbrite sheets of the Brimstone Head Formation
required rapid uplift which could be explained by floating of
the Fogo Harbour Formation on underlying magma, com-
bined with thermal expansion.

The thick composite dykes intruding the Fogo Harbour
Formation strongly suggest that the magma was composite
when emplaced. Gravitational differentiation of such com-
posite magma would lead to formation of salic upper and
mafic lower parts. Because the density of the salic portion
would be less than that of the host Fogo Harbour Formation,
it could continue to rise, hypothetically producing the three
observed domes and their dividing screens of agmatite. Given
sufficient heat content and appropriate channels, it could even-
tually reach the surface and erupt to form ignimbrite sheets
(Brimstone Head Formation).

The proposed model requires passive conditions of
emplacement. Layered mafic rocks, the presence of composite
dykes, and apparent large-scale gravitational differentiation of
composite magma all indicate stable conditions. Repetition of
cumulus assemblages (olivine +orthopyroxene) in the layered
gabbro suggests that minor influxes of fresh mafic magma
did not disturb these conditions. However, influx of a large
volume of mafic magma (Fig. 9d) would upset the delicate
thermal steady state producing vigorous convection and hybri-
disation with slightly older, still hot, phases of the batholith.
Along contacts with salic rocks, remelting could form some
salic liquid, leading to the formation of complex salic-mafic
relations, including pillow-like masses of mafic rocks in salic
matrices, and some cross-cutting of mafic rocks by salic dykes.
Conditions along such interfaces would favour extensive dou-
ble diffusive transfer of material across the boundary, leading
to A-type tendencies in the overlying granite according to the
model of Wiebe (1994).

The present superb exposure of internal structure of the
Fogo Island Batholith results from tipping of the batholith
at a moderate angle to the northwest subsequent to emplace-
ment by minor late sinistral movement on the Dog Bay Line
(Williams et al. 1993; Piasecki 1992) which produced compres-
sion in the Fogo Island region in early to mid-Devonian time.
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